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High-dimensional Feature Selection Problem

• Background: modern high-throughput biotechnologies can easily measure ex-

pression levels of thousands of genes, or SNPs of the whole genome.

• Problem: identifying a few features (such as genes) whose values are statistically

relevant to a categorical response variable, such as an indicator of presence of a

certain cancer.

• Mathematical Notations:

– Response variable: y, taking integers 1, . . . , C.

– Features (explanatory variables, or covariates): x1:p = (x1, . . . , xp).

– Data: (yi, xi,1:p) for i = 1, . . . , n

• Challenges: high dimensionality of features (p), small sample size (n), often

called p >> n problems, and complex relationships between features.

• An analogue: looking for a couple of “needles” from a huge “haystack”.
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Existing Methods in the Literature

• Univariate screenings, for example t-test,

• Diagonal discriminant rules, such as DLDA by Dudoit et.al.(2002), PAM by

Tibshirani et.al.(2003), and BCBCSF by Li (2011).

Limitation: ignore relationships among features

• Regularized discriminant rules, such as Guo, Hastie and Tibshirani (2007)

Limitation: sensitive to non-Gaussian outliers

• Classification models based methods

– Penalized likelihood methods, see review by Ma and Huang (2008)

Limitation: results are unstable when non-convex penalties are used

– Bayesian methods based on Spike-and-Slab priors, see Yang and Song (2010)

Attractiveness: shrinking some coefficients to exactly 0

Limitations: results are sensitive to choice of width of continuous distribution,

see Lindley (1957), Lamnisos et.al. (2011), difficulties in MCMC sampling
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Our Approach: Bayesian Logistic Regression with

Moderately Heavy-tailed Priors and MCMC

• Logistic regression model for binary response y

P (yi = k + 1|xi,1:p,β0:p) =
I(k = 0) + I(k > 0) exp

(

β0 + xi,1:pβ1:p

)

1 + exp
(

β0 + xi,1:pβ1:p

) ,

for k = 0 and 1, i = 1, . . . , n, where β1:p is a column vector of regression

coefficients, and I(·) is indicator function.

• Moderately heavy-tailed prior for βj with small scale

β1, . . . , βp ∼ t(df = 1, scale=0.01), or others

• Computing: MCMC sampling using Hamiltonian Monte Carlo in Gibbs Sampling
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Why Moderately Heavy-tailed Priors and MCMC?
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Scale-Mixture-Normals Priors

• t distribution

βj ∼ N(0, σ2
j ), σ2

j ∼ IG(α/2, αγ2/2)

• Horseshoe or Inverted-Beta (Carvalho et al., 2010)

βj ∼ N(0, σ2
j ), σj |φj ∼ N+(0, φ2j ), φ2j ∼ IG(α/2, αγ2/2)

• Normal-Exp-Gamma (NEG, Griffin and Brown, 2012)

βj ∼ N(0, σ2
j ), σ2

j |ψj ∼ exp

(

1

ψj

)

, ψj ∼ IG(α/2, αγ2/2)

• Laplace (used in LASSO)

βj ∼ N(0, σ2
j ), σ2

j ∼ exp(1/γ2)
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Bayesian Perspective of Choice of Prior

Boxplots of 4000 random numbers of log10(|βj |) from various priors
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Shrinking Effect of Moderately Heavy-tailed Priors
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Examples Illustrating Shrinking Effect
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Bayesian Multiclass Logistic Regression

with Heavy-tailed Priors and MCMC
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Bayesian Multiclass Logistic Regression Models
(Original Symmetric Parameterization)

P (yi = c|xi,1:p,β0:p,1:C) =
exp

(

β0,c + xi,1:pβ1:p,c

)

∑C

c=1
exp

(

β0,c + xi,1:pβ1:p,c

)
, for c = 1, . . . , C,

βj,1:C |σ
2
j ∼ N (0, σ2

j ), for j = 0, . . . , p,

σ2
1:p ∼ IG (α/2, wα/2)

For using Horseshoe or NEG priors for βj,1:C , we need only to change the priors for

σ2
j to other expressions, which exist in closed-form.
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Bayesian Multiclass Logistic Regression Models
(identifiable and symmetric parameterization)

P (yi = k + 1|xi,1:p, δ0:p,1:K) =
I(k = 0) + I(k > 0) exp (δ0k + xi,1:pδ1:p,k)

1 +
∑K

k=1
exp (δ0k + xi,1:pδ1:p,k)

,

δj,1:K |σ2
j ∼ NK(0, (IK + JK)σ2

j ),

σ2
1:p ∼ IG (α/2, wα/2),

where K = C − 1, δj,k = βj,k+1 − βj,1.
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Gibbs Sampling Procedure

The full posterior distribution of δ0:p,1:K and σ2
1:p is:

P (δ0:p,1:K ,σ
2
1:p|D) ∝ L(δ0:p,1:K)× P (δ0:p,1:K |σ2

0:p)× P
(

σ2
1:p |α/2, αw/2

)

We sample the full posterior by iterating these two steps:

Step 1: Given σ2
1:p fixed, use Hamiltonian Monte Carlo (HMC) for jointly sampling

P (δ0:p,1:K |σ2
0:p,D) ∝ L(δ0:p,1:K)× P (δ0:p,1:K |σ2

0:p).

Step 2: Given value of δ1:p,1:K from Step 1, update σ2
1:p by sampling from

σ2
j |δ1:p,1:K ∼ IG

(

σ2
j

∣

∣

∣

α+K

2
,
αw + V (δj,1:K)

2

)

.

When Horseshoe and NEG priors are used for σ2
j , we cannot sample directly for Step

2, but we can employ Adaptive Rejection Sampling. However, this step become time

consuming as p is very large.
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Why Use HMC for Sampling Regression Coefficients?

For highly-correlated posterior, HMC can move to a distant point with high accep-

tance rate, avoiding random walk of ordinary MH sampling.

The combination of HMC and the updating of σ2
j in Step 2 makes the whole sampler

travel across multiple modes, see an explanation in slide 10.
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Restricted Gibbs Sampling
When p is very large, sampling in Step 1 is very time consuming. A belief in high-

dimensional classification is that most features are irrelevant and therefore most

coefficients concentrate very close to 0. It is therefore useless to update them

very often. In Step 1, we update only those features with σj greater than a small

threshold ζ, say 0.05. Note that, however, no matter whether a regression coefficient

of feature j is updated or not in Step 1, σ2
j is always updated in Step 2.

Restricted Gibbs sampling is justifiable with Markov chain theory. The sampling is

still an exact MCMC sampling.

Using restricted Gibbs sampling, the time for computing linear combination
∑p

j=1
xi,jδj,c

in each single iteration of Step 1 is reduced greatly since
∑

j:σj>ζ xi,jδj,c can be

reused from last iteration.

The effect of using restricted Gibbs sampling is that the coefficients of useful coef-

ficients are updated much more frequently than those of useless.

ζ cannot be over large.
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Feature Importance Indice (SDBs)

With posterior samples of δ1:p,1:K , we recommend using means over iterations to

estimate the coefficients, denoted by δ̂j,1:K . We then compute the importance index

of feature j with

SDBj = SD((0, δ̂j,1, . . . , δ̂j,K)),

where K = C − 1.

For C = 2, it is just SDBj = |δ̂j |/2.
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Comparisons on a Simulated Data Set with p = 200
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Data Generation

We generated a date set of n = 1100 cases (of which 100 were used for fitting

models, and the other 1000 were used to look at predictive performance), and

p = 200 features from the following multivariate Gaussian model:

P (yi = c) =
1

2
, for c = 1, 2, x′

i,1:200 | yi = c ∼ N100 (µ
′

c,1:200 , AA
′+I200), (1)

where, µ1,1:200 = (0, . . . , 0) , µ2,1:200 = (2, 0, . . . , 0), A = (aij) with all diagonal

elements equal to 1, and a21 = 2.

In the above model, the 1st feature has difference means in two classes, all others

have the same means in two classes, but the 2nd feature is positively correlated with

the 1st, and is useful too.

The true coefficients computed from discriminant rule is

δ0:200,1 = (0, 2.60,−1.22, 0, . . . , 0).
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Scatterplots of x1 − x3
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Solution Paths
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log(γ) = 0.5 log(w) is the log scale for t prior, and log(1/λ) is the scale of Laplace.
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Comparisons of AMLPs

AMLP = average of minus log probabilities = (1/N)
∑N

i=1
− log(P̂ (y∗i |x

∗

i ))
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Comparisons of Error Rates
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Simulation Studies with 50 Data Sets of p = 2000
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Data Generation
The number of classes C is set to 3, and class labels are equally likely drawn from

1, 2, and 3. Values of 10 features for each case were generated as follows:

x1|y = c = µc,1 + z1 + 0.5ǫ1,

x2|y = c = µc,2 + 2z1 + z2 + 0.5ǫ2,

xj |y = c = µc,j + z3 + 0.5ǫj , for j = 3, . . . , 10,

where,

(µc,j)3×10 =









0 0 0 . . . 0

2 0 0 . . . 0

0 0 2 . . . 2









, zi, and ǫj ∼ N(0, 1)

In this model, x1 has different means in class 2 from classes 1 and 3, x2 is positively

correlated with x1 with the same means in three classes, and x3−10 have different

means in class 2 from classes 1 and 3, but are redundant. Another 1990 noise

features with values drawn from N(0, 1) were then added to the data set.
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MCMC Settings and Computation Times

• Using t prior with = 1: 3 hours needed for

running 500K iterations of Gibbs sampling with 50 leapfrog trajectories and with

ζ = 0.05 in restricted Gibbs sampling, for each data set

• Using Horseshoe and NEG priors with = 1: 8 hours needed for

running Markov chains of the same settings as above

• All of others: much longer, some took over 30 hours
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Comparisons of AMLPs
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Comparisons of Feature Importance Indice
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Table of Feature Selection Results
Thresholding relative SDBs with 0.1, we determine whether a feature is selected. The mean

numbers of selected features over 50 data sets, with bracked numbers showing sds.

Groups of Features

Methods x1 x2 x3 − x10 x11 − x2000

HBPLR with t (df=10) 0.96 0.66 7.42 (1.86) 1354 (580)

HBPLR with t (df=4) 1 0.36 1.26 (0.53) 0.00 (0.00)

HBPLR with t (df=0.2,log(w) = −40) 1 0.72 1.36 (0.60) 5.74 (3.12)

HBPLR with t (df=0.5,log(w) = −20) 1 0.98 1.16 (0.37) 1.14 (0.97)

HBPLR with t (df=1,log(w) = −20) 1 0.94 1.14 (0.35) 0.16 (0.37)

HBPLR with t (df=1,log(w) = −10) 1 0.96 1.10 (0.30) 0.32 (0.55)

HBPLR with GHS (df=1,log(w) = −10) 1 1.00 1.14 (0.35) 0.30 (0.51)

HBPLR with NEG (df=1,log(w) = −10) 1 1.00 1.06 (0.24) 0.28 (0.50)

LASSO 1 0.34 2.72 (1.18) 6.92 (4.97)
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Analysis of a Microarray Data Set with p = 6033
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Data Description

• The original data set was reported by Singh et al. (2002). We analyzed a data

set downloaded from http://stat.ethz.ch/∼dettling/bagboost.html.

• n = 102, 50 normal and 52 cancerous prostate tissues, p = 6033 genes

• For better looking at our results, we re-ordered the features by F-statistic on

the whole data set, therefore the feature index is the rank based on F-statistic

value.

• We standardized the data to have mean 0 and sd 1 in each split into training

and test sets in leave-one-out crossvalidation.
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MCMC Settings and Computation Time

• Using t Prior with df = 1: 10 hours

for running each MCMC of 1M iterations of Gibbs sampling with 50 leapfrog

trajectories and setting ζ = 0.05 in restricted Gibbs sampling.

• Using Horseshoe and NEG priors with df = 1: 33 hours

for running each MCMC with the same settings as above.
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Log Predictive Probabilities at True Class Labels.

−3 −2 −1 0

−
3

−
2

−
1

0

log pred. prob. at true class by HBPLR using t prior

lo
g 

pr
ed

. p
ro

b.
 a

t t
ru

e 
cl

as
s 

by
 L

A
S

S
O

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

log pred. prob. at true class by HBPLR using t prior

lo
g 

pr
ed

. p
ro

b.
 a

t t
ru

e 
cl

as
s 

by
 H

B
P

LR
 u

si
ng

 n
eg

 p
rio

r

High-dimensional Feature Selection Using Hierarchical Bayesian Logistic Regression with Heavy-tailed Priors – 36/47



Comparisons of LOOCV Predictive Performances

Methods HBt HBghs HBneg LASSO Bagboost PAM DLDA SVM RanFor kNN

# genes 6033 6033 6033 6033 200 200 200 200 200 200

AMLP .156 .158 .152 .274 - - - - - -

ER (%) 6.86 7.84 7.84 10.8 7.53 16.5 14.2 7.88 9.00 10.59
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Feature Selection Results in 1 Fold
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MCMC Samples and Scatterplots of Top Features
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LOOCV Predictive Performances of Gene Subsets
Gene subset 1, 369, 977 1, 369 1, 2, 3 1, 369, 83

Selected by HBPLR HBPLR and LASSO F-Statistic LASSO

AMLP .050 .232 .240 .163

ER (%) 1.96 8.82 9.80 7.84
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Looking at the Top 3 Genes Selected by HBPLR
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Conclusions

Bayesian logistic regression with moderately heavy-tailed, small scale and MCMC

simulation works well for high-dimensional feature selection, and is feasible. It has a

few good statistical properties:

• It can shrink small signals strongly towards 0 (due to small scale), but leave

large signals unpunished (due to heavy tails).

• It can automatically separate a group of many redundant correlated features into

different posterior modes, or eliminate many redundant and less differentiated

features.

• The fitting results are stable for a wide range of small scales for heavy-tailed

prior, as opposed to the instability of using “spike-and-slab” priors and the

sensitivity of LASSO to the choice of scale.

• The fitting results are insensitive to initial values because MCMC can travel

across many modes, as compared to penalized likelihood methods.
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Discussions
• There is much room for improvement of the computational speed.

• The choice of heaviness of priors (degree freedom) is crucial for logistic regression.

Our simulation studies show that df = 1 works better than bigger and smaller degree

freedoms. This is also observed in regression problems. How to explain it theoretically?

• Ordinary t prior isn’t so bad once we choose moderately small degree freedom and

small scale. From our studies, the performance of t is almost the same as other more

sophisticated priors. But the computation with using t prior is much faster. How much

and when do we gain from using the more sophisticated priors?

• What’s the best threshold in restricted Gibbs sampling? How much does it help

sampling? Are there other more sophisticated methods for choosing more promising

coefficients to update?

• Do we need to correct for the sknewness of the posterior of coefficients? Do we have

other methods that don’t get trapped in local modes?

• Using moderately heavy-tailed prior with small scale may be promising for many other

high-dimensional problems. Used as priors for high-dimensional covariance matrix?
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