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Abstract: Class prediction based on high-dimensional features has received a great deal

of attention in many areas. For example, biologists are interested in using microarray gene

expression profiles for diagnosis or prognosis of a certain disease (eg, cancer). For com-

putational and other reasons, it is necessary to select a subset of features before fitting a

statistical model, by looking at how strongly the features are related to the response. How-

ever, such feature selection procedure will result in overconfident predictive probabilities for

future cases, because the signal-noise ratio in the retained features has been exacerbated

by the feature selection. In this paper, we develop a hierarchical Bayesian classification

method that can correct for this feature selection bias. Our method (called BCBCSF) uses

the partial information from the feature selection procedure, in addition to the retained

features, to form a correct (unbiased) posterior distribution of certain hyperparameters in

the hierarchical Bayesian model that control the signal-noise ratio of the data set. We take

MCMC approach to infer the model parameters. MCMC samples are then used to make

predictions for future cases. Due to the simplicity of models, the inferred parameters from

MCMC are easy to interpret, and the computation is very fast. Our simulation studies

and tests with two real microarray data sets related to complex human diseases show that

BCBCSF predicts better than two widely used high-dimensional classification methods —

PAM and DLDA. An R package called BCBCSF for the method described here is available

from http://math.usask.ca/~longhai/software/BCBCSF and CRAN.

Short title: Bias-corrected Bayesian Classification with Selected Features

Key words: BCBCSF, optimistic bias, high-dimensional classification, feature selection

∗Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan,
S7N5E6, CANADA. Email: longhai@math.usask.ca. Web: http://math.usask.ca/~longhai.

1

http://math.usask.ca/~longhai/software/BCBCSF
http://math.usask.ca/~longhai


1 Introduction

Nowadays new technologies can easily measure high-dimensional features (also known as

covariates, explanatory variables) of objects/subjects (called cases generally). For example,

microarray technologies can simultaneously measure expression levels of thousands of genes

of tissues. An interesting use of these high-dimensional measurements is to predict a certain

categorical characteristic (also known as class label, response variable) of a case. For example,

a response may be an indicator of whether a kind of disease is present in a tissue, or different

types of a disease. Diagnosis methods by looking at the differences in gene expression profiles

from different classes may detect complex diseases at earlier stages than traditional methods,

and therefore have received a great deal of attention since about a decade ago. Univariate

feature selection by looking at some simple score, such as correlation coefficient or F-statistic,

is often applied to high-dimensional data sets before fitting a model for reducing computation

time and/or improving prediction accuracy. For example, it was used by most winning entries

of 2003 NIPS feature selection competition (Guyon et al., 2006).

Unfortunately, feature selection will introduce optimistic bias into statistical inference,

because the signal-noise ratio of the data set is lifted by the feature selection procedure. An

extreme example is that all features are irrelevant to a response, but the selected features

will still appear fairly predictive to the response, which is, however, wholly made by chance

(see Ambroise and McLachlan, 2002, for a demonstration). We will call this problem feature

selection bias. The effect on predictions caused by feature selection bias is that the predictive

probabilities will be overconfident. For example, for a group of future cases, the predictive

probabilities of their responses being 1 are between 0.9 and 1, but the actual fraction of

their responses being 1 is only 0.7. In other words, the predictive probabilities become more

extreme than what they actually are.

Correcting for feature selection bias in estimating predictive probabilities for future cases

is important in practice. Interestingly, Singhi and Liu (2006) empirically shows that feature
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selection doesn’t have effect on error rate of a classification method. For example if the

response is binary, the predictive probabilities based on a selected subset of features for those

cases on the classification boundary are still close to 1/2, therefore the predicted values of

response variables for test cases by thresholding at 1/2 are the same after feature selection.

However, error rate is useful only when losses incurred from different types of prediction

errors are the same. In practice, this is often not the case. For example, classifying a patient

with a disease into non-disease may cause much more loss than the opposite error. In such

situations, thresholding overconfident predictive probabilities at a value different from 1/2

for binary classification may result in higher loss on average.

To our knowledge, feature selection bias problem in high-dimensional classification prob-

lems hasn’t drawn much attention in literature. However, some relevant questions have

been discussed. Feature selection bias in cross-validation estimate of error rate has been

noticed by many researchers working on classification with gene expression data. Ambroise

and McLachlan (2002); Raudys et al. (2005) and some others have found that if a cross-

validation evaluation of classification algorithms is applied on a data set containing only

a subset of features selected beforehand based on the whole data set, the error rate could

be misleadingly small. It is therefore suggested that the feature selection should be “inter-

nal” to the cross-validation procedure, ie, the feature selection should be redone for each

splitting of data set into training and test sets. However, this is only a proper method for

evaluating a possibly poorly-calibrated classification procedure, but not a method for giving

better predictive probabilities for future cases. Even though it wasn’t stated explicitly by the

authors, the method called prediction analysis for microarrays (PAM) by Tibshirani et al.

(2002) has the effect of correcting for feature selection bias. In PAM, the fewer features are

retained, the stronger shrinkage for signals of retained features is imposed. However, we

will argue that this method has the problem of reducing discriminative power of retained

features. It is worth noting that feature selection bias on confidence region estimation has

been long recognized in regression problems. Hurvich and Tsai (1990) and Zhang (1992)
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respectively used Monte Carlo simulation and theoretical analysis to show that after feature

selection the actual coverage rate of confidence regions for regression coefficients is smaller

than the nominal probability. To solve the bias problem, some authors suggested that the

feature selection and parameter estimation be performed separately on different cases. In

the context of high-dimensional data discussed here, this quick solution is undesirable be-

cause the number of training cases is usually very small (very often only tens), therefore

using fewer cases for fitting models sacrifices the discriminative power, resulting in better

calibrated but less accurate predictions for future cases. Recently, Shen et al. (2004) and

Wang and Lagakos (2009) propose some methods that use optimal approximation and per-

turbation/permutation of response values to estimate the mean and variance of the least

square estimator of regression coefficients, for finding better calibrated confidence region.

However, it seems impossible to apply such methods for finding better calibrated predictive

probabilities for classification.

In this paper, we develop a hierarchical Bayesian classification method with the goal

of reporting better calibrated predictive probabilities for future cases, after correcting for the

feature selection bias. A hierarchical Bayesian model is proposed to model high-dimensional

features, in which all features are linked with hyperparameters controlling the overall signal-

noise ratio. Based on such a Bayesian model, we can naturally incorporate the information

that a certain number (probably large) of features were omitted before we obtained the

retained features to form a corrected posterior of the signal-noise ratio. An intuitive ex-

planation of the correction method is that the upward bias in signal-noise ratio implied by

the retained data will be canceled by the information that many weakly relevant features

are present prior to obtaining the retained features. This general correction method was

proposed by Li et al. (2008) and used in a naive Bayes model for binary features. However,

their model is inappropriate for practical high-dimensional classification primarily due to

lack of a sparse prior. Here we apply this general correction method to a Bayesian model

assigning heavy-tailed t prior for high-dimensional signals that is appropriate for practi-
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cal high-dimensional classification problems, for example with gene expression profiles. We

also note that this correction method is indeed a special case of the very general principles

proposed by Dawid and Dickey (1977) for statistical inference with selectively reported data.

We will call our classification method by BCBCSF — bias-corrected Bayesian

classification with selected features. In Section 2, we present the details of BCBCSF. In

Sections 3 and 4, we use synthetic and two real microarray data sets related to human cancer

to demonstrate BCBCSF by comparing to two other similar and widely used methods —

DLDA and PAM. DLDA is a method with totally no correction for selection bias, and PAM

is a method that we think overcorrects for the bias. We will show that BCBCSF is a valuable

alternative to these two methods with practical values.

2 The Methodology

2.1 A Hierarchical Bayesian Model for High-dimensional Data

We are interested in predicting a categorical response variable y, which is sometimes called

class label, given the information of a set of features x1, . . . , xp, for example a gene expression

profile of a tissue. Here we assume that y can take integer value from 1 to G, and all the

xi’s are continuous. The observation for case i is denoted by y(i) and x
(i)
1 , . . . , x

(i)
p . Given

parameter ψ1, . . . , ψG (collectively written as ψ), the response variable y(i) takes a value

g ∈ {1, . . . , G} with a probability of ψg. Conditional on y(i) = g, the predictor variables

x
(i)
1 , . . . , x

(i)
p are assumed to be independent, and x

(i)
j is distributed with N(µ

(g)
j , wx

j ).

The assumptions of independence between features and the same variances across differ-

ent classes may not be realistic. Considering more realistic models is indeed interesting and

important. However, because the number of observations in biomedical data, such as gene

expression data, is typically very small (often only tens), avoidance of overfitting problems

becomes difficult in more flexible models, such as linear models. Therefore, methods based

on simple models often outperform sophisticated methods based on more flexible models. A

strong evidence was given in the seminal paper in high-dimensional classification by Dudoit,
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Figure 1: Graphical representation of the hierarchical Bayesian classification model. A list
of notations with brief explanations in this Figure can be found in Appendix A.
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Fridlyand, and Speed (2002). They compared their proposed diagonal linear discriminant

analysis method (DLDA, which assumes exactly the same model as we outline above), linear

discriminant analysis methods (FLDA, LDA) and diagonal quadratic discriminant analysis

method (DQDA, which considers different variances across classes), decision tree, nearest

neighbors (NN), as well as a weighted voting scheme. DLDA is found to perform the best

in 3 out of 4 data sets, and makes only 1 misclassification in lymphoma data set, very close

to the best, 0, by NN. The assumptions of feature independence and the same variances are

also assumed in another highly influential method, called prediction analysis for microar-

rays (PAM) developed by Tibshirani et al. (2002). Finally we believe that the popularity

of DLDA and PAM in biologists, is partially due to easy interpretation of the models and

results, and perhaps also fast computation. Therefore in the method reported in this paper

we still work under these two assumptions.

Now we will describe how to assign priors to ψg, µ
(g)
j and wx

j using a hierarchical method.

Before we give detailed explanation of the priors, we lay out the model for data and priors

by the following equations, and display it graphically by Figure 1. For the ease of reference

in reading this paper, we also give a list of notations in Appendix A.

P (y(i) = g |ψ) = ψg, for g = 1, . . . , G , (1)

ψ1, . . . , ψG ∼ Dirichlet(c1, . . . cG), (2)

x
(i)
j | y(i) = g, µ

(g)
j , wx

j ∼ N(µ
(g)
j , wx

j ), for j = 1, . . . , p , (3)
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µ
(1)
j , . . . , µ

(G)
j | νj, wµ

j

IID

∼ N(νj , w
µ
j ), for j = 1, . . . , p, (4)

ν1, . . . , νp |wν
IID

∼ N(0, wν), (5)

wν ∼ IG

(

αν
0

2
,
αν
0w

ν
0

2

)

, (6)

wµ
1 , . . . , w

µ
p |wµ

IID

∼ IG

(

αµ
1

2
,
αµ
1w

µ

2

)

, (7)

wµ ∼ IG

(

αµ
0

2
,
αµ
0w

µ
0

2

)

, (8)

wx
1 , . . . , w

x
p |wx

IID

∼ IG

(

αx
1

2
,
αx
1w

x

2

)

, (9)

wx ∼ IG

(

αx
0

2
,
αx
0w

x
0

2

)

. (10)

For simplicity of presentation below, we will use i:j to denote the vector of integers from

i to j (i ≤ j), and use Ai:j to denote the collection of objects Ai, . . . , Aj, similarly when we

use a vector in superscript. In addition, we will use bold-faced letters to denote collections.

We first talk about the lowest level priors for parameters in data distributions. A natural

choice of prior forψ is a Dirichlet distribution with parameters c1, . . . , cG. The ratios between

c1, . . . , cG indicates our prior preference of which class is more likely, and the sum of c1:G

represents how certain we are on this preference. More discussions of this prior can be found

from Gelman et al. (2004), pg 83. We can choose them all equal to 1 (or 0.1) to reflect

that we have weak prior information of which class is more likely, and let the posterior class

probabilities depend mostly on the features. The mean parameters µ
(1:G)
j of the jth feature

across G classes are assigned independent normal distributions with mean νj and variance wµ
j

(see (4)), which will be assigned higher-level prior. This prior reflects our belief that the mean

parameters µ
(1:G)
j vary around a common expression level νj — the overall expression level

of the jth gene, and will have the effect of shrinking µ
(1:G)
j to νj in posterior sampling. The

variances wx
1:p for features within classes are assigned with the conjugate Inverse-Gamma

(IG) prior with shape parameter αx
1/2 and rate parameter αx

1 w
x/2 (see (9)). This prior

is quite standard and convenient for modeling variances, and called scaled-χ2 distribution;
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more explanations of the meanings of its parameters will also be given in next paragraph in

discussing wµ
1:p. We may set αx

1 to a fairly large value (for example 10) to reflect our belief

that wx
1:p are fairly close, but have some variability.

The hyperparameter wµ
j represents the signal level of the jth feature for predicting the

response. At a higher level, we assign wµ
1:p the conjugate Inverse-Gamma (IG) prior with

shape parameter αµ
1/2 and rate parameter αµ

1 w
µ/2 (see (7)), in which αµ

1 and wµ control

respectively the sparsity and “mean” (though not exactly the prior mean) of wµ
1:p — the

smaller αµ
1 is, the more sparse the wµ

1:p are; the larger wµ is, the larger values wµ
1:p can be.

If we integrate wµ
j away, it will lead to a multivariate t distribution for µ

(1:G)
j with degree

freedom αµ
1 and scale parameter

√
wµ. As is well-known, t distribution has heavier tails than

normal distribution, and therefore is more suitable to model a group of parameters, most of

which are near 0, but a few are extraordinarily large. This is what we believe for the signal

levels of a large number of features. Explaining with this hierarchy, we assign a different

variance wµ
j for different features to have the effect of model-based feature selection in fitting

the signal levels of a large number of features. The fitted model will have a few wµ
j very large

while shrinking others to very small. We could make αµ
1 a hyperparameter, and let it learn

from the data. However, this will make the posterior distribution have many local modes,

which may result in even worse MCMC fitting results than fixing it to a reasonable value.

We therefore leave αµ
1 to be fixed by an expert for controlling desired sparsity according to

his/her belief about the signals. Our experiences indicate that a value of αµ
1 between 0.5 and

4 works reasonably well for most gene expression data sets related to complex diseases. The

prediction results may vary a little bit (such as 1 or 2 more or fewer errors) but generally

the results are fairly robust to the choice. In practice, one can also use cross-validation to

choose it, since the computation for our method is fast. The insensitivity also explains why

we don’t choose the family of spike-and-slab priors — mixtures of a continuous distribution

and a point mass at 0. The spike-and-slab priors indeed express well our belief for the

signals, and is very attractive because it has effect of shrinking many small signals to exact
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0. However, the implementation of posterior sampling for real data sets is very difficult. The

difficulty arises from the need of calculating many intractable marginalized likelihoods, and

more critically that marginalized likelihood is very sensitive to the choice of the width of the

continuous distribution, see a relevant discussion in Shafer (1982) and the references therein.

Furthermore, the effect of shrinking small signals to exact 0 is achieved in our method by

a univariate feature selection that omits features with small signals. The choice of width

of continuous part in spike-and-slab priors becomes the choice of the number of retained

features, which is more transparent to practitioners. At last the common means ν1:p are

given a normal distribution with mean 0 (assuming that x
(1:n)
j have been centralized) and

variance wν .

The “mean” parameters wµ and wx respectively for wµ
1:p and wx

1:p, and variance wν of

ν1:p are treated as higher-level hyperparameters, assigned with diffuse IG distribution with

fixed parameters α0 and w0, which may be different for three groups of parameters (see

equations (8), (10), (6)). The values of α0 and w0 is to be fixed by an analyst, usually given

small positive values (eg, 0.5 and 0.05), defining a very diffuse prior.

When wµ is larger, more features have large variance amongst µ
(1:G)
j , therefore more

features are useful in predicting the response. When wx is larger, the noises in all features

are larger. Therefore, wµ and wx control respectively the overall signal and noise levels, and

wµ/wx indicates the overall signal-noise ratio.

2.2 Predictions and Posterior Sampling Given All Features

Suppose we want to predict the response y∗ of a test case with feature values denoted by

x∗
1:p. Following Bayes rule, the predictive probability of y∗ = g is

P (y∗ = g |x∗
1:p,x

(1:n)
1:p ,y(1:n)) =

P (y∗ = g |y(1:n))P (x∗
1:p |x

(1:n)
1:p , y∗ = g,y(1:n))

∑G
g=1 P (y

∗ = g |y(1:n))P (x∗
1:p |x

(1:n)
1:p , y∗ = g,y(1:n))

. (11)
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To compute (11), we need to compute the numerator for all g = 1, . . . , G, then divide them

by their sum, which gives the denominator. The first factor in the numerator of (11) can be

computed by Pòlya urn scheme: P (y∗ = g |y(1:n)) =
ng + cg
n+

∑

g cg
, where ng is the number of

training cases in class g. The second factor can be written as:

P (x∗
1:p |x

(1:n)
1:p , y∗=g,y(1:n))=

∫

P (x∗
1:p |µ

(g)
1:p,w

x
1:p, y

∗=g)P (µ
(g)
1:p,w

x
1:p |x

(1:n)
1:p ,y(1:n)) dµ

(g)
1:p dw

x
1:p,

(12)

where,

P (x∗
1:p |µ

(g)
1:p,w

x
1:p, y

∗ = g) = (2π)p/2 exp

(

−1

2

p
∑

j=1

[

(x∗j − µ
(g)
j )2

wx
j

+ log(wx
j )

])

. (13)

The above classification rule is very similar to DLDA and PAM. What’s different for

our Bayesian approach is that we average the predictive probabilities over plausible values

of parameters in light of data.

We will use Markov chain Monte Carlo (MCMC) (see eg Neal, 1993, and references

therein) to approximate the integral in (12) by averaging the quantity in (13) over a pool of

samples of µ
(1:G)
1:p and wx

1:p drawn by simulating a Markov chain. To draw samples of µ
(1:G)
1:p

and wx
1:p, we can draw samples of (µ

(1:G)
1:p , ν1:p, w

µ
1:p, w

x
1:p wµ, wν) from their joint posterior

distribution that is proportional to:

p
∏

j=1

(

P (x
(1:n)
j |µ(1:G)

j , wx
j ,y

(1:n))P (µ
(1:G)
j | νj, wµ

j )P (νj |wν)P (wµ
j |wµ)P (wx

j |wx)
)

×

P (wµ)P (wν)P (wx), (14)

where, P (x
(1:n)
j |µ(1:G)

j , wx
j ,y

(1:n)) = (2π)n/2 exp

(

−1
2

∑n
i=1

[

(x
(i)
j −µ

(y(i))
j )2

wx
j

+ log(wx
j )

])

, and

other probability density functions can be found from model descriptions (3) - (10).
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The conditional distributions needed to apply Gibbs sampling to (14) are given below:

µ
(g)
j |x(1:n),y(1:n), wµ

j , νj , w
x
j ∼ N

(

νj/w
µ
j + ẍ

(g)
j /wx

j

1/wµ
j + ng/wx

j

,
1

1/wµ
j + ng/wx

j

)

, (15)

wx
j |x(1:n),y(1:n), wx,µ

(1:G)
j ∼ IG

(

αx
1 + n

2
,
αx
1 w

x +
∑n

i=1 (x
(i)
j − µ

(y(i))
j )2

2

)

, (16)

wµ
j |wµ, νj,µ

(1:G)
j ∼ IG

(

αµ
1 +G

2
,
αµ
1 w

µ +
∑G

g=1 (µ
(g)
j − νj)

2

2

)

, (17)

νj |µ(1:G)
j , wµ

j , wν ∼ N

(

µ̈j/w
µ
j

1/wν +G/wµ
j

,
1

1/wν +G/wµ
j

)

, (18)

wν | ν1:p ∼ IG

(

αν
0 + p

2
,
αν
0 w

ν
0 +

∑p
j=1 ν

2
j

2

)

, (19)

P (wµ |wµ
1:p) ∝ (wµ)

p α
µ
1
−α

µ
0

2
−1 exp

{

−
p
∑

j=1

αµ
1

2wµ
j

wµ − αµ
0 w

µ
0

2wµ

}

, (20)

P (wx |wx
1:p) ∝ (wx)

p αx
1−αx

0
2

−1 exp

{

−
p
∑

j=1

αx
1

2wx
j

wx − αx
0 w

x
0

2wx

}

, (21)

where ẍ
(g)
j =

∑

{i:y(i)=g} x
(i)
j , and µ̈j =

∑G
g=1 µ

(g)
j . The distributions (15) - (19) can be

sampled directly with standard methods. The conditional distributions of wµ and wx is

sampled with Metropolis-Hasting method with Gaussian proposal, applied to the posterior

of (log(wµ), log(wx)).

From the expressions in (15), our Bayesian method shrinks the MLE estimates of µ
(1:G)
j

toward the common mean νj . We therefore shrink the small signals, as PAM does. What’s

different in our Bayesian method is that we shrink µ
(1:G)
j differently for different features

with wµ
j , therefore it doesn’t punish a lot the real signals.

2.3 Bias-corrected Posterior Given a Selected Subset of Features

When the number of available features — p is very large (for example as large as tens or a

hundred of thousands in genomic data), training the model based on all the features with

MCMC is slow, and therefore we intend to select a smaller subset of features by some simple
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univariate score measuring the usefulness of a feature in predicting the response, denoted by

R(x(1:n),y(1:n)). More importantly, feature selection can eliminate the influence of noises in

useless features. In high-dimensional problems, the accumulation of noises in a large number

of useless features may effectively conceal the signals of a comparatively much smaller subset

of useful features.

A widely used feature selection score is F-statistic:

RF (x
(1:n),y(1:n)) =

∑G
g=1 ng(x̄

(g) − x̄)2/(G− 1)
∑G

g=1

∑

i∈Ng
(x(i) − x̄(g))2/(n−G)

, (22)

where Ng is the set of cases in class g, x̄(g) is the average of the x(i)’s in Ng, and x̄ is the overall

average
∑n

i=1 x
(i)/n. Because of the simplicity, F-statistic is used very often in practice, see

for example Dudoit et al. (2002); Guyon et al. (2006), and many others. The number, k, of

retained features may be determined by some automatic way, for example by thresholding

the p-values in F-test by a prescribed value. Perhaps more often used are trial-and-error

methods, for example by looking at the prediction accuracy with various numbers of k. We

will therefore assume that the k is chosen arbitrarily before fitting the model and looking

at the prediction results on test cases. For notational convenience, we will assume that the

features are renumbered so that the subset of retained features is x1, . . . , xk, and features

xk+1, . . . , xp are to be omitted.

Unfortunately, the overall signal-noise ratio of the data set has been lifted by feature

selection. To correct for the bias, instead of omitting those p − k features completely, we

will keep partial information — the following set statements about them:

x
(1:n)
j ∈ S = {x(1:n) |RF (x

(1:n),y(1:n)) ≤ γ}, for j = k + 1, . . . , p, (23)

where γ is the score value of the last retained feature xk (or a threshold that is actually used

in determining k). These set statements for omitted features contain information about the
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overall signal-noise ratio — indeed a likelihood based on them favors small signal-noise ratio,

and therefore can be used to correct for the lifted overall signal-noise ratio. Formally, we

will base our posterior distribution on the following joint distribution:

k
∏

j=1

[

P (x
(1:n)
j |µ(1:G)

j , wx
j ,y

(1:n))P (µ
(1:G)
j | νj, wµ

j )P (νj |wν)P (wµ
j |wµ)P (wx

j |wx)
]

×

p
∏

j=k+1

[

P (x
(1:n)
j ∈ S |µ(1:G)

j , wx
j ,y

(1:n))P (µ
(1:G)
j | νj, wµ

j )P (νj |wν)P (wµ
j |wµ)P (wx

j |wx)
]

×

P (wµ)P (wν)P (wx). (24)

It is crucial to note that the set statements (23) are the same for all the omitted features.

We can therefore integrate away feature-specific parameters and hyperparameters (µ
(1:G)
j , νj ,

wµ
j , and w

x
j ) in (24), and then the second line of (24) becomes p− k multiples of

C(wµ, wx) = P (x
(1:n)
j ∈ S |wµ, wx,y(1:n)). (25)

In words, C(wµ, wx) is the probability that a feature will fail the feature selection mechanism

with threshold γ when the overall signal variance is wµ and the overall noise variance is wx.

Here, we omit wν in the condition of (25), because the probability is not related to the

grand means ν1:j, therefore neither to wν, which is shown in Appendix B. As result of the

integration, the joint posterior (24) becomes:

k
∏

j=1

[

P (x
(1:n)
j |µ(1:G)

j , wx
j ,y

(1:n))P (µ
(1:G)
j | νj, wµ

j )P (νj |wν)P (wµ
j |wµ)P (wx

j |wx)
]

×

C(wµ, wx)p−k × P (wµ)P (wν)P (wx). (26)

We will instead apply MCMC to sample from (26) in replace of (14) for all features.

From (26), the conditional distributions of the parameters, µ
(1:G)
j , νj, w

µ
j and wx

j for j =

1, . . . , k are the same as given by equations (15) - (18). The conditional distribution of wν

13



is not affected by C(wµ, wx), still having a form similar to (19), but with only ν1:k used

and p set to k. What’s different from considering only selected features is a bias-corrected

conditional distribution for (wµ, wx), which is written as:

P (wµ, wx |wµ
1:k,w

x
1:k,x

(1:n)
j ∈ S, j ∈ (k+1):p) ∝ P (wµ |wµ

1:k)P (w
x |wx

1:k)C(w
µ, wx) p−k,

(27)

where P (wµ |wµ
1:k) is similar to (20), with only wµ

1:k used and p set to k, and P (wx |wx
1:k) is

similarly modified from (21).

The speed of computing C(wµ, wx) is crucial in applying MCMC sampling for the bias-

corrected posterior. An efficient Monte Carlo algorithm for this computation is given in

Appendix B.

2.4 Summary of Settings for Prior and MCMC Sampling

For all simulation and real data experiments in Sections 3 and 4, we used the following

settings for priors: αµ
1 = 3, αx

1 = 10, αµ
0 = αx

0 = αν
0 = 0.5, wµ

0 = wx
0 = wν

0 = 0.05, c1 =

. . . = cG = 1. Our experiences indicated that these settings are appropriate for many gene

expression data sets related to complex diseases. More explanations about how to choose

these parameters are given in Section 2.1. The reason we used the same settings for all

experiments is to demonstrate that the results are insensitive to the settings, especially αµ
1 .

We used the following computational settings for all experiments in this paper. The

number of iterations in sampling (log(wµ), log(wx)) with Metropolis methods is set to 10.

We ran 10000 iterations of Gibbs sampling to draw MCMC samples from the bias-corrected

posterior distribution. The first 2000 iterations were omitted as burn-in, and every 10th

iteration afterwards was used to make Monte Carlo estimations for test cases. In computing

the adjustment factor with approximation (34), the cutoffs for fℓ and Poisson weights are

set to e−10, the number of random Λ used in Monte Carlo integration is set to 1000.

14



3 Simulation Studies

3.1 Two Criteria for Evaluating Classification Methods

Before presenting the results, we briefly introduce two criteria used to compare different

classification methods. Let’s denote the predictive probabilities produced by a classification

method by p̂
(i)
g , where i indicates the identity of a test case, g is the class label. We also

denote the true class label by y(i). Suppose we have N test cases. The first criterion is error

rate is: 1
N

∑N
i=1 I(ŷ

(i) 6= y(i)), where ŷ(i) = argmaxg p̂
(i)
g . This criterion is very simple and

widely used, but isn’t precise enough to find the deviances in predictive probabilities. For

example, in binary classification, the true response of a test case is 1, for which method A

gives a predictive probability 0.49 that it is from class 1, and method B gives 0.2; using 0.5

as threshold, they are both wrong, but we can see that method A is better. Another method

that can better detect the differences in predictive probabilities is the average of minus

log predictive probabilities (AMLP) at the true value y(i): 1
N

∑N
i=1 − log(p̂

(i)

y(i)
). This

criterion punishes heavily the small predictive probabilities at the true class labels.

3.2 Design for Comparisons of Three Classification Methods

Using each data simulation model to be described below, we generated 2100 cases, 100 of

which were used to form a training set, and the remaining to form a test set. We trained

models on the 100 training cases with various numbers of retained features, then obtained

predictive probabilities for the 2000 test cases.

In this paper, we compare three different methods: (1) BCBCSF: bias-corrected

Bayesian classification with selected features, denoted by symbol “c” in the following plots.

(2) MLE (DLDA) (Dudoit, Fridlyand, and Speed, 2002), which is equivalent to estimating

the model parameters µ
(1:G)
1:p and wx

1:p with MLEs, therefore denoted by “m”. (3) PAM

(Tibshirani et al., 2002), denoted by “p”. Roughly, PAM subtracts the absolute values of

estimated “centroids” (|µ(g)
j − νj |/

√

wx
j , for g ∈ 1:G, j ∈ 1:p) by a common threshold, with

negative values set to 0. Then it uses the shrunken centroids to reconstruct µ
(g)
j with νj

15



and wx
j for classification. Only the features with at least one non-zero shrunken centroids

will have effect in classification. Therefore PAM is also a feature selection method. A larger

threshold for cutting off centroids will retain a smaller subset of features.

The three methods are compared in terms of error rate and AMLP with true re-

sponse values of the 2000 test cases, when the same number of features were retained

for fitting models. Since one cannot specify directly how many features to retain in

PAM as described above, we ran first PAM with the R package pamr available in CRAN

(http://cran.r-project.org/mirrors.html), which returned a set of numbers of retained

features. We then chose the same numbers of features with F-statistic (ANOVA) in BCBCSF

and DLDA methods, and compared the predictive performances when the same number of

features were retained. Note that PAM may have multiple predictions for the same number

of retained features, which are resulted from different thresholds used to cut off centroids.

3.3 Experiments on Simulated Data from Our Bayesian Model

Using the Bayesian model described in Section 2.1, with the following fixed top level hyper-

parameters and degrees of freedom for IG distributions: αµ
1 = 3, wµ = 0.003, wx = 1, αx

1 =

10, wν = 1, we generated a data set of n = 2100 cases that are evenly distributed in G = 4

classes, with p = 5000 features. 100 of the cases are randomly selected as training set, and

the remaining 2000 are used as test cases. Figure 2 shows the comparison results by plotting

the error rates and AMLPs against the numbers of retained features. We can see clearly

that BCBCSF predicts the best in terms of both of the criteria.

The first thing we see is that the error rates and AMLPs of all three methods decrease

at the beginning when more features are included and then increase. Therefore, feature

selection by for example F-statistic is useful to obtain good predictions. It justifies why

we should consider feature selection, even though the computation for implementing our

Bayesian method with all features is still feasible.

The error rates and AMLPs of BCBCSF and MLE are similar when only a small number

16
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Figure 2: Comparisons of predictive probabilities produced by three classification methods
(“p” — PAM, “m” — DLDA, “c” — BCBCSF) in terms of error rate and AMLP. The data
was simulated from our Bayesian model. Both x and y axis are in logarithm scale.
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of top features are used. This is because the top features selected by F-statistic are indeed

useful, as shown later in Figure 3a. However, BCBCSF is more resistant to the noises in use-

less features, therefore has better predictions when many features are used. Even when they

have similar error rates, the bias-uncorrected MLE produces much more extremely wrong

predictive probabilities than BCBCSF for difficult cases. Figure 4b show the individual

predictive probabilities at their true class labels for 70 randomly selected test cases, when

8 features are retained. We see that the predictive probabilities of MLE at true labels are

mostly smaller than those of BCBCSF, especially for those cases misclassified by both MLE

and BCBCSF. The overconfidence of MLE will be more severe when more features are re-

tained. We will discuss the practical disadvantage of MLE resulting from this overconfidence

in real data analysis presented in Section 4.

The error rates and AMLPs of PAM decrease more slowly than those of BCBCSF and

MLE. This indicates that as a tool for selecting features, PAM is less powerful than F-

statistic, since it will need to retain more features to reach its best prediction. The reason is

that PAM overcorrects for selection bias — when PAM omits more features, it uses a higher

value of threshold, which however also cuts more off the real signals, therefore reduces their

17



discriminative powers. In contrast, as explained in Section 2.2, BCBCSF shrinks the signals

of different features toward 0 with different “thresholds” — w
µ
j , so it doesn’t hurt the strong

signals while shrinking small signals. In addition, our correction for feature selection bias

doesn’t impose stronger shrinkage when more features are omitted, instead it adjusts the

posterior of hyperparameters wµ and wx to center at the “correct” value but with different

uncertainty. Therefore, BCBCSF corrects for feature selection bias appropriately without

reducing the discriminative powers of real signals. Further illustrations are given below.

The plots of Figure 3 illustrate the difference of bias corrections used by BCBCSF and

PAM, and also look into the differences of these three methods in parameter estimation. In

subfigures 3a and 3b, we plot the signal levels (
√

wµ
j /w

x
j ) of top selected features estimated by

three methods when different numbers (11,1482) of features are retained, as well as the true

signals calculated from the 2000 test cases; for BCBCSF, the signals are taken as the medians

of the signals in Markov chain sample, for MLE, PAM and true value, wµ
j is computed as

the sample variance of µ
(g)
j across classes. From subfigure 3a, we see that BCBCSF shrinks

the small MLE signals to 0. By comparing to the true signal values of these features with

small MLE signals, we can see that most of them are only made by chance, but F-statistic

and MLE overestimate their signal levels. BCBCSF successfully avoids the feature selection

bias by shrinking them to their true values. Meanwhile, the correction for bias doesn’t

punish significantly the real strong signals, though we still see small amount of shrinkage

for a few of them, which may be due to randomness. Most importantly, we see that the

estimates of strong signals by BCBCSF are very stable regardless of how many features are

retained. This is because that BCBCSF corrects for bias through adjusting the posterior of

hyperparameters to center at the true value, rather than cutting off the signals directly, as

PAM does. Subfigures 3c and 3d show two Markov chain traces of log(wµ/wx) when 1 and

1482 (two very different numbers) of features are retained. Both traces move around the

true value, but subfigure 3c shows much larger variation due to omission of many features.

In contrast, the signal estimates by PAM in subfigure 3b for the top selected features are
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Figure 3: Plots in (a) and (b) show the signal levels of top selected features estimated by
BCBCSF (red ◦ and blue +), MLE (black ×) and PAM (red ◦ and blue +). For BCBCSF and
PAM, red ◦ and blue + represent the estimated signal levels when two different numbers (11
and 1482 here; two other similar numbers used for Figures 5 and 6) of features are retained.
Note that the points in (a) overlap on the left. The true values are also indicated with
green •. Plots in (c) and (d) show Markov chain traces of log(wµ/wx) in two runs, with the
horizontal lines showing the true value. The data was simulated from our Bayesian model.
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smaller than the true values by large amount. In addition, this shrinkage becomes stronger

when fewer features are retained, which is undesired.

We can look at how well-calibrated a set of predictive probabilities by the bias (difference)

of expected error rate to the true error rate. The expected error rate is the average of the

expected probabilities of making prediction errors for all test cases, each of which is equal to

“1 - the highest predictive probability in all classes”. A negative value for this bias indicates

19



Figure 4: Plots in (a) show biases of expected error rates to true error rates. Plots in (b)
show the predictive probabilities at the true labels for different methods. The colorized points
represents the cases that are misclassified when the predicted response values of test cases
are the class with highest predictive probability, ie, thresholds for predictive probabilities in
prediction for all classes are fair. The bottom numbers show the true labels. The data was
simulated from our Bayesian model.
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that the predictive probabilities are overconfident, a positive value indicates overconservative,

and a value close to 0 is desired, indicating well-calibration. Subfigure 4a shows the biases of

three methods. The biases of MLE are mostly negative, and increase in absolute value when

more features are retained since more false signals are included in prediction. The biases

of PAM are positive at the beginning, indicating that the predictive probabilities produced

by PAM are overconservative because it cuts off real signals. The biases of BCBCSF stay

close to 0, but become slightly negative at the end, which may be due to computational

inaccuracy in MCMC.

3.4 Experiments on Simulated Data with t Noises

In this section, we test BCBCSF when the data contain noises that cannot be modeled by

normal distributions. A data set was generated with the same way for generating µ
(g)
j and wx

j

as described in Section 3.3, but the noises for x
(i)
j are generated from a scaled t distribution

with 4 degrees of freedom (denoted by t4): x
(i)
j | y(i) = g, µ

(g)
j , wx

j ∼ µ
(g)
j +t4×

√

wx
j , for j =

1, . . . , p.

We made similar comparisons of the three classification methods. To save space, we only
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Figure 5: These plots show comparisons of BCBCSF, MLE, and PAM on a data set with
noises for x

(i)
j generated from scaled t distribution with 4 degrees of freedom. The methods

for reading these plots can be found from the plots in Section 3.3. Particularly, the true
values of signals are computed from the 2000 test cases with MLE method.
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show the comparisons of error rates, AMLPs, biases in expected error rates, and BCBCSF

signal estimates. The results are shown in Figure 5. These plots confirm all of the discussions

about the differences of BCBCSF from MLE and PAM. Briefly, MLE produces overconfident

predictive probabilities, which is even clearer for this example from looking at the biases in

expected error rates, caused by increased noises in data; PAM produces overconservative

predictive probabilities; and BCBCSF corrects for feature selection bias appropriately by

reducing the influences of noises in features with little or no signals, producing unbiased

and good predictions when appropriate number of features are retained. For this example,

we see that BCBCSF are a little overconfident when a large number of features are used
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Figure 6: These plots show comparisons of BCBCSF, MLE, and PAM on a data set with
noises for x

(i)
j generated from scaled t distribution with 4 degrees of freedom, and signals

generated with spike-and-slab priors. The methods for reading these plots can be found from
the similar plots in Section 3.3. Particularly, the true values of signals are computed from
the 2000 test cases with MLE method.
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(see subfigure 5c), which confirms the necessity of selecting only a subset of features in

high-dimensional problems.

3.5 Experiments on Data Simulated with Spike-and-Slab Prior

In this section we test BCBCSF when the signals of features are generated from a more sparse

spike-and-slab priors. We still generate p = 5000 features, 0.5% of which have wµ
j = 4, and

the remaining have wµ
j set to exact 0. Parameters νj and wx

j were generated as in Section

3.3, and the noises for x
(i)
j were generated from t4 distribution as described in Section 3.4.
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Similar experiments and comparisons were carried out as in Section 3.3, with results

shown in Figure 6. All the differences of BCBCSF from MLE and PAM are confirmed again

for this example even though the distributions for generating signals are not the prior of

BCBCSF. It shows that BCBCSF is robust to these model mis-specifications in priors and

noises. Particularly, we see that t prior can handle the very sparse signals well, shrinking

small signals (which are mostly made by chance) to be very close to 0. In subfigure 6d,

we see that the signal estimates by BCBCSF are still rather stable regardless of how many

features are retained, and there is a big gap between the real signals to the false when around

10 features are retained, correctly reflecting the shape of the spike-and-slab prior.

4 Comparisons on Real Microarray Data Sets

In this section, we apply BCBCSF to two publicly available mircoarray data sets — namely

lymphoma, and colon, to demonstrate BCBCSF by comparing to MLE and PAM. The data

sets were downloaded from http://stat.ethz.ch/~dettling/bagboost.html, and stud-

ied by Dettling (2004) and many others. The original lymphoma and colon data sets were

published by Alizadeh et al. (2000) and Alon et al. (1999) respectively. Some preprocess-

ing was made by Dettling (2004), from which one can find the information. In summary,

lymphoma data set contains expression levels of p = 4026 genes from n = 62 patients with

most prevalent adult lymphoid malignancies: 42 cases of diffuse large B-cell lymphoma, 9

cases of follicular lymphoma and 11 cases of chronic lymphocytic leukemia. Colon data set

contains expression levels of 22 normal and 40 tumor colon tissues for 6500 human genes

measured using the Affymetrix technology; a selection of 2000 genes with highest minimal

intensity across the samples has been made by Alon et al. (1999). We coded the tissue types

by integers 1, 2, and 3 (if any) as the order of appearing in the above description for each

data set in the following discussions.

We used the same settings for priors and computation in BCBCSF as in simulation

studies, described in Section 2.4. Since the data sets have very small number of cases,
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we used cross-validation (CV) to obtain the predictive probabilities for all cases. For fair

comparison, we used the same folds (the way to divide cases) as returned by PAM’s R

function pamr.cv with the number of folds set to 10 for all three methods. If some class has

fewer than 10 cases, the exact number of folds returned by pamr.cv according to its scheme

was however smaller than 10. Because PAM cannot specify the number of retained features,

as in simulation studies, we first ran PAM’s R function pamr.cv to obtain a set of number

of retained features (as well as folds). We then used the same folds and chose the same

numbers of features with F-statistic for BCBCSF and MLE. The comparisons of prediction

performance are made when the same number of features are retained. The comparison

results are shown in Figures 7 and 8. For direct visualization, we choose one experiment

with appropriate number of features are retained at which PAM has nearly the best AMLP

to display the predictive probabilities of all cases. Note, however, this doesn’t imply that we

recommend using PAM to choose the number of retained features for BCBCSF.

As we have seen in simulation studies, the AMLPs decrease first and then increase as the

number of retained features increases. Therefore, best predictions for all three methods are

attained when an appropriate number of features are selected. In both data sets, the error

rates are not corrupted significantly when many features are used, different from what we see

from simulation studies. A possible explanation is that the data sets have too small number

of cases to contain those cases on the classification boundary for which the predictions are

more easily corrupted by small and false signals in training data. Another possibility is that

the data sets have been “preprocessed” by experimenters to be nicer before being published.

We first look at the comparisons between BCBCSF and MLE. The error rates of BCBCSF

and MLE are similar in both data sets. This is not surprising as they use the same features

in prediction, especially when we retain only a small number of features, most of which are

real signals for separating the classes. Our simulation studies have shown that there are dif-

ferences in error rates between BCBCSF and MLE when fairly many features are retained.

Perhaps the difference can only be detected when they are applied to a large number of
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Figure 7: These plots show comparisons of BCBCSF, MLE and PAM on lymphoma data.
The methods for reading these plots can be found from the similar plots in Section 3.3.
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test cases. The differences in predictive probabilities given by BCBCSF and MLE are clear

when we look at the AMLPs in subfigures 7b and 8b because this criterion punishes heavily

the small predictive probabilities at true labels. The advantage of BCBCSF over MLE in

terms of AMLP comes from that for those difficult cases, the predictive probabilities given

by MLE are greatly overconfident at the wrong labels, therefore are very small at the true

labels. This is shown by subfigures 7d and 8d in which the log predictive probabilities at true

class labels for all cases are displayed with y-axis. From these subfigures, we see clearly that

for those difficult cases, the predictive probabilities at true labels given by MLE are smaller

than those of BCBCSF by many orders of magnitude. The message to be taken from these

sharp differences is that BCBCSF is indeed able to adjust the greatly overconfident predic-
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Figure 8: These plots show comparisons of BCBCSF, MLE and PAM on colon data. The
methods for reading these plots can be found from the similar plots in Section 3.3. Addition-
ally, the horizontal lines in (c) show classification boundaries if the threshold for predicting
tumor is 0.1 (which means that if predictive probability at class tumor of a case is larger than
0.1, then it is classified into tumor); the cases with predictive probabilities at true classes
above the lines are correctly classified.
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tive probabilities of MLE. However, since these cases are really difficult for both methods,

this correction for overconfidence of MLE seems useless in practice. However, BCBCSF’s

adjustment for overconfident predictive probabilities is practically useful for those less diffi-

cult cases, especially when losses from different classification errors are unbalanced. Among

so small number of cases, we see three such useful corrections. One is the case indexed by

41 in lymphoma data pointed by an arrow in subfigure 7c. Even when the predictive class

label is taken to be the class with highest predictive probability (implied by balanced losses),
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BCBCSF correctly predicts the label of this case, but MLE reports a very small predictive

probability at its true label. The other two are the cases indexed by 24 and 57 in colon data

— the two cases with circles in subfigure 8c. If we use a threshold for predicting tumor (which

means that if the predictive probability at tumor is larger than this threshold, then a case

is classified into tumor) that is smaller than 0.5, for example 0.1 (shown by the horizontal

lines), BCBCSF will classify them into class tumor correctly, while MLE still makes wrong

predictions. Note that such small threshold for predicting tumor is reasonable in practice

because the loss from classifying a tumor tissue into normal tissue may be more than 9 times

of the opposite error. As summary, from the comparison results on these two data sets, we

see that BCBCSF can correct for the overconfidence of MLE, and the correction is useful in

practice.

Next we look at the comparisons between BCBCSF and PAM. As we have shown in

simulation studies, because PAM selects features by cutting off the signal levels, it produces

overconservative and therefore less discriminative predictive probabilities. This fact is also

observed when it is applied to these two data sets, as shown by subfigures 7c and 8c — most

of the predictive probabilities given by PAM at the true labels are smaller than those of

BCBCSF. We will discuss two practical disadvantages caused by this overconservation.

First, we see that PAM tends to select more (sometimes much more as in lymphoma

data) features to attain its best predictive accuracy. When only a very small number of

features are retained and a large cut-off to signal levels is used, PAM predicts very poorly

in terms of error rate. Indeed, in such situations, PAM simply predicts the class labels

of all cases to the class with the most cases; therefore for each data set, the numbers of

erroneous predictions are almost just the total number of cases in minority classes. This loss

of accuracy may vanish when a small cut-off to the signal levels is used and more features are

retained. However, we see that for lymphoma data set, this only happens when more than

2000 features are retained. The reason is that the signals for separating class 2 in lymphoma

data from other two classes are rather weak, so they are cut off even when a fairly small
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PAM’s threshold is used. The numbers, roughly 15-20, of retained features for PAM to reach

good accuracy in colon data set isn’t so large (bad), but still much larger than the number

(around 4) of retained features needed by BCBCSF. This fact shows that PAM is inferior

than BCBCSF (and MLE) when it is used as a tool for selecting a subset of differential

features in high-dimensional problems by looking at predictive performance (currently, this

type of use of PAM may be more often in practice than as a disease diagnosis tool with gene

expression.).

Second, when unfair thresholds for different classes are used (implied by unbalanced

losses from different classification errors), the less discriminative power of PAM’s predictive

probabilities will result in much more erroneous predictions than BCBCSF. We look at the

predictive probabilities produced by BCBCSF and PAM for colon data set when 23 features

are retained (where PAM almost reaches its smallest AMLP), shown by subfigure 8c. If

the threshold for predicting tumor is smaller than 0.1, PAM will result in many erroneous

predictions, with most normal cases classified into tumor.

We remark on the inferiority of BCBCSF to PAM in terms of AMLP when many features

are retained, as seen in subfigure 8b. As we have shown, feature selection is necessary to

obtain good prediction for all three methods. We therefore don’t recommend using BCBCSF

with a large subset of selected features. Therefore, the best attainable prediction accuracy

is what we care in practice. From the comparisons of AMLPs on both data sets, we see

that BCBCSF is better than PAM in smallest AMLPs. Indeed, this inferiority occurs also

because AMLP cannot punish the overconservative probabilities very well, as we see that the

AMLPs of PAM are not so poor even when the error rates are very poor at the beginning

when very small subsets of features are retained.

Finally we must point out that the computation of BCBCSF is significantly slower than

MLE and PAM, as BCBCSF uses MCMC. The plots in Figure 9 show the computation times

needed for the simulation example in Section 3.3, which is very similar to the time needed for
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running BCBCSF once for a practical data set. In applying BCBCSF for practical problems,

one doesn’t need to run it with large numbers of retained features, because we have shown

that the best predictive accuracy is often achieved by a very small subset of selected features.

From Figure 9, the computation is very fast when the numbers of retained features are small.

5 Concluding Remarks

In this article, we have shown that a proposed high-dimensional classification method, called

BCBCSF, is a valuable alternative to two other similar methods — MLE (DLDA) and

PAM, with practical values. Our goal in proposing BCBCSF is a classification method

that can correct for feature selection bias and therefore report better calibrated predictive

probabilities for future cases. Our simulation and real data experiments show that BCBCSF

indeed reports predictive probabilities that are better calibrated than MLE and PAM. In

Section 4, we have discussed in details the practical advantages of using BCBCSF due to

the better calibration. Briefly, as result of bias correction, BCBCSF has better classification

accuracy than PAM and MLE, especially when the losses incurred from different classification

errors are unbalanced. In addition, compared to PAM, BCBCSF reaches its (better) smallest

classification error with a smaller subset of selected features.

Gaussian distributions for x
(i)
j given class labels may not be appropriate for some real

gene expression data sets in which some extraordinarily large or small expression levels

(often called outliers) are recorded. There are two possible extensions of BCBCSF to handle

outliers. One is using t-distribution with small degree freedom to model x
(i)
j given class

label. Without feature selection applied, this is easy to implement in Gibbs sampling by

introducing auxiliary variances for each x
(i)
j . The difficulty lies in a good choice for univariate

feature selection score such that the required bias correction factor is easy to compute. When

outliers exist, the scores based on ranks, for example Mann-Whitney-Wilcoxon test, are more

suitable than F-statistic. However, how to compute the correction factor efficiently remains

to be investigated. Another solution for outliers is converting real-valued gene expression
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levels into discrete values and select features with sample correlation. The conversion may

lose some information in selected features, but the required computation of bias correction

factor may be simplified. However, for newer high-throughput sequencing technologies that

directly count the numbers of mRNA molecules, a discrete distribution for x
(i)
j is natural.
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Appendices

A List of Notations

We also make a list of notations used throughout the paper. More detailed explanations of

these notations are given in Section 2.1 and are graphically displayed in Figure 1.

• data: y(i) is the label for the ith case, x
(i)
j is the value of the jth feature, for j = 1, . . . , p.

• parameters: µ
(g)
j is the mean of the jth feature in class g, and wx

j is the variance of

x
(i)
j within a class, which is the same for all classes. ψg is the prior label probability of

class g.

• hyperparameters: νj and wµ
j are the mean and the variance of µ

(g)
j across classes of

feature j. νj represent the common expression level of feature j, and wµ
j represents the

signal level of feature j.

• hyperparameters: wν is the variance of ν1, . . . , νp, w
µ is the “mean” of wµ

1 , . . . , w
µ
p ,

representing the overall signal level, and wx is the “mean” of wx
1 , . . . , w

x
p , representing

the overall noise level.

B Approximating Adjustment Factor of BCBCSF

A method for approximating C(wµ, wx) is based on precursors’ work on computing the power

function of one-way ANOVA. Given µ
(1:G)
j , and y(1:n), F-statistic in (22) has a non-central

F distribution (Knight, 2000, pg. 411-416), with G− 1 and n − G degrees of freedom, and

a non-centrality parameter 2 Λ(µ
(1:G)
j , wx

j ), where

Λ(µ
(1:G)
j , wx

j ) =
D(µ(1:G))

2wx
j

, D(µ(1:G)) =
G
∑

g=1

ng(µ
(g)
j − µ̃j)

2, µ̃j =

∑G
g=1 ngµ

(g)
j

n
. (28)
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We therefore have

P (x
(1:n)
j ∈ S |y(1:n),µ

(1:G)
j , wx

j ) = P
(

F
(G−1, n−G, 2Λ(µ(1:G)

j ,wx
j ))

≤ γ
)

≡ c(Λ(µ
(1:G)
j , wx

j )),

(29)

where F
(G−1, n−G, 2Λ(µ(1:G)

j ,wx
j ))

denotes a random variable with a non-central F distribution.

The function c(Λ) can be computed easily using the fact that a non-central χ2 distribution

can be expressed as an infinite mixture of central χ2 distributions with Poisson weights

(Knight, 2000). With χ2
ν denoting a random variable having central χ2 distribution with

degree freedom ν, we can now express c(Λ) as:

c(Λ) =

+∞
∑

ℓ=0

fℓ
exp(−Λ)Λℓ

ℓ !
, (30)

where

fℓ = P

(

χ2
G−1+2ℓ/(G− 1)

χ2
n−G/(n−G)

≤ γ

)

= P

(

χ2
G−1+2ℓ/(G− 1 + 2ℓ)

χ2
n−G/(n−G)

≤ γ (G− 1)

G− 1 + 2ℓ

)

. (31)

Here, fℓ can be computed with the CDF of central F distribution. From (31), we can see

that fℓ decreases to 0 as ℓ tends to +∞. Therefore, c(Λ) is a decreasing function of Λ.

In addition, since Poisson weights are always between 0 and 1, we can truncate the above

infinite summation by setting a threshold for fℓ, while controlling a same tolerable error for

all Λ.

To obtain the adjustment factor — C(wµ, wx), we need to integrate c(Λ(µ
(1:G)
j , wx

j )) with

respect to the prior distribution of Λ(µ
(1:G)
j , wx

j ), which is induced by the priors for µ
(1:G)
j

and wx
j , conditional on wµ, wx, and wν . It is useful to note that the prior distribution of

Λ(µ
(1:G)
j , wx

j ) is unrelated to νj , and so neither to wν . To show this, we will re-parameterize

µ
(1:G)
j and wx

j as follows:

µ
(1:G)
j =m

(1:G)
j

√

sµj
√
wµ + νj , wx

j = sxj w
x, (32)
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where, m
(1:G)
j

IID

∼ N(0, 1), sµj ∼ IG(αµ
1/2, α

µ
1/2), sxj ∼ IG(αx

1/2, α
x
1/2). Then it can be

shown that

Λ(µ
(1:G)
j , wx

j ) =
1

2
D
(

m
(1:G)
j

) sµj
sxj

wµ

wx
. (33)

From the above expression, we can see readily that the prior distribution of Λ(µ
(1:G)
j , wx

j ) is

not related to wν . Therefore we denote the adjustment factor by a function of only wµ and

wx — C(wµ, wx). It is explicitly written as:

C(wµ, wx) = E(c(Λ)) = Em(1:G)
j , sµj , s

x
j

(

c

(

1

2
D
(

m
(1:G)
j

) sµj
sxj

wµ

wx

))

. (34)

As shown above, c(Λ) is a decreasing function of Λ. Therefore, when wµ/wx is larger,

C(wµ, wx) is smaller, resulting in fewer features to be omitted using γ as threshold. This

explains more precisely that the ratio wµ/wx controls the overall strength of the relationship

between the features and response. The method presented in this paper corrects for the

upward bias in the posterior of wµ/wx given the retained features with C(wµ, wx), which is

a decreasing function of wµ/wx.

The expression of C(wµ, wx) in (34) also indicates that we can use Monte Carlo method

to estimate it at different values of wµ and wx, with a common pool of i.i.d. random samples

of m
(1:G)
j , sµj and sxj . There are two advantages of doing this. First, it saves computation

time. We need to draw samples of m
(1:G)
j , sµj , and s

x
j and compute D

(

m
(1:G)
j

)

sµj /s
x
j only

once, regardless of how many iterations of Markov chain sampling are to be run. More

importantly, it improves the accuracy (measured by mean square error) of estimating the

ratios of C(wµ, wx) at different values, which are needed in simulating Markov chain for

updating wµ and wx, since two random variables with two different sets of values of wµ and

wx whose expectations are computed with (34) are positively correlated. One can show this

explicitly by approximating the mean square error of a ratio of two random variables with

Taylor expansion of the ratio at their expected values.
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C BCBCSF Computation Times

In this appendix, we show the computation times (seconds) of BCBCSF in Figure 9 for the

simulation experiments in Section 3.3. All the computation was done on a Unix machine

with Ultra Sparc III processors. Compared with using all the 5000 features, training and

prediction with a small subset of selected features is much faster. For example, the computa-

tion time with only 713 features is only 20% of that with 5000 features. Therefore, BCBCSF

with feature selection and bias correction results in better prediction performance with less

computation. The small values of times for training and prediction with BCBCSF also show

that the computation with BCBCSF is fast.

Figure 9: Computation times of BCBCSF.
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