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Section 1

Introduction and Literature Review



Approximations for Out-of-Sample Predictive Evaluation

Predictive evaluation is often used for model comparison, diagnostics, and
detecting outliers in practice. There are three ways for this with their own
advantages and limitations:
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Optimistic bias = Training (within-sample) validation - Out-of-sample validation
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Reviews of Bias-corrected Training Validation I

1 Akaike information criterion (Akaike, 1973) for classic statistics

AIC = �2
⇣
logP(y obs|✓̂

MLE

)� p

⌘
(1)

2 For Bayesian statistics, DIC (proposed by Spiegelhalter et al., 2002)
was proposed:

DIC = �2
⇣
logP(y obs|✓̂)� p

DIC

⌘
,where, (2)

✓̂ = E

post

(✓|data) (3)

p

DIC

= 2[logP(y obs|✓̂)� E

post

�
log(P(y obs|✓))

�
] (4)

AIC and DIC are only justified only for models with identifiable
parameters.
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Reviews of Bias-corrected Training Validation II
3 Widely Applicable Information Criterion (WAIC, proposed by

Watanabe (2009)). For each unit:

\
P(y obs

i |y obs

�i ) =
E

post

(P(y obs

i |✓))
exp

�
V

post

�
log(P(y obs

i |✓))
� (5)

WAIC = �2 log( \
P(y obs

i |y obs

�i )) (6)

WAIC is justified for models with non-identifiable parameters
(therefore widely applicable), but currently for only independent
samples.

4 Importance Sampling or harmonic mean estimates (proposed by
Gelfand et al. (1992)). For each unit:

\
P(y obs

i |y obs

�i ) =
1

E

post

�
1/P(y obs

i |✓)
� (7)

IS estimate of IC = �2 log( \
P(y obs

i |y obs

�i )) (8)
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What Will We Propose?

We propose two improved methods (namely iIS, and iWAIC) inspired by
importance sampling formulae for approximating cross-validatory (CV)
predictive evaluation.

Our Goal:

To improve predictive model evaluation in Bayesian models with correlated
unit-specific latent variables, for example those models for spatial and
temporal data.
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Section 2

Cross-validatory (CV) Posterior Predictive Evaluation



Bayesian Models with Unit-specific Latent Variables

The two methods to be proposed aim at improving IS and WAIC
evaluation for such models:
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Figure 1: Graphical representation. The double arrows in the box for b
1:n mean

possible dependency between b

1:n. Note that the covariate x i will be omitted in
the conditions of densities for bi and y i throughout this paper for simplicity.
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Galaxy Data

We obtained the data set from R package MASS. The data set is a numeric
vector of velocities (km/sec) of 82 galaxies from 6 well-separated conic
sections of an unfilled survey of the Corona Borealis region.
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Mixture Models with a Fixed Number, K , of Components

Considering the heterogeneity, we model the Galaxy data with
mixture models:

yi |zi = k ,µ
1:K ,�

2

1:K ⇠ N(µk ,�
2

k), for i = 1, . . . , n (9)

zi |p
1:K ⇠ Category(p

1

, . . . , pK ), for i = 1, . . . , n (10)

µ
1:K ,�

2

1:K , p1:K ⇠ certain prior (11)

The finite mixture model is an example of the models with
unit-specific latent variables:

the observed variable is yi ,
the mixture component indicator zi is the unit-specific latent variable
the model parameters ✓ is (µ

1:K ,�
2

1:K , p1:K ).

We are interested in determining K =?.
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Generals of CV Posterior Predictive Evaluation: I

Suppose conditional on ✓, we have specified a density for y i given bi :
P(y i |bi ,✓), a joint prior density for latent variables b

1:n: P(b1:n|✓),
and a prior density for ✓: P(✓).

To do cross-validation, for each i = 1, . . . , n, we omit observation
y

obs

i , and then draw MCMC samples from CV posterior distribution:

P

post(-i)

(✓, b
1:n|y obs

�i ) =
Y

j 6=i

P(y obs

j |bj ,✓)P(b1:n|✓)P(✓) /C2

, (12)

Based on the above posterior, we can form a posterior predictive
distribution for yi :

P(yi |y obs

�i ) =

Z
P(yi |bi ,✓)P

post(-i)

(✓, b
1:n|y obs

�i )d✓db1:n

Then we can compare the predictive distribution with y

obs

i .
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Generals of CV Posterior Predictive Evaluation: II

Suppose we specify an evaluation function a(y obs

i ,✓, bi ) that measures
certain goodness-of-fit (or discrepancy) of the distribution P(y i |✓, bi )
to the actual observation y

obs

i .

CV posterior predictive evaluation is defined as the expectation of
the a(y obs

1:n, ., .) with respect to P

post(-i)

(✓, b
1:n|y obs

�i ):

E

post(-i)

(a(y obs

i ,✓, bi )) =

Z
a(y obs

i ,✓, bi )P
post(-i)

(✓, b
1:n|y obs

�i )d✓db1:n

We could use MCMC to draw samples of (✓, b
1:n) from CV posterior,

and then use the samples to approximate the above integral.

Important: We need to repeat this procedure for each i = 1, . . . , n.
Time consuming!. We want to fit MCMC given the full data only
once, then find the above integrals for all i = 1, . . . , n.
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A Special Case: CV Information Criterion (CVIC)

Evaluation function:

a(y obs

i ,✓, bi ) = P(y obs

i |✓, bi ).

CV posterior predictive density:

E

post(-i)

(a(y obs

i ,✓, bi )) =

Z
P(y obs

i |✓, bi )P
post(-i)

(✓, b
1:n|y obs

�i )d✓db1:n

= P(y obs

i |y obs

�i )

CV information criterion (CVIC) for comparing Bayesian models is:

CVIC = �2
nX

i=1

log(P(y obs

i |y obs

�i )). (13)
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Section 3

Importance Sampling (IS) Approximations



Subsection 1

Non-integrated Importance Sampling (nIS)



Posterior Distribution Conditional on Full Data

The posterior of (b
1:n,✓) given observations y obs

1:n is proportional to the
joint density of y obs

1:n, b1:n, and ✓:

P

post

(✓, b
1:n|y obs

1:n) =
nY

j=1

P(y obs

j |bj ,✓)P(b1:n|✓)P(✓)/C1

, (14)

where C

1

is the normalizing constant involving only with y

obs

1:n.

The ratio between CV posterior and the full data posterior is:

P

post(-i)

(✓, b
1:n|y obs

�i )

P

post

(✓, b
1:n|y obs

1:n)
=

1

P(y obs

i |✓, bi )
⇥ C

1

C

2
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Importance Sampling Method

Our samples (✓, bi ) ⇠ P

post

(✓, b
1:n|y obs

1:n), but we are interested in
estimating the mean of a function w.r.t. P

post(-i)

(✓, b
1:n|y obs

�i ).

Importance Reweighing method:

E

post(-i)

(a(y obs

i ,✓, bi )) =
E

post

⇥
a(y obs

i ,✓, bi )W nIS

i (✓, b
1:n)

⇤

E

post

⇥
W

nIS

i (✓, b
1:n)

⇤ , where,

(15)

W

nIS

i (✓, b
1:n) =

P

post(-i)

(✓, b
1:n|y obs

�i )

P

post

(✓, b
1:n|y obs

1:n)
=

1

P(y obs

i |✓, bi )
⇥ C

1

C

2

. (16)

Intuition of this formula: Full data posterior sample (✓, bi ) that fit
better y obs

i should be considered less in validating y

obs

i , as a way to
correct for the optimistic bias.

3. Importance Sampling (IS) Approximations/Non-integrated Importance Sampling (nIS) 12/44



IS Estimate of CVIC

In CVIC, a(y obs

i ,✓, bi ) = P(y obs

i |✓, bi ), therefore, in the numerator,

a(y obs

i ,✓, bi )W
nIS

i (✓, b
1:n) =

C

1

C

2

The CV posterior predictive density P(y obs

i |y obs

�i ) is equal to harmonic mean
of the non-integrated predictive density P(y obs

i |✓, bi ) with respect to
P(✓, b

1:n|y obs

1:n):

P(y obs

i |y obs

�i ) =
1

E

post

⇥
1/P(y obs

i |✓, bi )
⇤ . (17)

nIS (non-integrated IS) estimate of P(y obs

i |y obs

�i ):

P̂

nIS(y obs

i |y obs

�i ) =
1

Ê

post

⇥
1/P(y obs

i |✓, bi )
⇤ . (18)

nIS estimate of CVIC using (18) is [CVIC
nIS

= �2
Pn

i=1

log(P̂nIS(y obs

i |y obs

�i )).
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Subsection 2

Integrated Importance Sampling (iIS)



Integrated Importance Sampling (iIS)

Unfortunately, nIS often does not work well. MCMC sample of bi
from the full data posterior P

post

(✓, b
1:n|y obs

1:n) fit y
obs

i so well because
it receives information from y

obs

i .

In actual CV simulation, bi does not get information from y

obs

i
because it is omitted from the data.

Therefore, P(bi |y obs

1:n) and (bi |y obs

�i ) di↵er so much that the nIS
estimate becomes inaccurate and unstable.
Our solution:
For each unit i , drop bi temporarily from full data posterior sample,
regenerate bi without reference to y

obs

i , that is, from P(bi |b�i ,✓).
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Subsection 2

Integrated Importance Sampling (iIS)
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Derivation of iIS Formula: I

1 Integrated Evaluation Function
Rewrite the expectation in (8) as

E

post(-i)

(a(y obs

i ,✓, bi )) = E

post(-i), M

(A(y obs

i ,✓, b�i )) (19)

=

Z Z
A(y obs

i ,✓, b�i )P(✓, b�i |y obs

�i )d✓db�i (20)

where,

A(y obs

i ,✓, b�i ) =

Z
a(y obs

i ,✓, bi )P(bi |b�i ,✓)dbi . (21)

Note: In (21), we integrate a(y obs

i ,✓, bi ) with respect to P(bi |b�i ,✓),
which does not refer to y

obs

i .
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Derivation of iIS Formula: II

2 Integrated Predictive Density
The full data posterior of (✓, b�i ) is

P

post, M

(✓, b�i |y obs

�i )=
hY

j 6=i

P(y obs

j |bj ,✓)P(b�i |✓)P(✓)
i
P(y obs

i |✓, b�i )/C1

,

(22)
where,

P(y obs

i |✓, b�i ) =

Z
P(y obs

i |bi ,✓)P(bi |b�i ,✓)dbi . (23)

We will call (23) integrated predictive density, because it
integrates away bi without reference to y

obs

i .
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Derivation of iIS Formula: III

3 Integrated Importance Sampling Formula
Using the standard importance weighting method, we will estimate
(20) by

E

post(-i), M

(A(y obs

i ,✓, b�i )) =
E

post, M

⇥
A(y obs

i ,✓, b�i ) W iIS

i (✓, b�i )
⇤

E

post, M

⇥
W

iIS

i (✓, b�i )
⇤ ,

(24)
where W

iIS

i is the integrated importance weight:

W

iIS

i (✓, b�i ) =
P

post(-i), M

(✓, b�i |y obs

�i )

P

post, M

(✓, b�i |y obs

�i )
=

1

P(y obs

i |✓, b�i )
⇥ C

1

C

2

. (25)
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Summary for iIS

Replace a(y obs

i ,✓, bi ) with

A(y obs

i ,✓, b�i ) =

Z
a(y obs

i ,✓, bi )P(bi |b�i ,✓)dbi .

Replace P(y obs

i |bi ,✓) with

P(y obs

i |✓, b�i ) =

Z
P(y obs

i |bi ,✓)P(bi |b�i ,✓)dbi .
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iIS Estimate for CVIC

The iIS estimate for P(y obs

i |y obs

�i ) is

P̂

iIS(y obs

i |y obs

�i ) =
1

Ê

post, M

⇥
1/P(y obs

i |✓, b�i )
⇤ .

Accordingly, iIS estimate of CVIC is

[CVIC
iIS

= �2
nX

i=1

log(P̂ iIS(y obs

i |y obs

�i )) (26)
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Section 4

WAIC Approximations



WAIC for Models without Latent Variables

Watanabe (2009) defines a version of WAIC for models without latent
variables as follows:

WAIC = �2
nX

i=1

⇥
log(E

post

(P(y obs

i |✓)))� V

post

(log(P(y obs

i |✓)))
⇤
, (27)

where E

post

and V

post

stand for mean and variance over ✓ with respect to
P(✓|y obs

1

, . . . , y obs

n ). By comparing the forms of WAIC and CVIC, we can
think of that in WAIC, the CV posterior predictive density is estimated by:

P̂

WAIC(y obs

i |y obs

�i ) =
E

post

(P(y obs

i |✓))
exp

�
V

post

(log(P(y obs

i |✓)))
 . (28)
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nWAIC for Latent Variables Models

For the models with possibly correlated latent variables, a naive way to
approximate CVIC is to apply WAIC directly to the non-integrated
predictive density of y obs

i conditional on ✓ and bi :

P̂

nWAIC(y obs

i |y obs

�i ) =
E

post

(P(y obs

i |✓, bi ))
exp

�
V

post

(log(P(y obs

i |✓, bi )))
 . (29)

We will refer to (29) as non-integrated WAIC (or nWAIC for short)
method for approximating CV posterior predictive density. The
corresponding information criterion based on (29) is:

nWAIC = �2
nX

i=1

log(P̂nWAIC(y obs

i |y obs

�i )). (30)
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iWAIC for Latent Variables Models

Using heuristics, we propose to apply WAIC approximation to the
integrated predictive density (23) to estimate the CV posterior predictive
density:

P̂

iWAIC(y obs

i |y obs

�i ) =
E

post

(P(y obs

i |✓, b�i ))

exp
�
V

post

(log(P(y obs

i |✓, b�i )))
 . (31)

Accordingly, iWAIC for approximating CVIC is given by :

iWAIC = �2
nX

i=1

log(P̂ iWAIC(y obs

i |y obs

�i )). (32)

4. WAIC Approximations/ 22/44



Section 5

Data Examples



Subsection 1

Mixture Models for Galaxy Data



Galaxy Data

We obtained the data set from R package MASS. The data set is a numeric
vector of velocities (km/sec) of 82 galaxies from 6 well-separated conic
sections of an unfilled survey of the Corona Borealis region.
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Mixture Models with a Fixed Number, K , of Components

We fit mixture models to the 82 numbers. The finite mixture model that
we used to fit Galaxy data is as follows:

yi |zi = k ,µ
1:K ,�1:K ⇠ N(µk ,�

2

k), for i = 1, . . . , n (33)

zi |p
1:K ⇠ Category(p

1

, . . . , pK ), for i = 1, . . . , n (34)

µk ⇠ N(20, 104), for k = 1, . . . ,K (35)

�2

k ⇠ Inverse-Gamma(0.01, 0.01⇥ 20), for k = 1, . . . ,K (36)

pk ⇠ Dirichlet(1, . . . , 1) for k = 1, . . . ,K (37)

Here we set the prior mean of µk to 20, which is the mean of the 82
numbers, and set the scale for Inverse Gamma prior for �2

k to 20, which is
the variance of the 82 numbers.
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The Mixture Model is a Latent Variable Model

the observed variable is yi ,

the latent variable bi is the mixture component indicator zi , and

the model parameters ✓ is (µ
1:K ,�

2

1:K , p1:K ).
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How Did We Run MCMC?

We used JAGS to run MCMC simulations for fitting the above model to
Galaxy data with various choice of K . To avoid the problem that MCMC
may get stuck in a model with only one component, we followed JAGS
eyes example to restrict the MCMC to have at least a data point in each
component.

All MCMC simulations started with a randomly generated z

1:n, and ran 5
parallel chains, each doing 2000, 2000, and 100,000 iterations for
adapting, burning, and sampling, respectively.
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Non-integrated and integrated predictive density

For each MCMC sample of (✓, z
1

, . . . , zn) and each unit i

The non-integrated predictive density:

P(y obs

i |zi ,✓) = �(y obs

i |µzi ,�zi )

The integrated predictive density:

P(y obs

i |✓, z�i ) = P(y obs

i |✓) =
KX

k=1

pk�(y
obs

i |µk ,�k)
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The Need of Using Integrated Predictive Density

Figure 2: Scatter-plot of non-integrated predictive densities against µzi , given
MCMC samples from the full data posterior (3a) and the actual CV posterior
with the 3rd number removed (3b), when K = 5 components are used.

(a) Full Data Posterior (b) CV Posterior
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Comparison of 5 Information Criteria

Table 1: Comparison of 5 information criteria for mixture models applied to
Galaxy data. The numbers are the averages of ICs from 100 independent MCMC
simulations. The numbers in brackets indicates standard deviations.

K DIC nWAIC nIS iWAIC iIS CVIC
2 445.38(1.64) 420.27(0.39) 425.63(3.45) 449.56(0.14) 449.62(0.17) 450.55
3 528.78(45.12) 384.94(9.94) 391.29(6.17) 437.23(4.70) 436.43(3.79) 427.46
4 774.85(31.58) 339.91(1.87) 363.55(5.32) 422.43(0.53) 422.76(0.54) 423.16
5 710.88(25.34) 328.19(0.29) 362.30(3.70) 421.02(0.09) 421.41(0.10) 421.10
6 679.95(17.48) 323.62(1.33) 355.49(5.72) 420.97(0.27) 421.35(0.31) 421.34
7 675.27(18.57) 321.61(0.30) 364.41(4.49) 421.25(0.07) 421.64(0.12) 421.53

An important note: CVIC (as well as iIS and iWAIC) is not sensitive in penalizing

complex model because Bayesian methods can adjust model complexity

automatically. A question that is interesting to address in the future!
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Subsection 2

A Simulation Study with Mixture Models



Data Generating Model

I simulated 100 data sets, each containing 200 data points yi from the
following mixture model with K = 4 components:

(1/4)N(�7, 1) + (1/4)N(�2, 1) + (1/4)N(1, 1) + (1/4)N(7, 1)
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Details of Simulation Studies

Models and MCMC simulations are the same as for Galaxy data

For each of the 100 data sets, we simulate an MCMC to fit finite
mixture models with K = 2, . . . , 7 components to the full data, then
we compare them using 5 information criteria.
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Average of Information Criteria in 100 Data sets

Table 2: Each number in the table is average of IC values in 100 replicates of
data sets, for a model with certain number of components, K , and given a certain
criterion (column).

K nIS nWAIC iIS iWAIC DIC
2 1112.48 1103.95 1181.60 1182.33 1248.97
3 922.88 751.58 1105.18 1105.11 990.51
4 827.06 682.62 1099.42 1099.26 1572.80
5 810.42 674.39 1099.18 1098.96 1562.05
6 801.24 669.57 1099.60 1099.31 1630.02
7 796.65 666.39 1100.09 1099.77 1700.12
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Frequency of Selected Models

Table 3: Frequency of models with di↵erent K being selected by looking at the
minimum information criterion value based on 5 information criteria. True model
is K = 4.

K IS WAIC iIS iWAIC DIC
2 0 0 0 0 2
3 0 0 15 15 94
4 6 15 39 37 4
5 10 4 21 20 0
6 30 8 11 13 0
7 54 73 14 15 0

total 100 100 100 100 100
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Subsection 3

Models with Correlated Spatial E↵ects



Scottish Lip Cancer Data I

The data represents male lip cancer counts (over the period 1975 - 1980)
in the n = 56 districts of Scotland. The data includes these columns:

the number of observed cases of lip cancer, yi ;

the number of expected cases, Ei , which are based on age e↵ects, and
are proportional to a “population at risk” after such e↵ects have been
taken into account;

the percent of population employed in agriculture, fishing and
forestry, xi , used as a covariate; and

a list of the neighbouring regions.
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Scottish Lip Cancer Data II
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Four Models Considered: I

The yi is modelled as a Poisson random variable:

yi |Ei ,�i ⇠ Poisson(�iEi ), (38)

where �i denotes the underlying relative risk for district i .

Let si = log(�i ). We consider four di↵erent models for the vector
s = (s

1

, · · · , sn)0:

model 1 (spatial+linear, full) : s ⇠ Nn(↵+ X�,�⌧2), (39)

model 2 (spatial) : s ⇠ Nn(↵,�⌧
2), (40)

model 3 (linear) : s ⇠ Nn(↵+ X�, In⌧
2), (41)

model 4 (exchangable) : s ⇠ Nn(↵, In⌧
2), (42)

where � specify spatial association between districts, with details follow.
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Four Models Considered: II

� = (In � �C )�1

M is a matrix modelling spatial dependency. This model
is called proper conditional auto regression (CAR) model.

At a higher level, we assign �, ⌧, and� with very di↵use prior:

⌧2 ⇠ Inv-Gamma(0.5, 0.0005) (43)

� ⇠ N(0, 10002) (44)

� ⇠ Unif(�
0

,�
1

), (45)

where (�
0

,�
1

) is the interval for � such that � is positive-definite.
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The Poisson Model is a Latent Variable Model

the observed variable is yi ,

the latent variable bi is si (or �i )

the model parameters ✓ is (⌧,�,�).

In model 1 and 2, the latent variables, spatial random e↵ects,
s

1

, . . . , sn, are dependent given the model parameter ✓.
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How Did we Run MCMC?

We used OpenBUGS through R package R2OpenBUGS to run MCMC
simulations for fitting the above four models to lip cancer data. For each
simulation, we ran two parrallel chains, each for 15000 iterations, and the
first 5000 were discarded as burning.

For replicating computing information criterion (with each method), we
ran 100 independent simulations as above by randomizing initial ✓ and
randomizing bugs random seed for OpenBUGS.
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Non-integrated and integrated predictive density

For each unit i , and for each MCMC sample of (s
1

, . . . , sn,✓):

Non-integrated predictive density

P(y obs

i |si ,✓) = dpoisson(y obs

i |�iEi ) (46)

Conditional distribution

P(si |s�i ,✓) ⇠ N(↵+ xi� + �
X

j2Ni

(cij(sj � ↵� xj�)), ⌧
2

mii ), (47)

where Ni is the set of neighbours of district i .

Integrated predictive density:

P(y obs

i |✓, s�i ) =

Z
dpoisson(y obs

i |�iEi )P(si |✓, s�i )dsi (48)

We generate 200 random numbers of si from the distribution (47),
and then estimate the integral in (48).
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Comparison of 5 Information Criteria

Table 4: Comparisons of information criteria for lip cancer data. Each table entry
shows the average of 100 information criteria computed from 100 independent
MCMC simulations, and the standard deviation in bracket.

Model CVIC DIC iWAIC iIS nWAIC nIS
full 343.88 269.43(12.30) 344.47(0.12) 345.21(0.19) 306.82(0.21) 335.54(1.27)

spatial 352.54 266.79(10.15) 354.11(0.06) 356.06(0.37) 304.61(0.18) 338.77(1.85)
linear 349.48 310.42(0.11) 350.48(0.05) 350.54(0.05) 306.94(0.21) 338.81(3.02)
exch. 366.61 312.57(0.12) 368.01(0.03) 368.08(0.03) 306.74(0.17) 346.55(3.46)
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Conclusion

Naive use of IS and WAIC to latent variables models by treating
latent variables as parameters may give wrong results in model
comparison, hence unreliable.

The new proposed iIS and iWAIC significantly reduce the bias of nIS
and nWAIC in evaluating Bayesian models with unit-specific latent
variables. In our studies, they gave results very close to what given by
the actual cross-validation.
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Future Work I

Demonstration of iIS and iWAIC in many other models used in many
applications. A undergraduate student, Zhouji Zheng, has considered
stochastic volatility models for financial time series data. Shi Qiu has
done further research in disease mapping problems. The comparison
results are very favourable to iIS and iWAIC. We will consider many
other models: hidden Markov models? Structural equation models?
Factor Analysis Models? and more ... Suitable for Master-level
training.

Looking at Log density function (or deviance) has many limitations
(scale-variant, hard to assess practical significance). Use of iIS with
other choice of evaluation function, for example, the tail probability of
posterior predictive distribution — posterior predictive p-value.
Such p-values can be used to

determine whether an observation is an outlier or not;
check the goodness of a model to a data set (not comprising a set of
models!);
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Future Work II

compare models too.

How to define such posterior predictive p-values appropriately is also
an active research area! Very thought-provoking area.

iWAIC works very well in the spatial random e↵ect models. The result
is surprising and encouraging. One may consider investigating the
theoretical validity of iWAIC, which we have not done. Suitable for a
PhD in mathematics. It will require good knowledge in algebraic
geometry results about singularity. See Watanabe (2009).

iIS and iWAIC are limited to Bayesian model with unit-specific latent
variables. In many models, a latent variable is shared by multiple
units. How to improve IS approximation for such models?
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