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Section 1

An Introduction to Predictive Model Assessment
Methods



Out-of-Sample Predictive Assessment

Predictive assessment is often used for model comparison, diagnostics, and
outlier detection in practice.
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Optimistic bias = Training (within-sample) validation - Out-of-sample validation
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Review of Various Information Criterion I

1 Akaike information criterion (Akaike, 1973) for classic statistics

AIC = −2
(

logP(y obs|θ̂MLE)− p
)

(1)

2 For Bayesian statistics, DIC (Spiegelhalter et al., 2002) was proposed:

DIC = −2
(
logP(y obs|θ̄)− pDIC

)
,where, (2)

θ̄ = Epost(θ|data) (3)

pDIC = 2[logP(y obs|θ̄)− Epost

(
log(P(y obs|θ))

)
] (4)

The DIC is justified only for models with identifiable parameters.
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Review of Various Information Criterion II

3 Widely Applicable Information Criterion (Watanabe,2009)

WAIC = −2

(
n∑

i=1

log(Epost(P(y obs
i |θ)))− pwaic

)
(5)

pwaic =
n∑

i=1

Vpost

(
log(P(y obs

i |θ))
)

(6)

The WAIC is justified for models with non-identifiable parameters.

4 Importance sampling or harmonic mean estimates (proposed by
Gelfand et al. (1992)). For each unit:

̂P(y obs
i |y obs

−i )
IS

=
1

Epost

(
1/P(y obs

i |θ)
) (7)

IS estimate of IC = −2
n∑

i=1

log( ̂P(y obs
i |y obs

−i )
IS

) (8)
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What Will We Propose?

We propose an improved importance sampling method (iIS) for
approximating cross-validatory (CV) predictive assessment.

iIS is applicable to Bayesian models with correlated unit-specific latent
variables, for example those models for spatial and temporal data.
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Section 2

Disease Mapping Models



Scottish Lip Cancer Data I

The data represents male lip cancer counts (over the period 1975 - 1980)
in the n = 56 districts of Scotland. The data includes these columns:

the number of observed cases of lip cancer, yi ;

the number of expected cases, Ei , which are based on age effects, and
are proportional to a “population at risk” after such effects have been
taken into account;

the percent of population employed in agriculture, fishing and
forestry, xi , used as a covariate; and

a list of the neighbouring regions.
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Scottish Lip Cancer Data II
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A Subset of the Dataset
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A Hierarchical Bayesian Spatial Model for yi ’s

A model for the observed variables given latent variables

yi |Ei , λi ∼ Poisson(λiEi ),

where λi denotes the underlying relative risk for district i .

A model for latent log relative risks si = log(λi )

(s1, . . . , sn)′ ∼ Nn(α + Xβ,Φτ2)

where Φ = (In − φC )−1M is a matrix modelling spatial dependency
with proper conditional auto-regressive (CAR) method.

A model (prior) for parameters

τ2 ∼ Inv-Gamma(0.5, 0.0005)

β ∼ N(0, 10002)

φ ∼ Unif(φ0, φ1).
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Section 3

Integrated Important Sampling (iIS) in General



Bayesian Models with Unit-specific Latent Variables

iIS can be applied to models described as follows:

model parameters

θ

y i

x i for i = 1, · · · , n

s i

for i = 1, · · · , n

for i = 1, · · · , n

covariate variables

observable variables

latent variables

Figure 1: Graphical representation. The double arrows in the box for s1:n mean
possible dependency between s1:n. Note that the covariate x i will be omitted in
the conditions of densities for s i and y i throughout this presentation for simplicity.
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Subsection 1

Leave-one-out cross-validatory (LOOCV) Assessment



Cross-validatory Predictive Assessment I

Suppose we have specified a Bayesian model:

a density for y i given s i : P(y i |s i ,θ),
a joint density for latent variables s1:n: P(s1:n|θ), and
a prior density for θ: P(θ).

CV posterior distribution with y obs
i removed from the data set:

Ppost(-i)(θ, s1:n|y obs
−i ) =

∏
j 6=i

P(y obs
j |s j ,θ)P(s1:n|θ)P(θ) /C2, (9)
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Cross-validatory Predictive Assessment II

Suppose we specify an evaluation function a(y obs
i ,θ, s i ) that measures

certain goodness-of-fit (or discrepancy) of the distribution P(y i |θ, s i )
to the actual observation y obs

i .

CV posterior predictive assessment is defined as the expectation of
the a(y obs

i ,θ, s i ) with respect to Ppost(-i)(θ, s1:n|y obs
−i ):

Epost(-i)(a(y obs
i ,θ, s i )) =

∫
a(y obs

i ,θ, s i )Ppost(-i)(θ, s1:n|y obs
−i )dθds1:n

(10)

We could use MCMC to draw samples of (θ, s1:n) from CV posterior,
and then use the samples to approximate the above integral.
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Subsection 2

Two Predictive Model Assessment Questions



Model Comparison with CV Information Criterion (CVIC)

Using the likelihood of (θ, si ) given y obs
i as an evaluation function:

a(y obs
i ,θ, s i ) = P(y obs

i |θ, s i )

CV posterior predictive density at y obs
i :

P(y obs
i |y obs

−i ) = Epost(-i)(P(y obs
i |θ, s i ))

=

∫
P(y obs

i |θ, s i )Ppost(-i)(θ, s1:n|y obs
−i )dθds1:n

CV information criterion (CVIC) for comparing Bayesian models is:

CVIC = −2
n∑

i=1

log(P(y obs
i |y obs

−i )).
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Outlier Detection with CV Predictive p-value

Using a tail probability of P(yi |θ, si ) as an evaluation function:

a(y obs
i ,θ, s i ) = p-value(y obs

i |θ, si )
= Pr(yi > y obs

i |θ, si ) + 0.5Pr(yi = y obs
i |θ, si )

CV predictive p-value for detecting outliers:

p-value(y obs
i |y obs

−i ) = Epost(-i)(p-value(y obs
i |θ, si ))

= Pr(yi > y obs
i |y obs

−i ) + 0.5Pr(yi = y obs
i |y obs

−i )
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CV Predictive Density and p-value
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Problem with Actual LOOCV

We need to repeat this procedure for each i = 1, . . . , n. Time consuming!.

We want to fit MCMC given the full data only once, then find the above
integrals for all i = 1, . . . , n.
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Subsection 3

Non-integrated Importance Sampling (nIS)



Importance Weight for (θ, si)

The full data posterior of (s1:n,θ) given observations y obs
1:n :

Ppost(θ, s1:n|y obs
1:n) =

n∏
j=1

P(y obs
j |s j ,θ)P(s1:n|θ)P(θ)/C1, (11)

The CV posterior of (θ, s1:n) given y obs
−i :

Ppost(-i)(θ, s1:n|y obs
−i ) =

∏
j 6=i

P(y obs
j |s j ,θ)P(s1:n|θ)P(θ)/C2 (12)

Importance weight:

W nIS
i (θ, s i ) =

Ppost(-i)(θ, s1:n|y obs
−i )

Ppost(θ, s1:n|y obs
1:n)

∝ 1

P(y obs
i |θ, s i )

(13)
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Importance Sampling Method

Importance reweighing method:

Epost(-i)(a(y obs
i ,θ, s i )) =

Epost

[
a(y obs

i ,θ, s i )W
nIS
i (θ, s i )

]
Epost

[
W nIS

i (θ, s i )
] (14)

Direct Understanding
Samples of (θ, s i ) that fit better y obs

i should be given lower in
validating y obs

i , as a way to combat against the optimistic bias.
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IS Estimate of CVIC

In CVIC, a(y obs
i ,θ, s i ) = P(y obs

i |θ, s i ), therefore, in the numerator,

a(y obs
i ,θ, s i )W

nIS
i (θ, s i ) = 1.

The CV posterior predictive density P(y obs
i |y obs

−i ) :

P(y obs
i |y obs

−i ) =
1

Epost

[
1/P(y obs

i |θ, s i )
] . (15)

nIS estimate of CVIC is

ĈVIC
nIS

= −2
n∑

i=1

log(P̂nIS(y obs
i |y obs

−i )).
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Subsection 4

Integrated Importance Sampling (iIS)



Problem of Non-integrated Importance Sampling (nIS)

Unfortunately, nIS often does not work well. The full data posterior of
P(y obs

i |θ, si ) (as a function of (θ, si )) favors much larger values than
the corresponding CV posterior, because si receives much information
from y obs

i . That is, si and θ are bounded to the area giving high
values of P(y obs

i |θ, si ).

P(s i ,θ|y obs
1:n) and P(s i ,θ|y obs

−i ) may differ drastically.
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Schematic Density of x(θ, si) = logP(y obs

i |θ, si)

Red Curve: CV posterior with y obs
i removed, Blue Curve: full data posterior
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Idea in Integrated Importance Sampling

Drop s i temporarily from full data posterior sample, regenerate s i
from P(s i |s−i ,θ) as in actual CV,

In other words, and apply importance sampling to find

expectation w.r.t. Ppost(-i)(θ, s−i |y obs
−i )

with
expectation w.r.t. Ppost(θ, s−i |y obs

1:n)
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Expectation w.r.t. CV Posterior of (θ, s−i)

CV Posterior

Ppost(-i)(θ, s1:n|y obs
−i ) =

∏
j 6=i

P(y obs
j |s j ,θ)P(s1:n|θ)P(θ)/C2

Expectation of a function of (θ, s−i )

Epost(-i)(a(y obs
i ,θ, s i )) =

∫ ∫
A(y obs

i ,θ, s−i )Ppost(-i)(θ, s−i |y obs
−i )dθds−i

where,

A(y obs
i ,θ, s−i ) =

∫
a(y obs

i ,θ, s i )P(s i |s−i ,θ)ds i ,

Ppost(-i)(θ, s−i |y obs
−i ) =

∏
j 6=i

P(y obs
j |s j ,θ)P(s−i |θ)P(θ)/C2
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Full data posterior of (θ, s−i)

Full data posterior

Ppost(θ, s1:n|y obs
1:n) =

n∏
j=1

P(y obs
j |s j ,θ)P(s1:n|θ)P(θ)/C1

Marginalize si

Ppost(θ, s−i |y obs
1:n)=

[∏
j 6=i

P(y obs
j |s j ,θ)P(s−i |θ)P(θ)

]
P(y obs

i |θ, s−i )/C1,

where,

P(y obs
i |θ, s−i ) =

∫
P(y obs

i |s i ,θ)P(s i |s−i ,θ)ds i .
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Integrated Importance Sampling Weight and Formula

Importance Weight for (θ, s−i )

W iIS
i (θ, s−i ) =

Ppost(-i)(θ, s−i |y obs
−i )

Ppost(θ, s−i |y obs
1:n)

=
1

P(y obs
i |θ, s−i )

. (16)

iIS formula

Epost(-i)(A(y obs
i ,θ, s−i )) =

Epost

[
A(y obs

i ,θ, s−i ) W iIS
i (θ, s−i )

]
Epost

[
W iIS

i (θ, s−i )
] , (17)
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Difference of iIS and nIS

Evaluation Function

a(y obs
i ,θ, s i ) =⇒ A(y obs

i ,θ, s−i ) =

∫
a(y obs

i ,θ, s i )P(s i |s−i ,θ)ds i .

Importance Weight

P(y obs
i |θ, s i ) =⇒ P(y obs

i |θ, s−i ) =

∫
P(y obs

i |s i ,θ)P(s i |s−i ,θ)ds i .

Find these two quantities using Monte Carlo by generating si from
P(s i |s−i ,θ) or other methods.
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A Special Case: iIS Estimate of CVIC

The iIS estimate for P(y obs
i |y obs

−i ) is

P̂ iIS(y obs
i |y obs

−i ) =
1

Êpost

[
1/P(y obs

i |θ, s−i )
] .

iIS estimate of CVIC is

ĈVIC
iIS

= −2
n∑

i=1

log(P̂ iIS(y obs
i |y obs

−i )) (18)
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Section 4

Applications to Disease Mapping Models



Subsection 1

Model Comparison with Information Criterion



Four Models Considered for Scottish Lip Cancer Data

Model for yi :
yi |Ei , λi ∼ Poisson(λiEi ),

where λi denotes the underlying relative risk for district i .

Let si = log(λi ). Four different models for spatial effects
s = (s1, · · · , sn)′:

model 1 (spatial+linear, full) : s ∼ Nn(α + Xβ,Φτ 2)

model 2 (spatial) : s ∼ Nn(α,Φτ 2)

model 3 (linear) : s ∼ Nn(α + Xβ, Inτ
2)

model 4 (exchangable) : s ∼ Nn(α, Inτ
2)
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How Did we Run MCMC?

We used OpenBUGS through R package R2OpenBUGS to run MCMC
simulations for fitting the above four models to lip cancer data. For each
simulation, we ran two parrallel chains, each for 15000 iterations, and the
first 5000 were discarded as burning.

For replicating computing information criterion (with each method), we
ran 100 independent simulations as above by randomizing initial θ and
randomizing bugs random seed for OpenBUGS.
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Implementation of DIC, nIS and nWAIC

DIC
apply DIC formula (2) with (θ, s1:n)

nIS and nWAIC
apply importance sampling (7) and WAIC formula (5) with

P(y obs
i |si ,θ) = pois(y obs

i |λiEi ),where λi = exp(si )
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iIS and iWAIC

Integrated predictive density:

P(y obs
i |θ, s−i ) =

∫
pois(y obs

i |λiEi )P(si |θ, s−i )dsi (19)

si |s−i ,θ ∼ N(α + xiβ + φ
∑
j∈Ni

(cij(sj − α− xjβ)), τ2mii ), (20)

where Ni is the set of neighbours of district i .
We generate 200 random numbers of si from the distribution (20),
and then estimate the integral in (19).

iIS and iWAIC
apply importance sampling (7) and WAIC formula (5) with
P(y obs

i |θ, s−i )
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Comparison of 5 Information Criteria

Table 1: Comparisons of information criteria for lip cancer data. Each table entry
shows the average of 100 information criteria computed from 100 independent
MCMC simulations, and the standard deviation in bracket.

Model CVIC DIC iWAIC iIS nWAIC nIS
full 343.88 269.43(12.30) 344.47(0.12) 345.21(0.19) 306.82(0.21) 335.54(1.27)

spatial 352.54 266.79(10.15) 354.11(0.06) 356.06(0.37) 304.61(0.18) 338.77(1.85)
linear 349.48 310.42(0.11) 350.48(0.05) 350.54(0.05) 306.94(0.21) 338.81(3.02)
exch. 366.61 312.57(0.12) 368.01(0.03) 368.08(0.03) 306.74(0.17) 346.55(3.46)
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Subsection 2

Detecting Divergent Regions with CV Predictive p-value



A Hierarchical Bayesian Spatial Model for yi ’s

A model for the observed variables given latent variables

yi |Ei , λi ∼ Poisson(λiEi ),

where λi denotes the underlying relative risk for district i .

A model for latent log relative risks si = log(λi )

(s1, . . . , sn)′ ∼ Nn(α + Xβ,Φτ2)

where Φ = (In − φC )−1M is a matrix modelling spatial dependency.

A model (prior) for parameters

τ2 ∼ Inv-Gamma(0.5, 0.0005)

β ∼ N(0, 10002)

φ ∼ Unif(φ0, φ1).
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p-value given (θ, si) and CV Predictive p-value

p-value given (θ, si ):

p-value(y obs
i |θ, si ) = Pr(yi > y obs

i |θ, si ) + 0.5Pr(yi = y obs
i |θ, si )

=
∑

yi>yobs
i

pois(yi |λiEi ) + 0.5pois(y obs
i |λiEi ) (21)

CV predictive p-value for detecting outliers:

p-value(y obs
i |y obs

−i ) = Epost(-i)(p-value(y obs
i |θ, si )) (22)
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Other Methods for Computing a Predictive p-value

Posterior Check

p-valuePost.check(y obs
i ) = Epost(p-value(y obs

i |θ, si ))

Ghosting Method (Marshall and Spiegelhalter, 2007)

p-valueGhost(y obs
i ) = Eghost(p-value(y obs

i |θ, si )),where

Pghost(si ,θ) = Ppost(θ, s−i |y obs
1:n)× P(si |s−i ,θ)

Important Sampling (Stern and Cressie, 2000)

p-valuenIS(y obs
i |y obs

−i ) =
Epost

[
p-value(y obs

i |θ, si )W nIS
i (θ, si )

]
Epost

[
W nIS

i (θ, si )
] ,where

W nIS
i (θ, si ) =

1

pois(y obs
i |λiEi )
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iIS estimate of Predictive p-value

p-valueiIS(y obs
i |y obs

−i ) =
Epost

[
p-value(y obs

i |θ, s−i )W iIS
i (θ, s−i )

]
Epost

[
W iIS

i (θ, s−i )
] ,where

p-value(y obs
i |θ, s−i ) =

∫
p-value(y obs

i |θ, si )P(si |θ, s−i )dsi

P(y obs
i |θ, s−i ) =

∫
pois(y obs

i |λiEi )P(si |θ, s−i )dsi

W iIS
i (θ, s−i ) = 1/P(y obs

i |θ, s−i )

4. Applications to Disease Mapping Models/Detecting Divergent Regions with CV Predictive p-value 35/43



Predictive p-values of Selected Districts

Table 2: The estimated predictive p-value(y obs
i ) for a selected subset of the 56

districts in the Scottish lip cancer data.

ID CV PCH GHO nIS iIS

1 0.31 0.42 0.32 0.30 0.31
2 0.03 0.32 0.05 0.03 0.03
3 0.09 0.33 0.10 0.12 0.09

11 0.13 0.34 0.13 0.11 0.12
15 0.06 0.27 0.07 0.07 0.06
17 0.60 0.47 0.60 0.53 0.61
45 0.95 0.78 0.89 0.95 0.96
50 0.96 0.82 0.93 0.95 0.96
55 0.99 0.92 0.99 0.99 0.99
56 0.84 0.73 0.83 0.82 0.84
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Figure 2: Illustration of Optimistic Bias in Posterior Checking

0 10 20 30 40 50 60 70

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

values of yi

de
ns

ity

(a) CV predictive PMF of y2 for district 2
(Banff-Buchan)
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(b) Full data predictive PMF of y2 for
district 2 (Banff-Buchan)
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Figure 3: Comparing estimated p-values with CV predictive p-values
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(a) Posterior checking
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(c) Non-integrated IS (nIS)
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(d) Integrated IS (iIS)
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Box-plots of Relative Errors in the Estimated p-value
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Computation Time

CV iIS nIS GHO PCH

MCMC 1137.56 20.05 19.97 19.95 19.90
Computing p-value 0.99 143.65 1.25 84.06 1.12

Total 1138.55 163.70 21.22 104.00 21.01
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Conclusions

Naive application of IS to latent variables models by treating latent
variables as parameters may give wrong results in predictive model
assessment.

The new proposed iIS significantly improve the accuracy of IS in
assessing Bayesian models with unit-specific latent variables. In our
studies, they gave results very close to what given by the actual
cross-validation.
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Directions for Future Work

Investigation of iIS and ordinary IS in many other models with
unit-specific latent variables, including factor models, hidden Markov
models, stochastic volatility models, and other time series models.

Use of CV predictive p-values to define “residuals” for model
diagnostics, as alternatives to Pearson’s and deviance residuals. The
attractiveness is that CV predictive p-values are always uniformly
distributed when the model is right for the dataset.

Other methods to improve importance sampling in more general
situation. A recent proposal by Vehtari and Gelman (2015):
truncating large importance weight.

Determine thresholds for CVIC.
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