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Abstract

Accurate model performance assessment in survival analysis is imperative for ro-
bust predictions and informed decision-making. Traditional residual diagnostic tools
like martingale and deviance residuals lack a well-characterized reference distribution
for censored regression, making numerical statistical tests based on these residuals
challenging. Recently, the introduction of Z-residuals for diagnosing survival models
addresses this limitation. However, concerns arise from conventional methods that
utilize the entire dataset for both model parameter estimation and residual assess-
ment, which may cause optimistic biases. This paper introduces cross-validatory
Z-residuals as an innovative approach to address these limitations. Employing a
cross-validation (CV) framework, the method systematically partitions the dataset
into training and testing sets to reduce the optimistic bias. Our simulation studies
demonstrate that, for goodness-of-fit tests and outlier detection, cross-validatory Z-
residuals are significantly more powerful (e.g. power increased from 0.2 to 0.6). and
more discriminative (e.g. AUC increased from 0.58 to 0.85) than Z-residuals with-
out CV. We also compare the performance of Z-residuals with and without CV in
identifying outliers in a real application that models the recurrence time of kidney
infection patients. Our findings suggest that cross-validatory Z-residuals can identify
outliers, which Z-residuals without CV fail to identify. The CV Z-residual is a more
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powerful tool than the No-CV Z-residual for checking survival models, particularly
in goodness-of-fit tests and outlier detection. We have published a generic function,
which is collected in an R package called Zresidual, for computing CV Z-residual
for the output of the widely used survival R package.

Keywords: cross-validation, Z-residual, goodness-of-fit, model checking, residual diagnosis,
survival models
List of Abbreviations: AIC, Alkaike’s Information Criterion; CHF, cumulative hazard func-
tion; CS, Cox-Snell; GOF, goodness-of-fit; CV, cross-validation or cross-validatory; No-CV
Z-residuals, Z-residuals without CV; SW, Shapiro-Wilk; RSP, randomized survival proba-
bility.
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1 Introduction

Residual diagnosis is a critical step in statistical modelling for checking the validity of

model assumptions. However, traditional residual analysis, relying on comparing observed

and predicted values using the entire dataset, poses limitations. This method employs the

same data for both fitting the model and assessing its adequacy, potentially introducing an

optimistic bias in the evaluation of model fit. The issues stemming from the double use of

the dataset have gained significant attention, particularly in the context of Bayesian model

comparison (see Marshall and Spiegelhalter (2003, 2007); Piironen and Vehtari (2017);

Vehtari et al. (2024, 2017); Smith et al. (2022); Gelman et al. (2014); Li et al. (2015, 2017),

for example).

To address the issue of optimistic bias, the CV method is crucial in model development,

mitigating reliance on the same dataset for both model fitting and assessment, particularly

for predictive performance and detecting overfitting. K-fold CV and leave-one-out CV

(LOOCV) are the most commonly used methods. In K-fold CV, the dataset is divided

into k subsets. Iteratively, the model is fitted (trained) on k − 1 subsets and then the

fitted model is tested on the left-out subset. LOOCV is a specific case where k is set

to be the sample size n. The key advantage of CV is that the information of the test

dataset is rigorously excluded from the fitted model. In machine learning, CV is typically

used to evaluate the predictive performance of the fitted model with unseen data, which is

proven effective in detecting overfitting. Despite its widespread use in evaluating predictive

performance, assessing model generalization, and identifying overfitting, CV techniques are

less commonly utilized specifically for residual diagnosis. For residual diagnosis, its primary

application is within the realm of diagnosing linear and generalized linear regression models

(McCullagh and Nelder, 1989; Pierce and Schafer, 1986). In the context of linear regression,

various diagnostic measures involved the CV concept — omitting a subset of observations,

refitting the model, finally assessing the changes in residuals/coefficient estimates/fitted

values. For example, the studentized deleted residuals (McCullagh and Nelder, 1989) and

Cook’s distances (Cook and Weisberg, 1982; Cook, 1986) are widely used in practice and

prove more powerful in outlier detection and the identification of subtle patterns that may

otherwise be concealed than the counterparts without CV. While these methodologies are
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applied to detect influential observations in generalized linear models, the utilization of CV

techniques for direct residual diagnosis in survival models remains relatively uncommon.

This rarity is attributed to the complexity found within these models.

Several residual diagnostic tools have been commonly used for checking the survival

models (Collett, 2015b), including Cox-Snell (CS) (Cox and Snell, 1968), martingale (Th-

erneau et al., 1990), deviance (Therneau, 2000; McCullagh, 1989), Schoenfeld (Collett,

2015b; Schoenfeld, 1982) and scaled Schoenfeld (Grambsch and Therneau, 1994) residuals.

However, there is a lack of residuals with a characterized reference distribution for cen-

sored regression. Li et al. (2021) and Wu et al. (2024+b) recently proposed the Z-residual

diagnosis tool for diagnosing survival models with censored observations. The Z-residual

is approximately normally distributed under the true model, has greater statistical power,

and is more informative than the existing residual diagnostic tools. However, Wu et al.

(2024+b) showed that overall goodness-of-fit tests based on Z-residuals have relatively low

powers in detecting subtle non-linear covariate effects, especially in complex scenarios. The

low power or conservatism is presumably attributed to the bias from the double use of the

same dataset in calculating the Z-residuals.

To address the conservatism problem, this paper introduces an innovative approach

–— cross-validatory Z-residual for shared frailty models and investigates the difference be-

tween Z-residuals with and without cross-validation (CV) in overall goodness-of-fit tests

and outlier detection. Shared frailty models incorporate random effects (frailties) to address

unobserved heterogeneity (Vaupel et al., 1979; Therneau and Grambsch, 2013; Balan and

Putter, 2020), and these frailties are shared among individuals within a cluster or group

(Duchateau and Janssen, 2008; Karagrigoriou, 2011; Hanagal, 2015). We have developed

a generic R function for calculating CV Z-residuals for the output from fitting a survival

model using the coxph function in the survival R package (Therneau and Grambsch,

2013). Our CV approach ensures adequate representation of groups and other covariates

in each fold. In our study design, we calculate Z-residuals using three methods: the full

dataset (No-CV), 10-fold CV (10-fold), and LOOCV. Simulation studies are conducted to

investigate the performance of these Z-residuals in detecting nonlinear covariate effects and

identifying outliers through graphical visualization and Shapiro-Wilk (SW) tests. We fur-
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ther compare the performance of No-CV Z-residuals and LOOCV Z-residuals in identifying

outliers using a kidney infection dataset (Mcgilchrist and Aisbett, 1991).

The subsequent sections of this paper are organized as follows. Section 2 provides a

brief review of shared frailty models. Section 3 presents the definition of CV Z-residuals

along with a discussion of the algorithm for computing them. Section 4 details the results

of simulation studies, exploring the performances of 10-fold and LOOCV Z-residuals. In

Section 5, we present the results of applying LOOCV Z-residuals to identify outliers in a

kidney infection dataset. Finally, Section 6 concludes the article with a discussion of future

work.

2 Shared frailty models

In survival analysis, the hazard function describes the instantaneous risk of the event of

interest for an individual, provided the individual has not previously experienced the event.

The hazard function indirectly characterizes the distribution of the time to the event. The

most widely used model for survival data is the Cox proportional hazard model (Cox, 1972).

In practice, survival data are often not independent even after controlling for fixed-effect

covariates in the model. The effect of unobserved heterogeneity of lifetimes is referred to as

frailty, which constitutes an unobserved random effect that multiplicatively influences the

hazard. This variance of the random effects indicates the degree of unobserved heterogene-

ity. The frailty model quickly gained popularity in public health, epidemiological, medical

science, and environmental research (Karagrigoriou, 2011; Henderson, 2001; Duchateau and

Janssen, 2008; Hougaard, 1995).

A shared frailty model is commonly used to model clustered survival data, where

the frailties are common or shared among individuals within groups (Henderson, 2001;

Duchateau and Janssen, 2008; Hougaard, 1995). For instance, unobserved genetic and

environmental background factors that family members share often result in correlations

among outcomes within family members, even after accounting for the observed covari-

ates. The formulation of a frailty model for clustered failure survival data is defined as

follows. Suppose there are g groups of individuals with ni individuals in the ith group,

i = 1, 2, . . . , g. The true failure time for the jth individual from the ith group is de-
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noted as T ∗
ij, which we assume to be a continuous random variable, where j = 1, 2, . . . ,

ni. Let t∗ij be the realization of T ∗
ij. In many practical problems, we may not be able to

observe t∗ij exactly, but we can observe that T ∗
ij is greater than a value Cij, where Cij is

the corresponding censoring time and assumed to be independent of T ∗
ij. In the scenario

of right censoring, the observed failure times are represented by the pairs (Tij, δij), where

the observed event time and the non-censoring indicator are denoted as Tij = min(T ∗
ij, Cij)

and δij = I(T ∗
ij < Cij), respectively. The observed data can be succinctly expressed as

t = (t11, . . . , tgng) and δ = (δ11, . . . , δgng).

For a shared frailty model, the conditional hazard function of the failure time T ∗
ij for the

jth individual, j = 1, 2, . . . , ni, in the ith group, denoted as hij(t|xij, zi) and abbreviated

as hij(t) for simplicity, is given by

hij(t) = zi exp(β
Txij)h0(t), (1)

where xij is a column vector of values of p explanatory variables for the jth individual in the

ith group; β is a column vector of regression coefficients for xij; h0(t) is a baseline hazard

function; and zi is the frailty term that is common for all ni individuals within the ith group.

Shared frailty models require a distribution for the frailty zi, which is often assumed to be

a gamma distribution (Collett, 2015b). The gamma distribution (Johnson and Kotz, 1977)

makes it easy to obtain a closed-form representation of the observable survival, cumulative

density, and hazard functions due to the simplicity of the Laplace transform (Balan and

Putter, 2020). The conditional survival function for the jth individual of the ith group at

time t, denoted as Sij(t|xij, zi) and abbreviated as Sij(t) for simplicity, is given as follows:

Sij(t) = exp

{
−

∫ t

0

hij(τ) dτ

}
= exp

{
− zi exp(β

Txij)H0(t)

}
, (2)

where H0(t) is the baseline cumulative hazard function (CHF) of h0(t). Our definition

of Z-residual is based on an estimate of the above conditional survival function with an

estimate of z, β, and H0(t).

Shared frailty models can be categorized as either semiparametric or parametric based

on the underlying nature of the baseline hazard. In semiparametric models, no specific

assumptions are made regarding the baseline hazard. However, parametric models rely on

6



a predefined parametric distribution, and flexible parametric methodologies utilize spline-

based estimators to model the baseline hazard (Hougaard, 1995; Balan and Putter, 2020).

For this study, we focus on the semiparametric shared frailty models, the baseline CHF

is estimated using the Breslow estimator (Lin, 2007a), suitable for continuous event times

with few or no tied event times.

Shared frailty models can be fitted with many methods, which include penalized partial

likelihood (Ripatti and Palmgren, 2000), the EM algorithm, the pseudo-likelihood approach

(Gorfine et al., 2006), and the h-likelihood method (Ha et al., 2001). Wu et al. (2024+a)

provides a comprehensive comparison study of available R packages for fitting shared frailty

models with extensive simulation studies. Based on the results of Wu et al. (2024+a), we

chose the coxph function from the widely used survival R package, which employs the

penalized partial likelihood method to estimate model parameters.

3 Cross-validatory Z-residual

The Z-residuals are derived from the concept of randomized survival probability (RSP) as

introduced in Li et al. (2021) and Wu et al. (2024+b). The RSP concept involves substi-

tuting the survival probability (SP) of a censored failure time with a uniformly distributed

random number between 0 and the SP of the censored time. RSPs exhibit a uniform dis-

tribution on the interval (0, 1) under the true model with the true generating parameters.

The RSP for tij for the jth individual in the ith group in a shared frailty model is defined

as:

SR
ij(tij, δij, Uij) =

 Ŝij(tij), if tij is uncensored, i.e., δij = 1,

Uij Ŝij(tij), if tij is censored, i.e., δij = 0,
(3)

where Uij represents a uniform random number in the range (0, 1), and Ŝij(·) is an esti-

mated survival function for tij given xij and zi as defined in eqn. (2). SR
ij(tij, δij, Uij) is a

random number between 0 and Sij(tij) when tij is censored. RSPs have been proven to be

independently and uniformly distributed on the interval (0, 1) given xij and zi under the

true shared frailty model for clustered survival data (Wu et al., 2024+b). Therefore, these

RSPs can be transformed into residuals with any desired distribution. We transform RSPs
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with the negative normal quantile:

rZij(tij, δij, Uij) = −Φ−1(SR
ij(tij, δij, Uij)), (4)

where Φ−1(·) represents the quantile function of the standard normal distribution. The

residuals, as defined in (4), are called Z-residuals, which approximately follow the standard

normal distribution when the model (i.e.,Sij(·)) is correctly specified. The negative sign

before Φ−1(·) is added on purpose. The survival function Sij(t) is a decreasing function of t.

Transforming Sij(t) with a positive normal quantile results in that smaller survival times tij

corresponds to larger Z-residuals. Adding a negative sign reverses this relationship so that

smaller survival times correspond to smaller Z-residuals, enabling a similar interpretation

of Z-residuals as Pearson’s residuals.

The CV method involves partitioning a dataset into training and testing sets, commonly

implemented through K-fold CV or Leave-one-out CV (LOOCV). LOOCV is a straightfor-

ward method in which each observation is used as a test case for testing or evaluating the

model fitted to the remaining data. LOOCV repeats training the model for each observa-

tion held out as a test case, hence, it could be slow for datasets with large sample sizes. Due

to the time-consuming computational process of LOOCV, the K-fold CV method is often

preferred for datasets with large sample sizes. In contrast, K-fold CV randomly divides

the observations into k folds. It uses the observations in k− 1 folds for fitting a model and

the remaining fold is used to validate the fitted model, which is less time-consuming than

LOOCV as the model fitting process needs to be repeated for only k times rather than n

in LOOCV. In our study, we employ both LOOCV and 10-fold CV techniques to compute

CV Z-residuals and compare their performance.

In LOOCV Z-residual, one observation, ttestij , is excluded from the dataset with n obser-

vations. The remaining observations, acting as the training dataset, are used for parameter

estimation in the shared frailty model. Fitting the model to the training dataset produces

the estimated regression coefficients, β̂, and frailty effects, ẑi. The Breslow estimator (Lin,

2007b) estimates the cumulative baseline hazard function, Ĥ0(·). The survival function

Ŝij(tij) for the test observation ttestij of the jth individual in the ith group is computed

using:

Ŝij(t
test
ij ) = exp{−ẑi exp(β̂

Txij)Ĥ0(t
test
ij )}. (5)
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Subsequently, the RSP for the observed ttestij is defined as:

ŜR
ij(t

test
ij , dij, Uij) =

 Ŝij(t
test
ij ), if ttestij is uncensored, i.e., dij = 1,

Uij Ŝij(t
test
ij ), if ttestij is censored, i.e., dij = 0.

(6)

The Z-residual for ttestij is given below:

r̂Zij(t
test
ij , dij, Uij) = −Φ−1(ŜR

ij(t
test
ij , dij, Uij)). (7)

We repeat the above calculation of LOOCV Z-residual for each observation in each group,

i.e., tij, being held out as a test observation ttestij . In particular, the estimate of the survival

function, Ŝij(·), is different when different observations in the same group are held out as

a test case.

In K-fold CV, the full dataset is divided into k groups of approximately equal size. One

group is designated as the test dataset, and the other k−1 groups form the training dataset

for fitting the shared gamma frailty model. The steps for obtaining estimates (β̂, ẑi, and

Ĥ0) and calculating Z-residuals are identical to LOOCV, for which each observation tij

forms a fold.

To ensure well-distributed observations within groups and consistent values in both

training and test datasets, the process aims to match cluster identities and categorical

covariate values between the two sets. Additionally, it avoids situations where certain

clusters or categorical covariate categories have no observed failure times. For cluster-based

or categorical covariate values, specific considerations are employed during the LOOCV and

K-fold CV methods. Clusters with only one observation cannot be included in the training

dataset, and similar requirements are imposed on categorical covariates. As such, CV

Z-residuals for these observations are designated as NA in the implementation.

We have included an R function for computing CV Z-residuals for the output of the

coxph function in the survival R package in the Supplementary Materials of this paper.

We have also collected this R function into an R package called Zresidual, which can

be downloaded and installed directly from GitHub via this link: https://github.com/

tiw150/Zresidual . For further details on using the function and the Zresidual package,

please refer to our demonstration available on this webpage: https://tiw150.github.io/

CV_Zresidual_demo.html.
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4 Simulation Studies and Results

4.1 Detecting Non-linear Covariate Effects

In this section, we use simulated datasets to investigate the difference between CV and

No-CV Z-residuals in detecting non-linear covariate effects.

4.1.1 Generating Datasets with Logarithmic Effects and Model Fitting

The original failure times tij are generated from a Weibull regression model as

tij =

(
− log(vij)

λzi exp(x
(1)
ij + β2 log(x

(2)
ij ) + 0.5x

(3)
ij )

)1/α

(8)

for the jth individual in the ith group, where i ∈ {1, . . . , 10} and j ∈ {1, . . . ,m}, and

vij is simulated from Uniform(0, 1). We chose the shape parameter α = 3 and the scale

parameter λ = 0.007 by following the work by Hirsch and Wienke (2011). The equation

(8) is derived by following the inverse-CDF method for generating random numbers from

the Weibull distribution; a detailed derivation is given in the Supplementary Materials.

The censoring times Ci is simulated from an exponential distribution, exp(θ), where θ

is set to have censoring rates (c) approximately equal to 50%. The three covariates are

generated as follows: x
(1)
ij from Uniform(0, 1), x

(2)
ij from positive-Normal(0, 1), and x

(3)
ij

from Bern(0.25). The frailty term is generated from the gamma distribution with a mean

of 1 and a variance of 0.5. The methods for generating the covariates and frailties also

follow the work by Hirsch and Wienke (2011).

We consider fitting a wrong model hij(t) = zi exp(β1x
(1)
ij + β2x

(2)
ij + β3x

(3)
ij )h0(t) and the

true model hij(t) = zi exp(β1x
(1)
ij + β2 log(x

(2)
ij ) + β3x

(3)
ij )h0(t) to the simulated datasets.

4.1.2 Visualizing CV and No-CV Z-residuals of a Single Dataset

We first examine the CV and No-CV1 Z-residuals of a single dataset in which a strong

non-linear covariate effect (β2 = −2) is present. The dataset comprises 10 clusters with 50

observations (total sample size n = 500). The scatterplots displaying Z-residuals against

the covariate x
(2)
ij are depicted in Fig. 1. Under the true model, the scatterplots of CV

1We use the term “No-CV Z-residuals” throughout this paper to stand for “Z-residuals without CV”.
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and No-CV Z-residuals exhibit a random distribution without any specific patterns, mainly

concentrated within the interval (-3, 3), as expected for a random sample from the standard

normal1. Notably, most Z-residuals cluster to the left of the x-axis, given that x
(2)
ij was

generated from a positive-normal (0, 1) distribution. In contrast, under the wrong model,

the scatterplots of all three types of Z-residuals reveal a discernible non-linear pattern.

However, there is a notable disparity in the magnitude of CV and No-CV Z-residuals for

a specific observation, for which the CV Z-residual is close to the value of 6, whereas the

corresponding No-CV Z-residual is about only 3. Additionally, more CV Z-residuals than

No-CV Z-residuals are greater than 3, indicating a more conservative nature of the No-CV

Z-residuals.
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Figure 1: The scatterplots depict the No-CV, 10-fold, and LOOCV Z-residuals for a sim-

ulated dataset with a non-linear covariate effect, detailed in Section 4.1. The dataset

comprises 10 clusters of 50 observations with a censoring rate ≈ 50%. Gray horizontal

lines are drawn at values 3 and -3 for reference.

199.73% of observations from the standard normal should be within (-3,3)
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All the QQ plots of CV and No-CV Z-residuals under the true model (Fig. S1 in the

Supplementary Materials) align closely with the 45◦ straight line, affirming their normality,

as expected when a correct model is fitted. In contrast, the QQ plots of 10-fold and LOOCV

Z-residuals under the wrong model reveal increased deviations in the upper tail than No-

CV Z-residuals. The difference in the QQ plots indicates that the CV Z-residuals have

greater power in detecting non-linear covariate effects than the No-CV Z-residuals.

4.1.3 Comparing the Model Rejection Rates of Z-residual-based SW Tests

We further used multiple simulated datasets to investigate the distinction between CV

and No-CV Z-residuals in GOF tests. The Shapiro–Wilk (SW) test was applied to assess

the normality of the three types of Z-residuals for checking the overall GOF for fitted

models. In our investigation, we generated 1000 datasets, each comprising 10 clusters of

m observations. The value of m varied within the range of 10, 20, . . . , 100. Additionally,

we set two distinct values for β2 (-2 and -1), representing strong and moderate non-linear

covariate effects.

Fig. 2 illustrates the results for the scenario with a pronounced non-linearity effect

(β2 = −2). Under the true model, the model rejection rates for the No-CV Z-residuals

approximate the 0.05 nominal level. Conversely, under the wrong model, although the

model rejection rates for the No-CV Z-residuals gradually increase with sample size, they

remain significantly low. However, under the wrong model, the model rejection rates of

LOOCV or 10-fold CV Z-residuals (Fig. 2(b)(c)) are notably higher than those of No-CV

Z-residuals (Fig. 2(a)), across all sample sizes. In addition, we also see that the difference

in the means of SW p-values between the true and wrong models (the gap between blue

and red lines as depicted in Fig. 2(d)-(f)) is notably larger for CV Z-residuals compared

to No-CV Z-residuals across all sample sizes.

We observed that SW tests employing CV Z-residuals exhibit slightly higher type-I error

rates than the nominal level, especially noticeable with small sample sizes (Fig. 2). This

increase is likely due to finite-sample errors encountered in estimating model parameters.

Notably, parameter estimation can be particularly challenging with reduced sample sizes

within the CV approach. Theoretically, Z-residuals conform to an exact normal distribution
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Figure 2: Comparison of model rejection rates (proportions of Z-residual-based SW test p-

values ≤ 0.05) and the means of Z-residual-based SW p-values for detecting the non-linear

covariate effect. Fig. (g)-(i) show the values of R2 for measuring the agreement between

the survival probabilities calculated with the fitted models and the survival probabilities

calculated with the true generating models.
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when calculated with the true model and corresponding parameters. However, when the

sample size is small, a fitted model may not accurately represent the true model due to

the errors in estimating the parameters, although the model specification (e.g. family and

covariate functional form) is correct.

To delineate the discrepancy between the fitted and true models, we calculated the R2,

the square of the correlation, between the actual survival probabilities and the estimated

survival probabilities. The actual survival probability is computed using the true values

of the parameters (α = 3, λ = 0.007, β1 = 1, β2 = −2 and β3 = 0.5), which were used

to simulate the datasets. The estimated survival probability is calculated by using the

estimated parameters (i.e., α̂, λ̂, β̂1, β̂2 and β̂3 ) from fitting either the true or wrong models.

The plots in Fig. 2(g)(h)(i) present the average of the R2 values across 1000 datasets and

various CV folds for each simulation setting. We see that the R2 for the cases with small

sample sizes is pretty small, e.g. a value of 0.8. The difference in the fitted model and the

true model may explain why the type-I error rates of the SW tests with CV Z-residuals are

larger than the nominal level of 0.05.

4.1.4 Comparing the Discriminativeness of Z-residual-based SW Tests

We further employ the area under the ROC curve (AUC) to quantify the separability of

the two sets of 1000 SW test p-values: one from fitting the true model and the other

from fitting the wrong model. AUC is a quantity to measure the correlation between a

binary response variable and a continuous variable called predictive probability, which is

between 0 and 1. We create an artificial response variable by labelling 1 for the SW test

p-values associated with the true model and 0 for those with the wrong model. The SW

test p-values themselves are treated as the predicted probabilities. We employ the pROC

package (Robin et al., 2023) to calculate the AUC for the response values and predictive

probabilities as defined above. High AUC values indicate that the SW p-values effectively

distinguish between the correct and incorrect models. Fig. 3 displays the AUC values for

scenarios with strong and moderate non-linear covariate effects in the left and right plots,

respectively. As the sample size increases, the AUC of all three methods rises, with the

AUC values of the 10-fold and LOOCV Z-residuals closely aligned. Notably, the AUC
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Figure 3: Comparison of the AUC values of Z-residual-based SW test p-values in predicting

the correct and incorrect models for simulated datasets with logarithmic covariate effects.

values for 10-fold and LOOCV Z-residuals consistently surpass those of No-CV Z-residuals.

Moreover, the superior performance of CV Z-residuals remains steady even with increased

sample sizes, at least up to 1000. This finding is noteworthy, considering the assumption

that the bias due to the double use of the dataset might diminish with larger sample sizes.

In summary, the SW p-values computed with CV Z-residuals exhibit higher discriminative

abilities in distinguishing the correct and incorrect models compared to those calculated

with No-CV Z-residuals.

4.2 Detecting Outliers

4.2.1 Generating Datasets with Outliers and Model Fitting

We generate a clean dataset based on a Weibull model and then introduce perturbations to

create a corresponding contaminated dataset, where the outlier identities are known. The

clean datasets are constructed by generating true failure times from a Weibull regression

model as follows:

tij =

(
− log(vij)

λzi exp(x
(1)
ij − 2x

(2)
ij + 0.5x

(3)
ij )

)1/α

(9)
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for the jth individual in the ith group, where i ∈ {1, . . . , 10} and j ∈ {1, . . . ,m}, and

vij is simulated from Uniform (0, 1). We chose the shape parameter α = 3 and the scale

parameter λ = 0.007 by following Hirsch and Wienke (2011). The equation (9) is derived

by following the inverse-CDF method for generating random numbers from the Weibull

distribution; a detailed derivation is given in the Supplementary Materials.

The censoring times Cij is simulated from an exponential distribution, exp(θ), with

θ set to obtain censoring rates approximately equal to 50%. The three covariates are

generated in a similar way as used by Hirsch and Wienke (2011): x
(1)
ij from Uniform(0,

1), x
(2)
ij from Normal(0, 1), and x

(3)
ij from Bern(0.25). The frailties are generated from the

gamma distribution with a mean of 1 and a variance of 0.5.

Jitters, meant to represent outliers, are added according to the formula max(w, e),

where e is a random number from an exponential distribution with a rate of 1, and w is set

to 2 or 4 to indicate moderate and strong jitters, respectively. This approach ensures that

the jitters are at least greater than w. Additionally, we consider two methods for adding

jitters to the clean datasets: one entails adding jitters to randomly chosen 10% event times,

while the other involves adding jitters to a random selection of 10 event times. Note that

the contaminated failure times may not always appear excessively large if the failure time

before contamination is small enough.

The Cox model with hazard function given by hij(t) = zi exp(β1x
(1)
ij +β2x

(2)
ij +β3x

(3)
ij )h0(t)

is a true model for the clean datasets. We fit this model to both clean datasets and

contaminated datasets to compare the performance of CV and No-CV Z-residuals. When

the true model is fitted to contaminated datasets, it is a wrong model for the datasets due

to the the added jitters.

4.2.2 Visualizing CV and No-CV Z-residuals of a Single Dataset

To illustrate the performance of CV and No-CV Z-residuals, we first examine the Z-residuals

of a pair of clean and contaminated datasets with a cluster size of m = 20. In the contam-

inated dataset, strong jitters are introduced to ten randomly selected failure times. Fig.

4 indicates that the Z-residuals for the clean dataset mainly fall within the range of -3

and 3 without any unusual patterns, behaving as independent standard normal variates.
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For the contaminated dataset, all No-CV Z-residuals of the contaminated dataset remain

constrained within the -3 to 3 range. Consequently, these Z-residuals are unable to identify

outliers if the criterion for outliers is based on Z-residuals outside the (−3, 3) interval. By

contrast, three outliers were identified with CV Z-residuals exceeding the (-3, 3) interval.

This comparison indicates that CV Z-residuals exhibit superior capability in identifying

outliers, despite not capturing all outliers due to their failure times not exceeding the

model’s limits after the introduction of jitters.
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Figure 4: Comparison of the performance of Z-residuals in detecting outliers on a pair of

clean and contaminated datasets. The datasets have 10 clusters each with 20 observations.

4.2.3 Comparing the Model Rejection Rates of Z-residual-based SW Tests

We conduct repeated simulations involving 1000 datasets, each comprised of 10 clusters

with m observations. The cluster size m ranges from 10 to 100, allowing us to explore

the relationship between Z-residual performance and cluster size variation. We aim to
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assess the performance of SW tests based on three types of Z-residuals in identifying model

inadequacy for contaminated datasets, for which the true model is a wrong model due to

the outliers. We fit the true model for both clean and contaminated datasets. Similar to

Section 4.1, we utilize 1000 simulated datasets for each simulation setting to evaluate the

proportion of SW test p-values below 0.05 and to determine the mean of SW p-values.
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Figure 5: Comparison of model rejection rates based on SW test p-values ≤ 0.05, and the

mean of SW p-values for datasets containing 10 outliers. The horizontal lines for the model

rejection rate indicate the nominal type-I error rate 0.05.

Fig. 5 (a)-(c) presents the results for the scenario involving ten strong outliers. The

results demonstrate that the rejection rates of No-CV Z-residuals for clean datasets (green

curves) maintain the nominal level of 0.05 across all scenarios. However, for contaminated

datasets, the powers of No-CV Z-residuals are notably lower than those of 10-fold and

LOOCV Z-residuals. This power reduction is particularly significant when the sample size

is below 300. SW tests using CV Z-residuals exhibit slightly higher type-I error rates for

clean datasets when the sample size is small. Yet, these rates tend to approach 0.05 as
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the sample size increases. As shown by Fig. 5 (d)-(f), the mean SW p-values of No-CV

Z-residuals are significantly higher than those of CV Z-residuals.

4.2.4 Comparing the Discriminativeness of Z-residual-based SW Tests

To assess the discriminative capabilities of SW test p-values, we utilized the AUC to mea-

sure the distinction between the SW test p-values derived from clean and contaminated

datasets. We create an artificial binary variable to indicate whether the dataset is clean or

contaminated for calculating AUC. We consider four combinations of two jitter levels and

two schemes for jitter introduction.
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Figure 6: Comparison of the AUC values of SW test p-values based on Z-residuals for

simulation datasets with outliers.

From Fig. 6, we consistently observed significantly higher AUC values for 10-fold and

LOOCV Z-residuals in comparison to No-CV Z-residuals. Notably, when the sample size

is around 100, the AUC values for No-CV Z-residuals tend to approach 0.5, indicating
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a lack of discriminative power. In contrast, the AUC values for 10-fold and LOOCV

Z-residuals are approximately 0.8 for the same sample size, demonstrating substantially

greater discriminatory ability. Moreover, we observed that the difference in AUC values

between CV and No-CV Z-residuals diminishes as the sample size increases in three out of

the four scenarios. However, in the case where a fixed number of moderate outliers (10) is

present, the discrepancy in AUC values persists even at a sample size of 1000.

4.2.5 Comparing the Outlier Detection Rates of Z-residuals

Finally, we compare the sensitivity and false positive rate (FPR) for detecting outliers

using CV and No-CV Z-residuals. Our criterion for identifying an outlier is an absolute

Z-residual greater than 3. Sensitivity is the proportion of true outliers correctly identified

as outliers, while the FPR is the proportion of non-outliers falsely identified as outliers.
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Figure 7: Comparison of the sensitivities (points with ◦) and the false positive rates (points

with ×) in detecting outliers using No-CV, 10-fold, and LOOCV Z-residuals.
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Fig. 7 shows the sensitivities and FPRs for the four simulation scenarios considered in

Fig. 6. The CV Z-residuals display substantially higher sensitivities but nearly identical

FPRs when used to detect the true outliers compared to the No-CV Z-residuals in all four

scenarios. This comparison results clearly show the advantage of using CV Z-residuals for

identifying outliers, despite the slight elevation of type-I error rates observed in SW tests

based on these residuals. Interestingly, the sensitivity of 10-fold and LOOCV Z-residuals

increases with sample size when the number of outliers is fixed at 10 but decreases and

converges to a value of about 0.1 when the percentage of outliers is fixed at 10%.

5 A Real Data Example

This section demonstrates the practical application of CV Z-residuals in identifying outliers

within a study on kidney infections (Mcgilchrist and Aisbett, 1991). The dataset comprises

records from 38 kidney patients using a portable dialysis machine. It documents the times

of the first and second recurrences of kidney infections for these patients. Each patient’s

survival time is defined as the duration until infection from catheter insertion. The pa-

tient records are considered as clusters due to shared frailty, signifying the common effect

across patients. Instances where the catheter is removed for reasons other than infection

are treated as censored observations, accounting for 24% of the dataset. The dataset en-

compasses 38 patient clusters, with each patient having exactly two observations, resulting

in a total sample size of 76. This dataset is frequently employed to exemplify shared frailty

models, and further details can be found in Mcgilchrist and Aisbett (1991).

We fit a shared gamma frailty model with three covariates: covariates: age in years,

gender (male or female), and four disease types. Additional specifics are provided in Table

S1 in the Supplementary Materials. The fitting process employs the coxph function within

the survival package. Table 1a displays the estimated regression coefficients, along with

their corresponding standard errors (SE), p-values, and 95% confidence interval (CI), de-

rived from fitting the shared gamma frailty model using the complete dataset. The results

in Table 1a reveal significant associations between the hazard of kidney infection recurrence

and two covariates: sex and PKD disease type.

We computed Z-residuals and Cox-Snell (CS) residuals using the No-CV and LOOCV
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Table 1: Parameter estimates of three shared gamma frailty models fitted with the kidney

infection dataset. The tables (1b) and (1c) show the estimates for two subsets of the

original datasets with two and three cases removed as they are identified as outliers with

LOOCV Z-residuals.

(a) The original kidney infection dataset.

Covariate Estimate SE P-value 95% CI

Age 0.003 0.011 0.775 (-0.019, 0.025)

SexMale 1.480 0.358 0.000 (-2.185, -0.781)

DiseaseGN 0.088 0.406 0.829 (-0.709, 0.884)

DiseaseAN 0.351 0.400 0.380 (-0.433, 1.134)

DiseasePKD -1.430 0.631 0.023 (-2.668, -0.194)

Frailty 0.933

(b) Excluding cases 42 and 20

Covariate Estimate SE P-value 95% CI

Age 0.007 0.011 0.530 (-0.015, 0.029)

SexMale 2.117 0.400 0.000 (1.333, 2.901)

DiseaseGN 0.359 0.406 0.380 (-0.436, 1.154)

DiseaseAN 0.349 0.407 0.390 (-0.448, 1.147)

DiseasePKD -0.797 0.638 0.210 (-2.047, 0.453)

Frailty 0.940

(c) Excluding cases 42, 20, and 15

Covariate Estimate SE P-value 95% CI

Age 0.012 0.011 0.280 (-0.010, 0.034)

SexMale 2.120 0.402 0.000 (1.332, 2.906)

DiseaseGN 0.727 0.415 0.08 (-0.087, 1.540)

DiseaseAN 0.319 0.404 0.430 (-0.473, 1.112)

DiseasePKD -0.802 0.636 0.210 (-2.049, 0.444)

Frailty 0.940

methods for the kidney infection dataset. Given the similarity in performance between the

10-fold CV and LOOCV Z-residual methods demonstrated in the simulation studies and
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the manageable computational load, we focused on the LOOCV method. Fig. 8 illustrates

the residual diagnosis results for the original kidney infection dataset.

The plots in Fig. 8 (a)(b) display scatterplots against the index and QQ plots of the

Z-residuals of No-CV Z-residuals. The No-CV Z-residuals predominantly fall within the

interval (-3, 3)1, displaying alignment with the 45◦ straight line in the QQ plot, all as

expected for a random sample from the standard normal. The QQ plot of the No-CV

Z-residuals indicates a SW p-value of around 0.70, signifying a well-fitted model to the

dataset. Thus, the diagnostic results using No-CV Z-residuals suggest the suitability of the

shared frailty model for the dataset, failing to identify any outliers or the inadequacy of

the fitted model.

However, analysis of the scatterplot of LOOCV Z-residuals ( Fig. 8(e)) reveals that the

Z-residuals of cases labelled 20 and 42 exceed 3. These instances are considered outliers

for the shared frailty model. The QQ plot of LOOCV Z-residuals displays a noticeable

deviation from the 45◦ straight line, attributed to the considerable Z-residuals of the two

identified outliers. The SW p-value of LOOCV Z-residuals is notably small, a value less

than 0.01, as evident in the QQ plot. In summary, the diagnosis results with LOOCV

Z-residuals suggest that the fitted shared frailty model is inadequate for this dataset, and

two cases exhibit excessive Z-residuals, categorized as outliers for this model.

Compared to all the raw infection times portrayed in Fig. S4 in the Supplementary

Materials, the infection time of case 42 ranks highest among all but doesn’t particularly

stand out, while the infection time of case 20 sits near the median of all infection times and

doesn’t appear as an outlier at all. This observation highlights the distinction between

outliers concerning raw observations and those concerning a fitted model. Z-residuals

are a monotone transformation of the tail (or survival) probabilities of the conditional

distribution of failure time given covariates (eqn. (4)). Therefore, the identification of

outliers based on Z-residuals has factored in covariate effects. However, identifying outliers

based solely on raw failure times neglects covariate effects; in other words, it is grounded

in a model with only the intercept term.

There exists randomness in the Z-residuals of censored observations, meaning that dif-

199.73% of observations from the standard normal should be within (-3,3)
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Figure 8: Scatterplots and QQ plots of No-CV and LOOCV Z-residuals of the fitted shared

frailty models based on the original kidney infection dataset. The third column presents

the histograms of 1000 replicated SW p-values of Z-residuals. The fourth column shows

the CS residuals computed with the No-CV and LOOCV methods.

ferent sets of Z-residuals can be generated for the same dataset using distinct random

numbers. Thus, to test the robustness of the previously conducted diagnosis, we replicated

a large number of realizations of Z-residuals. Fig. 8 (c)(g) exhibit the histograms of 1000

SW test p-values, each derived from a set of No-CV or LOOCV Z-residuals. More than 95%

of the SW p-values for No-CV Z-residuals surpass 0.05, whereas 100% of the SW p-values

for LOOCV Z-residuals fall below 0.05. Note that the histogram of replicated SW p-values

based on LOOCV Z-residuals concentrates highly in a tiny area near 0, perhaps all less

than 0.01. This consistency across numerous replications confirms that the evaluation of

the misspecification of the shared frailty model is not incidental to a specific set of LOOCV

Z-residuals but a recurring conclusion supported by extensive Z-residual replications.

To further validate the above diagnoses and illustrate the effect of CV in residual di-

agnostics, we compute CS residuals using both No-CV and LOOCV methods. The CHFs

of these residuals are depicted in Fig. 8 (d)(h). The CHF of No-CV CS residuals closely

aligns with the 45◦ straight line, indicating a well-fitted model for the dataset. Conversely,
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the CHF of the LOOCV CS residuals deviates from the 45◦ straight line in the upper

tail, indicating inadequacy of the fitted model. The agreement between the CS residu-

als’ model adequacy check and the Z-residual-based diagnosis is notable. However, the

diagnosis with Z-residuals offers more information on the nature of the discrepancy in the

inadequate model, detecting outliers and providing a quantitative measure of the statistical

significance of the model’s departure.

Finally, after considering the removal of the two outliers (cases 42 and 20) from the

original kidney infection dataset and re-fitting the shared gamma frailty model, the results

in Table 1b display that the covariate DiseasePKD is no longer statistically significant at a

5% level. The discrepancy between Table 1a and 1b emphasizes how parameter estimation

and inference can be greatly influenced by including outliers, underscoring the importance

of model diagnosis and outlier detection in practical data analysis.

Fig. S5 in the Supplementary Materials displays the residual diagnosis results after

excluding these two outliers, indicating that the refitted model is reasonably good for the

dataset without cases 42 and 20. However, it’s observed that case 15 has a Z-residual

marginally greater than 3. However, this may not raise substantial concern, as most of

the SW p-values of LOOCV Z-residuals exceed 0.05. The model is refitted after further

removing case 15, as detailed in Table 1c. The Z-residual diagnosis, depicted in Fig. S6 in

the Supplementary Materials, does not indicate any inadequacy in the model fitted with

the three cases removed nor identify an outlier for the model.

6 Conclusions and Discussions

Residual diagnosis plays a crucial role in validating the adequacy of fitted models (Cook

and Weisberg, 1982; Collett, 2015a). However, the conventional method of using the same

dataset to fit a model and diagnose its performance can potentially introduce optimistic

bias. Introducing techniques such as CV can address this concern by using subsets of the

data for model fitting and evaluation, thereby potentially mitigating the issues related to

the double use of the entire dataset and providing a more reliable assessment of the model’s

performance (Marshall and Spiegelhalter, 2007). In this paper, we introduced CV methods

to compute Z-residuals for shared frailty models. Through our comprehensive comparison
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between the traditional No-CV Z-residuals (Li et al., 2021; Wu et al., 2024+b) and the

CV Z-residuals, we demonstrated that residual diagnosis without CV tends to exhibit

a conservative bias. In contrast, the CV methods notably enhanced the sensitivity and

accuracy of the SW-test with Z-residuals, significantly improving the detection of model

inadequacy and the identification of outliers.

Our simulations identified a potential challenge for CV Z-residuals: the slight elevation

of type-I error rates in SW tests. The primary reason behind the inflated model rejec-

tion rates may be attributed to the notable difference between the training dataset (used

to fit the model) and the testing dataset (used to assess model performance). In smaller

sample sizes, this difference can significantly affect the model’s generalization and perfor-

mance assessment. This finding emphasizes the importance of cautious interpretation and

thorough evaluation, as model assessment in smaller sample sizes could be less reliable

and potentially prone to inflated rates of model rejection. In our opinion, to tackle this

issue, improvements in frailty estimation techniques within shared frailty models are essen-

tial. One possible approach involves enhancing frailty estimation algorithms by employing

stronger penalization or Bayesian methods for obtaining a better estimate of the survival

function (Huang et al., 2023; Bürkner et al., 2024). An alternative path to address the

potential elevation in type-I error rates involves refining the methods used for computing

CV Z-residuals or for conducting SW tests. The objective here is to yield Z-residuals that

are less stringent in model rejections. Introducing a strategy to marginalize the frailties

(Liu et al., 2017) during the computation of randomized survival probabilities could offer a

viable solution. An intriguing avenue for future research lies in a detailed comparison be-

tween methods for comparing the performance of methods for computing Z-residuals with

and without frailty marginalization. This exploration could shed light on each approach’s

advantages and potential limitations.

Despite the challenges encountered with CV Z-residuals in scenarios involving small

sample sizes, it is noteworthy that the benefits and substantial advantages of utilizing CV

Z-residuals become more pronounced and valuable as the sample size increases. As the

sample size grows, the CV Z-residuals display increased robustness in capturing intricate

patterns associated with non-linear covariate relationships within the model, thus providing
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a more nuanced and precise evaluation of how various covariates influence the outcome.

Moreover, the utility of CV Z-residuals in outlier detection becomes more pronounced with

larger sample sizes. The increased data volume allows for a more comprehensive assessment,

enabling the identification of potential outliers with higher precision and confidence.

Availability of R code and Datasets

We have included an R function for computing CV Z-residuals for the output of the coxph

function in the survival R package in the Supplementary Materials of this paper. We have

also collected this R function into an R package called Zresidual, which can be down-

loaded and installed directly from GitHub via this link: https://github.com/tiw150/

Zresidual. For further details on using the function and the Zresidual package, please

refer to our demonstration available on this webpage: https://tiw150.github.io/CV_

Zresidual_demo.html.

This above GitHub repository also includes an array of R code snippets for conducting

simulation studies and real data analysis. Additionally, the datasets employed in these

studies are provided in this repository.

Supplementary Materials

Additional figures and tables are available online via this link: http://....
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