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High-dimensional Feature Selection Problem

Background: modern high-throughput biotechnologies can easily measure ex-
pression levels of thousands of genes, or SNPs of the whole genome.

Problem: identifying a few features (such as genes) whose values are statistically
relevant to a categorical response variable, such as an indicator of presence of a

certain cancer.

Mathematical Notations:

— Response variable: y, taking integers 1,...,C.
— Features (explanatory variables, or covariates): 1., = (z1,...,2,).
— Data: (y;, @i1p) fori=1,....n

Challenges: high dimensionality of features (p), small sample size (n), often
called p >> n problems, and complex relationships between features.

An analogue: looking for a couple of “needles” from a huge “haystack”.
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Existing Methods in the Literature
Univariate screenings, for example t-test,
Diagonal discriminant rules, such as DLDA by Dudoit et.al.(2002), PAM by
Tibshirani et.al.(2003), and BCBCSF by Li (2011).

Limitation: ignore relationships among features

Regularized discriminant rules, such as Guo, Hastie and Tibshirani (2007)

Limitation: sensitive to non-Gaussian outliers

Classification models based methods

— Penalized likelihood methods, see review by Ma and Huang (2008)

Limitation: results are unstable when non-convex penalties are used

— Bayesian methods based on Spike-and-Slab priors, see Yang and Song (2010)

Attractiveness: shrinking some coefficients to exactly 0
Limitations: results are sensitive to choice of width of continuous distribution,
see Lindley (1957), Lamnisos et.al. (2011), difficulties in MCMC sampling
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Our Approach: Bayesian Logistic Regression with
Moderately Heavy-tailed Priors and MCMC

e Logistic regression model for binary response y
I(k=0)+ I(k > 0)exp (8o + ©i,1:p81.p)
1+ exXp <5O + wi,l:pﬂl;p)

for k =0and 1, ¢ = 1,...,n, where 3,,, is a column vector of regression
coefficients, and I(-) is indicator function.

P(yz =k + ]-|wz',1:p7/30:p) —

Y

e Moderately heavy-tailed prior for 5; with small scale

Biy...,Bp ~ t(df =1, scale=0.01), or others

e Computing: MCMC sampling using Hamiltonian Monte Carlo in Gibbs Sampling
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Why Moderately Heavy-tailed Priors and MCMC?
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Scale-Mixture-Normals Priors

t distribution
B ~ N(O, O'?), 0? ~1G(a /2, av?/2)

Horseshoe or Inverted-Beta (Carvalho et al., 2010)
Bj ~ N(0,05), ojlg; ~ NT(0,07), ¢ ~1G(a/2,a7*/2)
Normal-Exp-Gamma (NEG, Griffin and Brown, 2012)

8 ~ N(0,0), o2li; ~ exp (wi) b; ~16(0/2,07%/2)
J

Laplace (used in LASSO)

B ~ N(O,UJQ-), 032- ~ exp(1/?)
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Bayesian Perspective of Choice of Prior

Boxplots of 4000 random numbers of log;,(|3,|) from various priors
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Shrinking Effect of Moderately Heavy-tailed Priors
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Examples lllustrating Shrinking Effect

— 9000000000000
At ,’
—] Bz ..
K)
— <
— ..' 0000000000000
— At 0.
B, S
I I I I I I
-15 -10 -5 0 5 10
log (y)

log(1/A)

feature 2, class 2

25

2.0

15

1.0

0.5

0.0

Scatterplots of MC Samples of Coefficients

s
o
o
.
o ®
) o
.
« o .
[} . :
‘> 3 (1]
.
. .
.
. .« .
LAY
d .
®e ® %
PO % . .
. [V [ o ® e o °®
o eo¥®e o
b o aad a e
T T T T T I
0.0 0.5 1.0 15 2.0 2.5

feature 1, class 2

High-dimensional Feature Selection Using Hierarchical Bayesian Logistic Regression with Heavy-tailed Priors — 10/47



Bayesian Multiclass Logistic Regression

with Heavy-tailed Priors and MCMC
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Bayesian Multiclass Logistic Regression Models
(Original Symmetric Parameterization)

ex c T+ ;1. T
P(yz — Clwi,lzpa /BO:p 1:C) — C & (50’ - pl@l.p’ ) ,fOI’ C = 17 R Ca
| Zczl eXp (60,0 + wi,liplglzp,c)

/Bj,lzC‘O-]Q‘ ~ N (0,032-), for j=0,...,p,
U%:p ~ 1G (a/2,wa/2)

For using Horseshoe or NEG priors for 3 1.c, we need only to change the priors for
032- to other expressions, which exist in closed-form.
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Bayesian Multiclass Logistic Regression Models
(identifiable and symmetric parameterization)

I(k=0)+I(k>0)exp (dor + X; 1901
Plyi =k + 1z 1p,00p1:.8) = ( ) K( ) exp (o P 1p’k),
14> 1 exp (Oox + Ti1:p01:p,k)
(Sj,liK‘O-]z ™~ NK(Oa (IK + JK)OJZ')v

02, ~ 1G (a/2,wa/2),

where K =C —1, 0j 1 = Bjk+1 — Bj1-
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Gibbs Sampling Procedure

The full posterior distribution of d¢.; 1.5 and o7, is:

P(80:p,1:5,07.y| D) < L(80:p,1:5) X P(80:p1:x]07G.,) X P (07, | /2, aw/2)

We sample the full posterior by iterating these two steps:

Step 1: Given a%:p fixed, use Hamiltonian Monte Carlo (HMC) for jointly sampling
P(80:p,1:1 |05, D) o< L(80:p,1:5¢) X P(80:p,1:107).

Step 2: Given value of 1., 1.x from Step 1, update a%:p by sampling from

02-|51 1k~ |G <02|&+K aw—l_v(dj’l:K))
j191:p,1: j :

2 2

When Horseshoe and NEG priors are used for 02, we cannot sample directly for Step
2, but we can employ Adaptive Rejection Sampling. However, this step become time
consuming as p is very large.
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Why Use HMC for Sampling Regression Coefficients?

For highly-correlated posterior, HMC can move to a distant point with high accep-
tance rate, avoiding random walk of ordinary MH sampling.
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The combination of HMC and the updating of JJQ. in Step 2 makes the whole sampler
travel across multiple modes, see an explanation in slide 10.
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Restricted Gibbs Sampling

When p is very large, sampling in Step 1 is very time consuming. A belief in high-
dimensional classification is that most features are irrelevant and therefore most
coefficients concentrate very close to 0. It is therefore useless to update them
very often. In Step 1, we update only those features with o; greater than a small
threshold (, say 0.05. Note that, however, no matter whether a regression coefficient

of feature j is updated or not in Step 1, sz_ is always updated in Step 2.

Restricted Gibbs sampling is justifiable with Markov chain theory. The sampling is
still an exact MCMC sampling.

Using restricted Gibbs sampling, the time for computing linear combination Z?Zl T i0j.c
in each single iteration of Step 1 is reduced greatly since Zj:aj>g T; 05 can be
reused from last iteration.

The effect of using restricted Gibbs sampling is that the coefficients of useful coef-
ficients are updated much more frequently than those of useless.

¢ cannot be over large.

High-dimensional Feature Selection Using Hierarchical Bayesian Logistic Regression with Heavy-tailed Priors — 16/47



Feature Importance Indice (SDBs)

With posterior samples of d1., 1.x, we recommend using means over iterations to

estimate the coefficients, denoted by Sj,lzK. We then compute the importance index
of feature ;5 with

A

SDB; = SD((0,0,.1,---,0;.x)),
where K = (C' — 1.
For C' =2, it is just SDB; = |9,|/2.
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Comparisons on a Simulated Data Set with p = 200
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Data Generation

We generated a date set of n = 1100 cases (of which 100 were used for fitting
models, and the other 1000 were used to look at predictive performance), and
p = 200 features from the following multivariate Gaussian model:

1
P(y; = c) = b% for c = 1,2, C’3;,1:200 | y; = ¢~ Nigo (N/c,lzzooa AA/+I2OO)7 (1)

where, pt1 1.900 = (0,...,0) , 3 1.000 = (2,0,...,0), A = (a;;) with all diagonal
elements equal to 1, and as; = 2.

In the above model, the 1st feature has difference means in two classes, all others
have the same means in two classes, but the 2nd feature is positively correlated with
the 1st, and is useful too.

The true coefficients computed from discriminant rule is

802001 = (0,2.60,—1.22,0,...,0).
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Scatterplots of 1 — 5
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Solution Paths

Coefficient Estimates by HBPLR Coefficient Estimates by LASSO
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log(v) = 0.5log(w) is the log scale for t prior, and log(1/\) is the scale of Laplace.
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Comparisons of AMLPs
AMLP = average of minus log probabilities = (1/N) S | — log(P(y?|x}))

AMLPs by HBPLR AMLPs by LASSO
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Simulation Studies with 50 Data Sets of p = 2000
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Data Generation

The number of classes C' is set to 3, and class labels are equally likely drawn from
1,2, and 3. Values of 10 features for each case were generated as follows:

Ty =c = fe1+ 21+ 0.5€,
T2y =C = [le2 + 221 + 22 + 0.5¢€q,
Tily=c = [+ 23+ 0.5¢, for 3 =3,...,10,
where,
0 0 O 0
(fej)axio=1]1 2 0 0 ... 0 |,z,ande; ~N(0,1)
0 0 2 2

In this model, 1 has different means in class 2 from classes 1 and 3, x5 is positively
correlated with 1 with the same means in three classes, and z3_19 have different
means in class 2 from classes 1 and 3, but are redundant. Another 1990 noise
features with values drawn from N (0, 1) were then added to the data set.
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MCMC Settings and Computation Times

e Using ¢ prior with = 1: 3 hours needed for
running 500K iterations of Gibbs sampling with 50 leapfrog trajectories and with
¢ = 0.05 in restricted Gibbs sampling, for each data set

e Using Horseshoe and NEG priors with = 1: 8 hours needed for

running Markov chains of the same settings as above

e All of others: much longer, some took over 30 hours
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Comparisons of AMLPs
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Table of Feature Selection Results

Thresholding relative SDBs with 0.1, we determine whether a feature is selected. The mean

numbers of selected features over 50 data sets, with bracked numbers showing sds.

Groups of Features

Methods x1 T2 T3 — T10 11 — T2000
HBPLR with t(df=10) 096 0.66 7.42(1.86) 1354 (580)
HBPLR with t(df=4) 1 0.36 1.26 (0.53) 0.00 (0.00)
HBPLR with t(df=0.2,log(w) = —40) 0.72 1.36 (0.60) 5.74 (3.12)
HBPLR with t(df=0.5,log(w) = —20) 1 0.98 1.16 (0.37) 1.14 (0.97)
HBPLR with t(df=1,log(w) = —20) 1 0.94 1.14 (0.35) 0.16 (0.37)
HBPLR with t(df=1,log(w) = —10) 1 0.96 1.10 (0.30) 0.32 (0.55)
HBPLR with GHS (df=1,log(w) = —10) | 1 1.00 1.14(0.35) 0.30(0.51)
HBPLR with NEG (df=1,log(w) = —10) | 1 1.00 1.06(0.24) 0.28 (0.50)
LASSO 1 034 2.72(1.18) 6.92 (4.97)
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Analysis of a Microarray Data Set with p = 6033
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Data Description

The original data set was reported by Singh et al. (2002). We analyzed a data
set downloaded from http://stat.ethz.ch/~dettling/bagboost.html.

n = 102, 50 normal and 52 cancerous prostate tissues, p = 6033 genes

For better looking at our results, we re-ordered the features by F-statistic on
the whole data set, therefore the feature index is the rank based on F-statistic

value.

We standardized the data to have mean 0 and sd 1 in each split into training
and test sets in leave-one-out crossvalidation.
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MCMC Settings and Computation Time

e Using t Prior with df = 1: 10 hours
for running each MCMC of 1M iterations of Gibbs sampling with 50 leapfrog

trajectories and setting ¢ = 0.05 in restricted Gibbs sampling.

e Using Horseshoe and NEG priors with df = 1: 33 hours
for running each MCMC with the same settings as above.
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Log Predictive Probabilities at True Class Labels.
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Comparisons of LOOCV Predictive Performances

Methods | HBt HBghs HBneg LASSO Bagboost PAM DLDA SVM RanFor kNN

# genes | 6033 6033 6033 6033 200 200 200 200 200 200

AMLP 156 .18 .162 274 - = - - . .

ER (%) 686 784 7.84 10.8 7.53 16,5 142 7.88 9.00 10.59
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MCMC Samples and Scatterplots of Top Features

Expression Level of Gene 369
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feature 369
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LOOCV Predictive Performances of Gene Subsets

Gene subset | 1, 369, 977 1, 369 1,2,3 1,369, 83
Selected by HBPLR HBPLR and LASSO F-Statistic LASSO
AMLP .050 232 240 163
ER (%) 1.96 8.82 9.80 7.84
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Predictive Probability at True Label

Looking at the Top 3 Genes Selected by HBPLR

LOOCYV Prediction with Genes 1/369/977 3D Scatterplot of Genes 1, 369 and 977
AMLP = 0.050, Error Rate = 1.96% (2/102)
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Conclusions

Bayesian logistic regression with moderately heavy-tailed, small scale and MCMC
simulation works well for high-dimensional feature selection, and is feasible. It has a
few good statistical properties:

e It can shrink small signals strongly towards 0 (due to small scale), but leave

large signals unpunished (due to heavy tails).

e |t can automatically separate a group of many redundant correlated features into
different posterior modes, or eliminate many redundant and less differentiated

features.

e The fitting results are stable for a wide range of small scales for heavy-tailed
prior, as opposed to the instability of using “spike-and-slab” priors and the
sensitivity of LASSO to the choice of scale.

e The fitting results are insensitive to initial values because MCMC can travel
across many modes, as compared to penalized likelihood methods.
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Discussions

There is much room for improvement of the computational speed.

The choice of heaviness of priors (degree freedom) is crucial for logistic regression.
Our simulation studies show that df = 1 works better than bigger and smaller degree
freedoms. This is also observed in regression problems. How to explain it theoretically?

Ordinary t prior isn't so bad once we choose moderately small degree freedom and
small scale. From our studies, the performance of ¢ is almost the same as other more
sophisticated priors. But the computation with using t prior is much faster. How much
and when do we gain from using the more sophisticated priors?

What's the best threshold in restricted Gibbs sampling? How much does it help
sampling? Are there other more sophisticated methods for choosing more promising
coefficients to update?

Do we need to correct for the sknewness of the posterior of coefficients? Do we have
other methods that don't get trapped in local modes?

Using moderately heavy-tailed prior with small scale may be promising for many other
high-dimensional problems. Used as priors for high-dimensional covariance matrix?
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