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ABSTRACT
Survival analysis often involves modelling hazard functions while considering frailty
to account for unobserved cluster-level factors in clustered survival data. Shared
frailty models have gained popularity for this purpose, but assessing covariate func-
tional form in these models presents unique challenges. Martingale and deviance
residuals are commonly used for visually assessing covariate functional form against
continuous covariates. Nevertheless, their subjective nature and lack of a reference
distribution make it challenging to derive numerical statistical tests from these resid-
uals. To address these limitations, we propose “Z-residuals”, a novel diagnostic tool
designed for shared frailty models, leveraging the concept of randomized survival
probability and introducing both graphical and numerical tests. To implement this
approach, we develop an R package to compute Z-residuals for shared frailty mod-
els. Through extensive simulation studies, we demonstrate the high power of our
derived numerical test for assessing the functional form of covariates. To validate
the effectiveness of our method, we apply it to a real data application concerning
the modelling of survival time for acute myeloid leukemia patients. Our Z-residual
diagnosis results reveal the inadequacy of log-transformation of the covariate, high-
lighting the limitations of other diagnostic methods for effectively assessing covariate
functional form in shared frailty models.

KEYWORDS
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1. Introduction

Survival data often exhibits a multilevel structure, commonly seen in scenarios where
patients are clustered within hospitals. In such cases, the hazard of events may vary
across clusters due to unobserved cluster-level factors. Traditional survival analysis
methods, like the Cox proportional hazard models [6] and accelerated failure time
models [30], assume independence among subjects. However, to account for cluster-
level heterogeneity, it becomes necessary to incorporate random effects into survival
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models. Shared frailty models offer a robust solution to address this cluster-level het-
erogeneity in survival analysis. These models extend classic survival approaches by
introducing random effects (frailties) that act multiplicatively on the baseline hazard
function [44]. These frailties are shared among individuals within a cluster or group,
allowing us to estimate the extent of unobserved heterogeneity within the clusters.
[4, 12, 18, 24]. The frailty model has gained significant popularity across various fields,
including public health, environmental studies, and ecological research [1, 5, 42, 47],
for its ability to handle clustered survival data and account for the underlying hetero-
geneity.

Despite the popularity of shared frailty models for clustered survival data, compre-
hensive tests to examine covariate functional forms are lacking. Accurate diagnosis of
functional forms is crucial for model reliability. Residual diagnostics are commonly
used for goodness of fit and detecting model misspecifications, including issues related
to covariate effects. However, conducting residual diagnostics with censored observa-
tions in clustered survival data presents challenges. The widely used Cox-Snell (CS)
residual [5, 7] is defined as the negative logarithm of the estimated survival probability.
In the absence of censored observations, CS residuals follow an exponential distribu-
tion when the model is accurate. However, with censored observations, CS residuals
deviate from the exponential distribution due to non-uniform survival probabilities.
To address censored observations, diagnostic procedures compare the cumulative haz-
ard plot of CS residuals, estimated using the Kaplan-Meier method, to the expected
cumulative hazard of the standard exponential distribution. This comparison helps
identify potential deviations from the expected distribution and assess the adequacy
of the model in capturing the functional form of covariate effects in clustered survival
data.

While overall goodness-of-fit checks, like examining the cumulative hazard plot of
CS residuals, are commonly used for diagnosing survival models, they may not pro-
vide sufficient information about specific model inadequacies. To address this, tailored
graphical and numerical diagnostic tools are necessary, particularly when assessing
the functional form of covariates. Several residual diagnostic tools have been proposed
for assessing the functional form of covariates [5], including martingale residuals [43]
and deviance residuals [32, 42], which are widely used in survival analysis. Martingale
residuals measure the difference between a subject’s observed failure indicator and
its expected value, integrated over the time the patient was at risk. They enable the
assessment of the functional form of covariates and the identification of potential out-
liers in survival data. Deviance residuals, a normalized transformation of martingale
residuals, exhibit a mean of zero when the fitted model is appropriate and is ap-
proximately symmetrically distributed around zero. While both types of residuals are
widely accessible in the survival package in R software, they have their limitations.
For instance, martingale residuals are asymmetric and lack a lower bound, making
visual inspection challenging. Conversely, deviance residuals exhibit less skewness and
approximate a more normal distribution, enhancing visual assessment. To gain fur-
ther insights from residual plots, researchers often employ locally weighted scatterplot
smoothing (LOWESS) lines on scatterplots of residuals against continuous covariates.
However, visual interpretation of these lines can still be subjective. Addressing the
need for a more objective approach, researchers seek numerical measures of statistical
significance to quantify observed trends in residual plots. However, deriving such tests
for martingale and deviance residuals is challenging due to censoring, as they lack a
reference distribution.

In an effort to bridge this gap, a recent study by Li et al. 2021 [27] introduced
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the concept of randomized survival probabilities (RSPs) to define residuals for check-
ing model assumptions in accelerated failure time (AFT) models. The RSP approach
involves replacing the survival probability of a censored failure time with a uniform
random number between 0 and the survival probability of the censored time. As RSPs
are uniformly distributed under the true model, they can be transformed into nor-
mally distributed residuals using the normal quantile function, resulting in normally-
transformed RSP (NRSP) residuals. By having a reference distribution with NRSP
residuals, statistical tests can be derived to assess model assumptions, including dis-
tributional assumptions and the functional form of covariates. However, the extension
of NRSP residuals to diagnose Cox proportional hazard models or shared frailty mod-
els remains an unexplored area, calling for further research to adapt and apply NRSP
residuals specifically to these complex survival models.

In this study, we extend the concept of NRSP residuals and develop residual di-
agnostic tools tailored specifically for assessing the functional form of covariates in
shared frailty models. To simplify the terminology, we refer to these extended residu-
als as Z-residuals, adopting the convention of using ‘Z’ to represent a standard normal
random variable. To facilitate the implementation of this approach, we develop an R
package for calculating these conditional Z-residuals based on the output of the coxph
function in the survival package in R. Additionally, we propose a non-homogeneity
test to examine whether discernible trends exist in the Z-residuals. To evaluate the
performance of our Z-residual diagnostic tool in detecting misspecification of covariate
functional forms, we conduct extensive simulation studies. Furthermore, we illustrate
the effectiveness of Z-residuals in diagnosing the functional form of covariates through
a real data analysis focused on the mortality risk of acute myeloid leukemia patients
[15, 19].

The remainder of this paper is structured as follows: In Section 2, we provide a
concise overview of shared frailty models. Section 3 reviews existing residual diagnos-
tic methods for shared frailty models. Next, in Section 4, we present the definition
of Z-residuals and introduce the non-homogeneity test based on these residuals. Sec-
tion 5 presents the results of our simulation studies, evaluating the performance of
the Z-residual diagnostic tool. We then demonstrate the application of the Z-residual
diagnostic tool in real data analysis in Section 6. Finally, in Section 7, we conclude the
paper by summarizing our findings and highlighting the significance of our study in
advancing residual diagnostics for assessing covariate functional forms in shared frailty
models.

2. Notation and Shared Frailty Model

A shared frailty model incorporates common or shared frailties among individuals
within groups. In the context of clustered failure survival data, the formulation of a
frailty model can be defined as follows. Suppose there are g groups of individuals,
with each group containing ni individuals, indexed as i = 1, 2, . . . , g. In the case
where all groups consist of a single subject, we have a univariate frailty model [24].
However, if there is more than one subject per group, the model is known as a shared
frailty model [12, 21, 22], where all individuals within the same cluster share the same
frailty value, denoted as zi. The true failure time for the jth individual from the ith
group is denoted as T ∗

ij , which we assume to be a continuous random variable, where
j = 1, 2, · · · , ni.

In a shared frailty model, the true failure times T ∗
ij within a cluster, conditional on
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the observed covariates, are assumed to be independent. A conventional shared frailty
model also assumes that the groups are independent of one another, so the frailty in
one group is unrelated to the frailty in another group. Let t∗ij be the realization of
T ∗
ij . Cij is the corresponding censoring time, assumed to be independent of T ∗

ij . In the
scenario of right censoring, we observe the event time Tij , which is the minimum of
the true failure time T ∗

ij and the censoring time Cij . Specifically, Tij = min(T ∗
ij , Cij).

The non-censoring indicator is denoted as δij = I(T ∗
ij < Cij). Collectively, the observed

failure times are represented by the pairs (Tij , δij). The observed data can be succinctly
expressed as t = (t11, · · · , tgng

), and the corresponding non-censoring indicators as
δ = (δ11, · · · , δgng

).
In a shared frailty model, the conditional hazard function of the failure time T ∗

ij
for the jth individual, j = 1, 2, · · · , ni, in the ith group, denoted as hij(t|xij , zi) and
abbreviated as hij(t) for simplicity, is given by

hij(t) = zi exp(β
′xij)h0(t), (1)

and the conditional survival function for the jth individual of the ith group at time t,
denoted as Sij(t|xij , zi) and abbreviated as Sij(t) for simplicity, follows:

Sij(t) = exp

{
−
∫ t

0
hij(s) ds

}
= exp

{
− zi exp(β

′xij)H0(t)

}
, (2)

where xij is a column vector of values of p explanatory variables for the jth individual
in the ith group, i.e., x = (x11, · · · , xgng

)T ; β is a column vector of regression coeffi-
cients; h0(t) is the baseline hazard function, H0(t) is the baseline cumulative hazard
function (CHF), and zi is the frailty term that is common for all ni individuals within
the ith group.

The baseline CHF is estimated using the Breslow estimator [11, 28], suitable for
continuous event times with few or no tied event times. This method is commonly used
when estimating the baseline hazard. Efron’s method [13, 14] is an alternative that is
more accurate when a large number of ties are present. Various frailty distributions
can be adopted, including Gamma, Gaussian, and t distributions, with Gamma being
one of the most commonly used distributions [5] due to its closed-form representation
of the observable survivor and hazard functions.

Several methods exist for estimating a shared frailty model. The Expectation-
maximization (EM) algorithm [10, 12] and the Penalized Partial Likelihood (PPL)
method [12, 33] are notable among them. In a comprehensive comparison study of
R packages for shared frailty models [45], the EM algorithm implemented in the
frailtyEM package [2] and the PPL method in the survival package [41] in R yielded
nearly identical estimates. However, caution is advised with the frailtyEM package,
especially in cases of small sample sizes with high censoring rates, due to its lower
convergence rate. Consequently, the preferred choice for parameter estimation in a
shared frailty model is the survival package, known for its computational efficiency
and high convergence rate. Therefore, in this study, parameter estimation in shared
frailty models is performed using the coxph function from the widely used survival

package, utilizing PPL method to estimate model parameters.
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3. Review of Existing Residuals for Survival Models

In this section, we will review some existing residuals used in survival analysis, partic-
ularly focusing on their application to diagnose the goodness-of-fit (GOF) of survival
models. A central concept in these residuals is formulated based on the survival prob-
ability, which is a fundamental component in survival analysis. One of the widely
used residuals in survival analysis is the Cox-Snell (CS) residual [5, 7], defined as

rcij(tij) = − log(Ŝij(tij)), where Ŝij(tij) is estimated survival function of the jth in-
dividual from the ith cluster. In the absence of censored observations, the survival
probability follows a uniform distribution under the true model [8], and as a result,
the CS residuals are exponentially distributed. A graphical check can be performed by
plotting the CHF against the true failure time, which should result in a straight line
through the origin with a unit slope if the CS residuals are exponentially distributed as
expected in a correctly specified survival model. Additionally, numerical goodness-of-
fit tests, such as the Kolmogorov-Smirnov (KS) test [31], can be applied to assess the
exponential distribution of CS residuals. However, in the presence of censored failure
times, the distribution of Ŝij(t) is no longer uniformly distributed, and the CS resid-
uals lose their exponential distribution property. Nevertheless, we can still compute
the Kaplan-Meier (KM) [23] estimate of the survivor function for CS residuals and
compare it against the 45◦ straight line as a diagnostic tool for survival models.

Apart from transforming SPs into exponentially distributed CS residuals, there are
other options available. For example, one can also transform SPs using the quantile
of standard normal distribution [35], defined as rnij(tij) = −Φ−1(Ŝij(tij)), Ŝij(tij) is
estimated survival function of the jth individual from the ith cluster. We will call it
censored Z-residuals in this paper. The diagnosis of the GOF of Sij(tij) can be
converted to the diagnosis of the normality of rnij(tij). The function gofTestCensored

in R package EnvStats [34] provides an SF test for testing the normality of multiply
censored data. Hence, gofTestCensored can be applied to check the normality of
censored Z-residuals for checking the overall GOF of survival models. We will refer to
this test using the CZ-CSF method in this paper.

While these overall GOF checking methods evaluate the residuals’ distribution, they
cannot assess specific model assumptions, such as the functional form of covariates.
To assess specific model assumptions, such as the functional form of covariates, tai-
lored graphical and quantitative diagnostics tools are required. Two commonly used
residuals for this purpose are martingale and deviance residuals. Martingale residuals
[43] measure the discrepancy between the predicted and observed number of deaths
in the interval (0, Tij), taking values of 1 or 0. They are defined as rMij = δij − rcij ,
where δij is the event indicator (1 for an event, 0 for censored), and rcij is the Cox-
Snell residual. Martingale residuals sum to zero but are not symmetrically distributed
about zero [5]. Deviance residuals [32, 42] aim to achieve symmetry and are defined

as rDij = sgn(rMij )[−2(rMij + δij log(δij − rMij ))]
1

2 , where rMij is the martingale residual,
and sgn(.) is the sign function [5]. While other residual-based diagnostic tools have
been proposed for censored survival models [9, 16, 17, 20, 25, 26, 29, 36, 40] a common
drawback is their complicated distributions under the true model due to censoring. As
a result, these residuals cannot be characterized by known distributions or probability
tables, making it challenging to devise numerical tests based on them for diagnosing
survival models.
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4. Z-residual

4.1. Definition of Z-residual

In this paper, we extend the concept of Z-residual [27], to diagnose shared frailty
models in a Cox proportional hazard setting with an unspecified baseline function.
The normalized randomized survival probabilities (RSPs) for tij in the shared frailty
model are defined as:

SR
ij(tij , δij , Uij) =

{
Ŝij(tij), if tij is uncensored, i.e., δij = 1,

Uij Ŝij(tij), if tij is censored, i.e., δij = 0,
(3)

where Uij is a uniform random number on the interval (0, 1), and Ŝij(·) is the estimated
survival function for tij given xij and zi. S

R
ij(tij , δij , Uij) is a random number between 0

and Sij(tij) when tij is censored. RSPs have been proven to be uniformly distributed on
the interval (0, 1) given xi under the true model [27] with independent survival times.
In this paper, we extended this theory to scenarios with clustered survival times,
demonstrating that RSPs defined with Ŝij ’s, the survival functions conditional on the
cluster indicators, are also independently and uniformly distributed on the interval
(0, 1). A detailed theoretical proof of the uniformity of RSPs is provided in Section
4.2 below. Given the uniformity of the RSP under the correctly specified model, the
transformation of RSPs into residuals with any desired distribution becomes feasible.
For our analysis, we opt to perform this transformation using the normal quantile:

rZij(tij , δij , Uij) = −Φ−1(SR
ij(tij , δij , Uij)), (4)

which yields a distribution that conforms to a normal distribution under the true
model. Consequently, Z-residuals for censored data can be utilized for model diagnos-
tics, akin to conducting diagnostics for a normal regression model. Transforming RSPs
into Z-residuals offers several advantages. First, the diagnostics methods for checking
normal regression are well-established in the literature. Second, transforming RSPs
into normal deviates facilitates the identification of extremely small and large RSPs.
The frequency of such small RSPs may be too low to be highlighted by the plots of
RSPs alone. However, the presence of such extreme survival probabilities (SPs), even
in very few instances, can indicate model misspecification. The normal transformation
helps highlight these extreme RSPs. The Z-residual package can be downloaded from
https://github.com/tiw150/Zresidual. We have also provided a detailed demon-
stration of how to use this package for detecting the covariate functional form, available
from this link: https://tiw150.github.io/Zresidual_demo.html.

4.2. Proof of the Independence and Uniformity of RSPs

In a shared frailty model, the frailty term introduces cluster-specific variability. This
implies that the survival function for each cluster may differ due to the presence of
the random effect. The frailty term represents unobservable characteristics shared by
individuals within the same cluster. This term is modeled as a random effect, capturing
the between-cluster heterogeneity. Additionally, within each cluster, the failure times
T ∗
ij are assumed to be independent, given the true frailty value zi and the covariate xij .

The subscript ij in the survival function, Sij(·), emphasizes that the survival function
depends on the covariate xij and the cluster indicator.
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In the following proof, we assume the true survival function Sij(t) for T
∗
ij is applied

to the definition of RSPs (equation (3)). Specifically, we will utilize true values for β
and zi in Sij(·) (equation (2)). In computing the RSPs (equation (3)), we substitute

the estimated regression coefficient vector β̂ and frailties ẑi into the survival function
Sij(·). When utilizing β̂ and ẑi in Sij(·), the resulting RSPs exhibit an approximate
uniform distribution between 0 and 1. However, in cases of small sample size or cluster
size, caution is warranted due to potential optimistic bias resulting from the dual use
of data for estimating Sij(·) and validating the proposed model. A detailed discussion
of this bias issue can be found in [46].

We first assume that there is no censoring and prove the uniformity and inde-
pendence of Sij(T

∗
ij) under the true model for shared frailty models. The survival

probabilities, Sij(T
∗
ij), as a function of the random variable T ∗

ij , maintain uniformity
over the interval (0, 1). This uniformity can be proven using conditional probability as
follows:

P (Sij(T
∗
ij) < t| xij , zi) = P (T ∗

ij > S−1
ij (t)| xij , zi) = Sij(S

−1
ij (t)) = t, where t ∈ (0, 1).

(5)
This equation indicates that, Sij(T

∗
ij), for j = 1, . . . , ni, are independent conditional

on covariates xij and zi, since T ∗
ij , for j = 1, . . . , ni, are independent within a cluster,

and the T ∗
ij ’s across clusters are independent of each other.
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Figure 1. Illustration of the uniformity of SPs based on synthetic data simulated from two gamma distribu-

tions for two clusters. The colours of the points depict their cluster indicators.

To illustrate the above probabilistic statement, we simulated synthetic true survival
times from a Gamma distribution for two cluster effects but no covariate. The first
cluster has a true mean survival time of 40 with a variance of 40, while the second
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cluster has a true mean survival time of 75 with a variance of 37.5. We then randomly
simulated 50 data points from the true distributions for each cluster and calculated the
corresponding survival probabilities. Figure 1 shows the scatterplots of T ∗

ij and Sij(T
∗
ij).

This figure illustrates that the survival probabilities of each cluster follow the uniform
distribution on (0, 1) although the failure times of the two clusters have different means.
This demonstrates that the uniformity and independence of cumulative probabilities
persist irrespective of the specific form of the survival function and the presence of
frailty.

Due to the uniformity of Sij(T
∗
ij), we can transform Sij(T

∗
ij) into a random vari-

able following any desired distribution with its quantile function. In particular, the
Z-residual Zij for the true failure time T ∗

ij as defined by −Φ−1(Sij(T
∗
ij)) is distributed

as the standard normal. Z-residuals are akin to conditional Pearson residuals in linear
mixed-effects models. When the model is correctly specified and underlying assump-
tions are met, conditional Pearson residuals tend to be approximately independent.
This independence stems from conditioning on both fixed and random effects, mitigat-
ing correlation induced by the data’s hierarchical structure. We illustrate the connec-
tion between Z-residuals and conditional Pearson residuals using log-normal models.
Let T ∗

ij follow a lognormal distribution with log(T ∗
ij) being normally distributed with

mean µij and standard deviation σij . In this scenario, the survival function Sij(T
∗
ij)

is given as Sij(T
∗
ij) = 1 − Φ

(
log(T ∗

ij)−µij

σij

)
, where Φ is the cumulative distribution

function of the standard normal distribution. The Z-residual for this scenario can be
derived as:

Zij = −Φ−1(Sij(T
∗
ij)) = −

[
Φ−1

(
1− Φ

(
log(T ∗

ij)− µij

σij

))]
=

log(T ∗
ij)− µij

σij
.

This equation elucidates the relationship between Z-residuals Zij and conditional
Pearson residuals. The connection between Z-residuals and Pearson residuals in sur-
vival analysis can be adapted to different distributions. However, the transformation
specifics depend on the characteristics of the chosen distribution and typically do not
have a closed-form formula as for log-normal models.

Now, we consider the scenario with censoring. We assume that T ∗
ij and Cij are in-

dependent, indicating that Cij is non-informative for the original failure times. We
redefine the RSP in equation (3) with the true survival function Sij(t). Furthermore,
this version of RSP is a function of the following random variables: the original un-
censored failure time T ∗

ij , censoring time Cij , and a uniform random number Uij , as
follows:

SR′

ij (T
∗
ij , Cij , Uij) =

{
Sij(T

∗
ij), if T ∗

ij ≤ Cij

Uij Sij(Cij), if T ∗
ij > Cij .

(6)

Given covariates and cluster indicators, T ∗
ij ’s are independently distributed and are

independent of the censoring times Cij ’s. Hence, the distribution of Sij(T
∗
ij) given

Cij = c is also a uniform distribution. More specifically, given T ∗
ij ≤ c, the RSP,

Sij(T
∗
ij) (equation (6)), is uniformly distributed on (Sij(c), 1). For T

∗
ij > c, the RSP is

Uij Sij(c), uniformly distributed on (0, Sij(c)) due to the uniformity of Uij . Using λ(B)
to denote the length of an interval B on (0, 1), we derive the conditional probability
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P (SR′

ij (T
∗
ij , Cij , Uij) ∈ B | Cij = c, xij , zi):

P (SR′

ij (T
∗
ij , Cij , Uij) ∈ B | Cij = c, xij , zi)

=P (Sij(T
∗
ij) ∈ B | Cij = c, xij , zi, T

∗
ij ≤ c)× P (T ∗

ij ≤ c| Cij = c, xij , zi)+

P (UijSij(c) ∈ B | Cij = c, xij , zi, T
∗
ij > c)× P (T ∗

ij > c| Cij = c, xij , zi)

=
λ(B ∩ (Sij(c), 1))

1− Sij(c)
× (1− Sij(c)) +

λ(B ∩ (0, Sij(c)))

Sij(c)
× Sij(c)

=λ(B ∩ (Sij(c), 1)) + λ(B ∩ (0, Sij(c)))

=λ(B)

(7)

Now, having established that the conditional distribution of SR′

ij (T
∗
ij , Cij , Uij) given

Cij = c, xij , and zi, is uniform on the interval (0, 1). Consequently, we can extend
this uniformity by applying the total probability rule and marginalizing away Cij .This
results in the marginal distribution of SR′

ij (T
∗
ij , Cij , Uij), which is also uniform on the

interval(0, 1). This completes the proof that the RSPs are uniformly distributed on
(0, 1) conditional on the cluster indicators. The independence of RSPs follows the
independence of T ∗

ij for different cases given the covariates and cluster indicators.
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Figure 2. Illustration of the uniformity of RSPs based on synthetic data simulated from two gamma distri-
butions for two clusters. The colours of the points depict their cluster indicators.

To enhance understanding, Figure 2 provides a visual representation of the founda-
tional concepts supporting the independence and uniform distribution of RSPs within
the true model. The synthetic dataset used for this illustration aligns with the one
used to demonstrate the uniformity and independence of SPs. However, in this case,
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T ∗
ij is censored when it exceeds its fourth quartile for each cluster. The figure illus-

trates that for these censored observations, RSPs are randomly distributed between 0
and Sij(Cij). Consequently, RSPs are independent and follow a uniform distribution
under the true model.

4.3. Diagnosis of the Functional Form of Covariates using Z-residuals

Z-residuals offer a powerful tool for diagnosing the functional form of covariates in
survival models. To assess the model’s overall goodness-of-fit (GOF), a QQ plot based
on Z-residuals can be used graphically. Additionally, Shapiro-Wilk (SW) or Shapiro-
Francia (SF) normality tests can be applied to Z-residuals to conduct numerical tests
for the overall GOF. To specifically check the functional form of covariates, we can plot
Z-residuals against the covariates and linear predictors. In a correctly specified model,
we expect no discernible trend in these scatterplots. However, visually inspecting these
plots may not be sufficient to determine if any observed trend is due to the chance or
a genuine misspecification in the covariate function. Hence, we propose a formal test
for this purpose.

The Z-residuals can be divided into k groups by equally spacing the covariates or
linear predictors, as demonstrated in Figure 3. This figure shows two scatterplots of
Z-residuals from two models: a linear effect model (the left plot) and a nonlinear effect
model (the right plot). The covariate xij is sampled from a positive Normal(0, 1)
distribution, and we generate the failure times tij from a shared frailty model with the
hazard function hij(tij) = zi exp(β log(xij))h0(tij), where h0() represents the hazard
function of Weibull distribution with shape α = 3 and scale λ = 0.007 and the frailty
term zi is generated from a gamma distribution with a variance of 0.5. In addition to
fitting the nonlinear model with log(X) as a covariate to these datasets, we also fit a
shared frailty gamma model assuming a linear effect for X as a linear model. Then we
can check whether the Z-residuals of the k groups are homogeneously distributed.

By examining whether the Z-residuals within the k groups are homogeneously dis-
tributed, we can assess the functional form of the covariates. The left panel of Figure 3
shows Z-residuals randomly scattered without any apparent differential group means
or variances, indicating homogeneity. In contrast, the right panel of Figure 3 exhibits
non-homogeneity, where the group means of Z-residuals differ significantly. To quan-
tify the homogeneity of grouped Z-residuals, we employ an F-test in ANOVA to test
the equality of means among the groups. This allows us to formally assess whether the
observed trend deviates significantly from the expected horizontal line at 0, helping
detect potential misspecifications in the covariate function.

4.4. A P-value Upper Bound for Assessing Replicated Z-residuals GOF
Test P-values

Conducting statistical tests with Z-residuals can be challenging due to the randomness
in the test p-values. When we fit a model, we can generate multiple sets of Z-residuals
and obtain replicated test p-values. To address this randomness, we can use an upper
bound for the p-values. Let’s consider p1, . . . , pJ as replicated Z-residual statistical test
p-values obtained from J replicated samples, each derived from a fitted model using
the same dataset. Based on the distribution of order statistics of correlated random
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Figure 3. An illustrative plot demonstrating the non-homogeneity test with Z-residuals: Z-residuals divided

by a covariate or linear predictor (LP) using equally spaced intervals, and the equality of means of grouped
residuals is tested using an F-test in ANOVA.

variables [3, 37], we can derive the inequality for the rth order statistics p(r):

P (p(r) < t) ≤ min

(
1, t

J

r

)
. (8)

Using (8), we can obtain a p-value upper bound for the observed (simulated) rth

statistics pobs(r) is given by min
(
1, pobs(r)

J
r

)
. To avoid selecting a specific r, we calculate

the minimal upper bound across r = 1, . . . , J , denoted as pmin:

pmin = min
r=1,...,J

min

(
1, pobs(r)

J

r

)
. (9)

The pmin provides a conservative measure for assessing model fit. When pmin is small,
it suggests that the model can be improved to better fit the dataset. Considering the
conservatism of pmin, a rule of thumb for declaring model failure in practice should be
much larger, say 0.25 as suggested by [48], rather than the conventional threshold of
0.05 for exact p-values.

5. Simulation Studies

In this section, we conducted simulation studies to evaluate the effectiveness of Z-
residuals in checking the adequacy of the functional form of covariates in survival

analysis. The simulation setup involved generating three covariates: x
(1)
ij is from a

Uniform[0, 1] distribution, x
(2)
ij from a positive Normal distribution with mean 0 and

standard deviation 1, and x
(3)
ij from a Bernoulli distribution with a probability of

success 0.25. The failure times tij were generated from a shared frailty model with a
Weibull baseline hazard function. The hazard function is given by:

hij(t) = zi exp(β1x
(1)
ij + β2 log(x

(2)
ij ) + β3x

(3)
ij )h0(t), (10)

where h0 is the hazard function of Weibull with shape parameter α = 3 and scale
parameter λ = 0.007. The true survival time is generated by:
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t∗ij =

{
− log(uij)

λzi exp(x
(1)
ij − 2 log(x

(2)
ij ) + 0.5x

(3)
ij )

}(1/α)

, (11)

where uij is simulated from a Uniform(0, 1) distribution, and the frailty term zi is
generated from a gamma distribution with a variance of 0.5. The censoring times
Cij were simulated from exponential distributions with rates γ, resulting in different
censoring rates: 0%, 20%, 50%, and 80%. We considered 20 clusters with varying
cluster sizes (ni) ranging from 10 to 100. In our investigation, we generate survival
times and censoring times from continuous distributions, so the likelihood of having
tied event times (simultaneous occurrences of events) is generally lower compared to
situations where the survival times are discrete. As a result, the Breslow method is
used to estimate the baseline cumulative CHF.

For each combination of cluster size and censoring rate, we generated 1000 datasets
and fitted the true model, which includes the covariate log(x2) with a log-linear effect,
to these datasets. We also considered fitting a wrong model with linear effect for x2
to investigate the performance of different diagnostics methods. We evaluated various
diagnostic methods, including graphical and numerical tests based on Z-residuals,
to detect the adequacy of the functional form of covariates. The graphical methods
included CHFs of CS residuals and quantile-quantile (QQ) plots of Z-residuals. The
numerical tests involved dividing Z-residuals into groups by cutting the linear predictor
or the covariate log(x2) into equally-spaced intervals and testing the homogeneity of
Z-residuals across these groups using ANOVA. The performance of these methods was
assessed by estimating model rejection rates, which correspond to the proportion of
test p-values less than the nominal level of 0.05, for each combination of cluster size
and censoring rate.

The graphical methods used for assessing the overall GOF of the survival model and
diagnosing the misspecification of the functional form of covariates are presented in
Figure 4. We focus on a single simulated dataset with 20 clusters, each containing 40
observations, and a censoring percentage of approximately 50%. The first row of Figure
4 shows the CHFs of CS residuals for both the true model and the wrong model with
linear covariate effects. The CHFs of CS residuals align well along the 45◦ straight line
for both models, indicating that the CS residuals cannot effectively detect the model
misspecification caused by the wrong model with linear covariate effects. The second
row of Figure 4 displays the QQ plots of Z-residuals for the true and wrong models. The
points in the QQ plots for Z-residuals align very well along straight lines, indicating
that the distributions of the Z-residuals under both the true and wrong models are very
close to a normal distribution. Thus, the QQ plots of Z-residuals do not provide clear
evidence of misspecification in the wrong model either. The third and fourth rows
of Figure 4 demonstrate the advantage of examining the scatterplots of Z-residuals
against the linear predictor for diagnosing the misspecification of the functional form
of covariates. Under the true model, the Z-residuals are mostly bounded between
-3 and 3, following the standard normal distribution without a visible trend. The
LOWESS curve in the scatterplot under the true model is very close to the horizontal
line at 0, indicating a good fit. However, for the wrong model with linear covariate
effects, a clear non-linear trend in the Z-residuals is observed in the scatterplot. In the
fourth row, Z-residuals are divided into 10 groups by cutting the linear predictors into
equally spaced intervals. The scatterplot and the boxplot indicate that the Z-residuals
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are homogeneous across groups under the true model, but exhibit differential group
means under the wrong model. This discrepancy suggests that the model with linear
covariate effects does not fit well with the dataset, and there is a misspecification
in the functional form of the covariate log(x2). Additionally, the scatterplots and
grouped boxplots of Z-residuals against log(x2) are shown in the fifth and sixth rows
of Figure 4. The Z-residuals of the true model are fairly homogeneous against log(x2),
indicating a good fit for the true model. On the contrary, for the wrong model, a clear
non-linear pattern is observed in the scatterplots, and there are differential group
means in the boxplots against log(x2). These plots further support the conclusion
that the model with linear covariate effects is inadequate for the dataset. In summary,
the graphical methods presented in Figure 4 effectively assess the overall GOF and
diagnose the misspecification of the functional form of covariates. The scatterplots
of Z-residuals against the linear predictor and the covariate log(x2) are particularly
useful in identifying misspecification and providing insights into model improvement.

The performance of martingale and deviance residuals in assessing the functional
form of x2 is shown in Figure 5. Under the true model, the martingale residuals are
mostly within the interval (-4, 1), while the deviance residuals are more symmetrically
distributed and mainly fall within the interval (-3, 3). The LOWESS curves in the
scatterplots of martingale and deviance residuals under the true model are very close to
horizontal lines, with a slight downward tilt on the right due to the increased censoring
for cases with large log(x2). In contrast, under the wrong model, the LOWESS curves
show more pronounced non-horizontal trends in the scatterplots of martingale and
deviance residuals. This comparison demonstrates that the scatterplots of martingale
and deviance residuals can distinguish between the true and wrong models and confirm
that the true model is a better fit for the dataset. However, due to the lack of numerical
measures, it is challenging to determine whether the observed non-horizontal trend is
caused by chance or due to a misspecified functional form for the covariate. Decisions
based on visual inspection can be subjective.

To complement the graphical assessment, numerical tests with Z-residuals can be
used, as Z-residuals are approximately distributed as the standard normal under the
true model. We compare a set of residual-based testing methods for detecting the
inadequacy of fitted models. The overall GOF test methods are denoted by “R-T”
with “R” denoting the residual name and “T” denoting the test method. For exam-
ple, Z-SW is the test method used to assess the normality of Z-residuals with the
Shapiro-Wilk test. Additionally, CZ-CSF is the method used to test the normality of
censored Z-residuals, implemented with gofTestCensored in the R package EnvStats.
For detecting misspecification in the covariate functional form, Z-residuals can be di-
vided into groups by cutting the linear predictor or a covariate into equally-spaced
intervals, as shown in the boxplots of Figure 4. We can then test the homogeneity of
Z-residuals across the groups. Z-AOV-LP is the method used to apply ANOVA and
test the equality of the means of Z-residuals against the groups formed with the linear
predictor (LP). Similarly, Z-AOV-log(x2) is the method used to test the equality of the
means of Z-residuals against the groups formed with the covariate covariate log(x2).

In our simulation studies, we generated 1000 datasets for each combination of clus-
ter size and censoring rate, as described earlier. Using these datasets generated from
the true model under each scenario, we estimated the model rejection rate of each test
method by calculating the proportion of test p-values that are less than 0.05. The re-
sults of all the considered test methods are shown in Figures 6. The non-homogeneity
test methods, Z-AOV-LP and Z-AOV-x2, demonstrated excellent performance in de-
tecting non-linear covariate effects with very high true-positive rates (model rejection
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Figure 4. Performance of Z-residuals and Cox-Snell (CS) residuals as graphical tools for detecting the mis-

specification of the functional form of covariates. The dataset was generated with 20 clusters, each containing
40 observations, and a censoring rate of approximately 50%.
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Figure 5. Performance of the martingale and deviance residuals as a graphical tool for checking the functional

form of covariates. The dataset has a sample size n = 800 and a censoring rate c ≈ 50%.

rates under the wrong models) and low false-positive rates (model rejection rates un-
der the true models). While the power of all the methods increased with cluster size, it
is worth noting that the overall GOF tests had significantly smaller power compared
to the Z-AOV-LP and Z-AOV-x2 methods.

Among all the compared test methods, Z-AOV-x2 performed the best for detect-
ing the misspecified functional form for covariate x2, achieving nearly 100% power.
Our analysis revealed a notably liberal tendency of the Z-residual method under the
true model conditions, as indicated by model rejection rates below the 5% nominal
level. This suggests the method is less likely to incorrectly reject the true model, re-
ducing Type I errors. Despite this liberal characteristic, the method maintained high
diagnostic power, effectively identifying model misfits when present. This comparison
highlights the advantage of testing the homogeneity of Z-residuals for checking the as-
sumption of covariate functional form, in addition to the overall GOF tests, which do
not inspect the relationship between residuals and covariates. Figure 6 also illustrates
that as the censoring rate increases, the type I error rate for all methods remains at
nominal levels at 5%. However, the power of all the residual diagnosis methods de-
creases due to the decreased number of non-censored observations and the randomness
introduced in RSPs.

In Figure A.1 in the Appendix, we show the performances of the Z-KS and Dev-SW
tests, presented separately from Figure 6 for improved clarity. The Z-KS test demon-
strated low false-positive rates but also very low powers, indicating the conservatism
of the KS test for testing the normality of Z-residuals. The Dev-SW method showed
satisfactory performance when there was no censorship. However, when there were
censored observations, the Dev-SW method exhibited very high (nearly 100%) model
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Figure 6. Model rejection rates of various statistical tests based on Z-residual for the simulation study with
20 clusters. A model is rejected when the test p-value is smaller than 5% (nominal level). Note that we use

a random Z-residual test p-value rather than the pmin. Detailed results corresponding to this figure can be

found in Table A1 in the Appendix.
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rejection rates under the correctly specified model. Hence, the high powers of Dev-SW
do not indicate that it is a good test method in the presence of censored data.

Additionally, we extend our investigation to scenarios involving 10 and 30 clusters,
each with varying cluster sizes ni ranging from 10 to 100, alongside the original scenario
with 20 clusters. This investigation aims to evaluate whether the performance of the
Z-residual is affected by the number of clusters. Figures A.2 and A.3 in the appendix
provide the results of the model rejection rate for each test method under the scenarios
with 10 and 30 clusters. The findings generally align with those of the scenario involving
20 clusters. In general, as the number of clusters increases, the power of all the tests
increases, and the type I error remains around the nominal level. The Z-AOV-x2
method consistently outperforms the other methods. The performance improvement
with increasing cluster numbers or sizes can be attributed to more accurate parameter
estimates in the shared frailty model. With more clusters or larger cluster sizes, the
model can better capture the variation between clusters, resulting in more reliable
estimates of the random effects or frailty term. Consequently, the residuals may better
reflect the true underlying variability in the data.

In our investigation, we also explored the impact of correlated covariates on the
performance of the Z-residual. Covariates with correlation often arise in various fields,
making it crucial to assess the robustness of our method under such conditions. Ini-
tially, our simulated dataset involves independent covariates under all scenarios. To
specifically address scenarios with correlated covariates, we generate a dataset where
the covariates x1 and x2 follow a multivariate normal distribution with a mean of 0,
standard deviation of 2, and a correlation of 0.5. This introduces a level of correlation
between the covariates, simulating a common scenario encountered in different studies.
The other generating components of the dataset remain consistent with the previous
simulation settings. To comprehensively evaluate the performance, we replicate this
data-generating process 1000 times for the combination of 20 clusters with varying
sizes and censoring rates, fitting both the true and wrong models. The true model
includes the covariate log(x2) with a log-linear effect, while the wrong model includes
x2 with a linear effect. Figures A.4 in the appendix present the results of the model
rejection rate for the scenario involving correlated covariates. The findings suggest
that the results are generally consistent with the independent covariate scenarios, but
the model rejection rates of the Z-SW-LP are slightly lower when the wrong model is
fitted to the dataset.

6. A Real Data Example

Section 6 presents an application of the proposed residual diagnostic tools based on Z-
residuals to diagnose the functional form of covariates in a real dataset of acute myeloid
leukemia patients. The dataset consists of 411 patients below the age of 60 from 24
administrative districts, recorded at the M.D. Anderson Cancer Center between 1980
and 1996. The dataset includes survival times for acute myeloid leukemia patients and
several prognostic factors, such as age, sex, white blood cell count (wbc) at diagnosis,
and the townsend score (tpi) indicating the affluence level of areas. The censoring
rate in the dataset is 29.2%. The response variable of interest is the survival time in
days, which is the time from entry to the study or death. In cancer research, white
blood cell count is often considered an important marker of immune response and
overall health. The preliminary study showed that the wbc is highly right-skewed.
Logarithmic transformation is often used to reduce the impact of extremely large
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values of the covariate on the response variable, such as the wbc variable in this
application. However, using a logarithmic transformation may obscure the impact of
extreme values of the covariate on the outcome variable.

Two shared frailty models are fitted to the data: one with the original wbc covariate
and the other with log(wbc) as a replacement for wbc. These models are labelled as the
wbc model and the lwbc model, respectively. Table 1 displays the estimated regression
coefficients, their corresponding standard errors, and p-values for the covariate effects
in both models. The results indicate that the estimated effect of wbc is statistically
significant (p-value < 0.001), whereas the effect of log(wbc) is not significant (p-value
= 0.135). This difference in p-values highlights that the statistical inference of the
covariate effect may depend on the assumption of the functional form of the covariates.

Table 1. Parameter estimates of the shared gamma frailty model in the real data application. The left table

represents the wbc model, and the right table corresponds to the lwbc model.

Covariates Estimate SE P-value
Age 0.021 0.005 0.000
SexMale 0.215 0.118 0.068
wbc 0.005 0.001 0.000
tpi 0.023 0.016 0.140
Frailty 0.906

Covariates Estimate SE P-value
Age 0.021 0.005 0.000
SexMale 0.216 0.118 0.069
log(wbc) 0.035 0.024 0.135
tpi 0.024 0.016 0.128
Frailty 0.906

The overall GOF tests and graphical checks with CS residuals and Z-residuals in-
dicate that both the wbc and lwbc models provide adequate fits to the dataset. In
the first row of Figure 7, the estimated CHFs of the CS residuals for both models
closely align along the 45◦ diagonal line. Similarly, the QQ plots of Z-residuals (the
second row of Figure 7) for both models show good alignment with the 45◦ diagonal
line. The scatterplots of Z-residuals against the linear predictor show no visible trends,
and the LOWESS lines are very close to the horizontal line at 0. The boxplots of Z-
residuals grouped by cutting linear predictors into equal-spaced intervals (the fourth
row of Figure 7) indicate approximately equal means and variances across groups. The
Z-AOV-LP test also yields large p-values for both the wbc and lwbc models (0.59 and
0.78, respectively).

The above diagnostic results reveal no significant misspecification in either of these
two models. However, further inspection of the Z-residuals against the covariate
log(wbc) suggests that the functional form of the lwbc model may be misspecified. The
scatterplots and comparative boxplots of the Z-residuals against log(wbc) are shown
in the fifth and sixth rows of Figure 7. The LOWESS curve of the wbc model appears
to align well with the horizontal line at 0, and the grouped Z-residuals of the wbc
model seem to have approximately equal means and variances across groups. On the
other hand, the diagnostic results for the lwbc model show a different pattern. There
seems to be a non-linear trend in the LOWESS curve, and the grouped Z-residuals
appear to have different means across groups. To assess the statistical significance of
these observed trends, we use the Z-AOV-log(wbc) test to test the equality of means
of the grouped Z-residuals for these two models. The resulting p-values are 0.16 and
< 0.01, respectively, for the wbc and lwbc models, as shown in the boxplots. The very
small p-value for the Z-AOV-log(wbc) test for the lwbc model strongly suggests that
the log transformation of wbc is likely inappropriate for modelling the survival time.

The Z-residual test p-values quoted above contain randomness because of the ran-
domization in generating Z-residuals. To ensure the robustness of the model diagnostic
results, we generated 1000 replicated test p-values with 1000 sets of regenerated Z-
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Figure 7. Diagnostics results for the wbc (left panels) and lwbc (right panels) models fitted to the survival
data of acute myeloid leukemia patients.
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Table 2. AIC, p-values or pmin values for the CZ-CSF test, pmin for Z-SW, Z-SF, Z-AOV-LP and Z-AOV-

log(wbc) test for the wbc and lwbc models, respectively, for the acute myeloid leukemia data.

Model AIC CZ-CSF Z-SW Z-SF Z-AOV-LP Z-AOV-log(wbc)
p−value pmin pmin pmin pmin

wbc model 3111.669 0.255 0.495 0.693 0.703 0.074
lwbc model 3132.105 0.305 0.579 0.781 0.978 <0.00001

residuals for each test method. Figure 8 displays the histograms of the 1000 replicated
Z-residual test p-values for both the wbc and lwbc models. The red vertical lines in
these histograms represent the upper bound summaries of these replicated p-values,
denoted as, pmin (see Section 4.4 for details). These histograms reveal that the Z-
SW, Z-SF, and Z-AOV-LP tests for both models have a substantial proportion of
p-values greater than 0.05, leading to large pmin values. In contrast, the replicated
Z-AOV-log(wbc) p-values for the lwbc model are nearly all smaller than 0.001. These
consistently small Z-AOV-log(wbc) p-values provide strong evidence that the log trans-
formation of wbc is inappropriate for modelling the survival time.

Table 2 presents all the pmin values (indicated with red lines in Figure 8) obtained
from diagnosing the two models using Z-residual-based tests. Additionally, the table
includes the non-random CZ-CSF test p-values for both models and the AIC values
for model comparison. The CZ-CSF p-values for both models are greater than 5%
(Table 2), indicating that the CZ-CSF test does not identify the inadequacy of the
lwbc model either. Comparing the AIC values, the lwbc model with an AIC value of
3132.105 is much larger than the wbc model’s AIC value of 3111.669. This conclusion
is consistent with the model diagnostics results as given by the Z-AOV-log(wbc) test,
which reveals that the lwbc model is inappropriate for modelling the survival time of
this dataset by checking the homogeneity of Z-residuals against log(wbc). Although
the AIC of the wbc model is smaller than that of the lwbc model, we also see that a
large proportion of Z-AOV-log(wbc) p-values for the wbc model is quite small (e.g.,
pmin value of 0.074). This suggests that there is room for improvement in the wbc
model to provide an even better fit for the survival time of this dataset.

7. Conclusions and Discussions

In this paper, we introduced an extension of the concept of randomized survival prob-
ability [27] to develop a novel residual diagnostic tool for assessing the covariate func-
tional form in shared frailty models. The proposed Z-residuals offer valuable insights
into model adequacy and provide both graphical and numerical methods to examine
the fit of the model to the data. By plotting Z-residuals against covariates, we can
visually inspect the presence of trends, allowing us to assess the appropriateness of
the functional form assumptions. Moreover, we introduced a non-homogeneity test
based on grouped Z-residuals, which helps us distinguish genuine misspecifications
from chance variations. Our extensive simulation studies have convincingly demon-
strated that the proposed non-homogeneity tests based on Z-residuals outperform
traditional overall goodness-of-fit tests, such as CS-CSF, Z-SW, and Z-SF, especially
in scenarios with complex covariate functional forms. Importantly, Z-residuals offer a
powerful advantage in detecting specific model misspecifications that might be over-
looked by traditional overall model diagnosis. The ability to visually inspect trends
and apply non-homogeneity tests to grouped Z-residuals allows us to identify subtle
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Figure 8. The histograms of 1000 replicated Z-SW, Z-SF, Z-AOV-LP and Z-AOV-log(wbc) p-values for the
wbc model (left panels) and the lwbc model (right panels) fitted with the survival times of acute myeloid
leukemia patients. The vertical red lines indicate pmin for 1000 replicated p-values. Note that the upper limit

of the x-axis for Z-AOV-log(wbc) p-values for the lwbc model is 0.005, and 1 for others.
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deviations from the expected fit, pinpointing precise areas of model inadequacy. This
capability makes Z-residuals an invaluable tool for uncovering hidden relationships
and providing insights into the functional form of covariates.

Furthermore, we have applied the Z-residual diagnostics to a real dataset of acute
myeloid leukemia patients, wherein we discovered that a model with log-transformation
is not appropriate for modelling survival time. This critical insight was not captured
by other diagnostic methods, highlighting the significance of Z-residuals in real-world
applications. The analysis of the white blood cell count variable, a commonly used
marker in cancer research, serves as an essential illustration of the importance of
carefully considering the choice of covariate transformations. While logarithmic trans-
formation is often applied to mitigate the impact of highly skewed data, it may not
always be appropriate, as demonstrated in this example. The presence of large val-
ues, such as white blood cell count, could be highly informative for modelling adverse
health outcomes. Logarithmic transformation may obscure or mask this valuable in-
formation, leading to potential misinterpretation of the covariate’s impact on survival
time. To preserve the meaningful relationships between covariates and survival time
accurately, alternative modelling techniques, such as using splines or allowing for non-
linear effects, may be more suitable for capturing the complex relationship between
white blood cell count and survival time. Taking these factors into account is crucial
to ensure that the model captures the underlying patterns in the data and provides
reliable insights for clinical decision-making.

In our study, we conducted an additional simulation study specifically aimed at
evaluating the performance of Z-residuals in detecting frailty distribution misspecifi-
cation. The results, presented in Figure A.5 indicate that the tests based on Z-residuals
have limited power for detecting frailty distribution misspecifications, particularly in
scenarios with large cluster sizes. This aligns with the robustness observed in mixed-
effects models, as documented in previous research [38]. From a Bayesian perspective,
where the frailty distribution serves as the prior for random effects (frailties), our
findings support the established understanding that the prior’s impact on parame-
ter estimation diminishes with moderately large sample sizes. Therefore, Z-residuals,
being derived from the tail probabilities of the distributions for observations, exhibit
limited power to detect misspecifications in the prior distribution that do not affect
parameter estimation. In consideration of these findings, we aim to further explore
and develop tailored statistical tests based on Z-residuals specifically for diagnosing
misspecified frailty distributions in our future research endeavours.

Looking ahead, our research opens up promising avenues for others’ further de-
velopment and enhancement of Z-residuals-based diagnostics in survival analysis. As
we have acknowledged, one potential concern arises from the double use of data in
both model parameter estimation and residual calculation, which may lead to con-
servative estimates of model fit and misspecification detection. To address this issue
effectively, we propose the incorporation of cross-validation techniques. By employ-
ing cross-validatory Z-residuals, we can achieve more robust and unbiased assess-
ments of model adequacy, improving the accuracy and reliability of our diagnostic
framework. This cross-validation approach is particularly beneficial for datasets with
limited sample sizes or high levels of censoring, where traditional methods may fall
short in detecting subtle misspecifications. Furthermore, the extension of Z-residuals to
accommodate time-dependent covariate effects and non-proportional hazards models
presents an exciting avenue for future research. In practice, survival data often exhibit
time-varying relationships between covariates and the event of interest, necessitating
a more flexible diagnostic tool. A number of residuals have been proposed for evaluat-
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ing the assumption of proportional hazards, such as the Schoenfeld [5, 39] and Scaled
Schoenfeld [17], as well as cumulative sums of martingale residuals [29]. Expanding the
Z-residual approach to diagnose the proportional hazards assumption and comparing
its performance with existing methods would offer researchers a comprehensive toolkit
for assessing model assumptions in various time-dependent scenarios. Moreover, in-
vestigating the potential of Z-residuals in the context of joint modelling approaches
would be of great interest. Joint models, which simultaneously analyze longitudinal
and survival data, have gained popularity in recent years due to their ability to cap-
ture complex disease processes. Integrating Z-residuals into joint modelling can offer
new insights into the adequacy of joint models and the functional form of longitudinal
covariates, further extending the applicability of Z-residuals in survival analysis.

Availability of Software and Datasets

We have developed an R package called Z-residual, which can be downloaded from
https://github.com/tiw150/Zresidual. We have also provided a detailed demon-
stration of how to use this package for detecting the covariate functional form, available
from this link: https://tiw150.github.io/Zresidual_demo.html.
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Appendix A. Additional Figures

Figure A.1. Model rejection rate of the KS test applied to Z-residuals (Z-KS) and the SW test applied to

deviance residuals (Dev-SW) for the simulation study in Section 4.3. A model is rejected when the test p-value

is less than 5% (nominal level). The model rejection rates of Dev-SW tests are nearly 1 under the true and
wrong models when the censoring rate is 50% and 80%, resulting in almost overlapped plots.
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Figure A.2. Model rejection rates of various statistical tests based on Z-residuals for the simulation study
with 10 clusters, as presented in Section 5. A model is rejected when the test p-value is less than 5% (nominal

level).
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Figure A.3. Model rejection rates of various statistical tests based on Z-residuals for the simulation study
with 30 clusters, as presented in Section 5. A model is rejected when the test p-value is less than 5% (nominal

level).
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Figure A.4. Model rejection rates of various statistical tests based on Z-residuals for the simulation study
of correlated covariates with 20 clusters, as presented in Section 5. A model is rejected when the test p-value

is less than 5% (nominal level).
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Figure A.5. Model rejection rates of various statistical tests based on Z-residual for the simulation study of
frailty distribution misspecification with 20 clusters. A model is rejected when the test p-value is less than 5%

(nominal level).
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Table A1. Model rejection rates of various statistical tests based on Z-residual for the simulation study with

20 clusters, where c denotes the percentage of censoring and n denotes the total number of observations, which
equals the number of clusters multiplied by the cluster size. A model is rejected when the test p-value is less

than 5% (nominal level). The table corresponds to Figure 6.

Cluster
Size

100c n Z-SW Z-SW Z-SF Z-SF CZ-CSF CZ-CSF Z-AOV-
LP

Z-AOV-
LP

Z-AOV-
log(X2)

Z-AOV-
X2

True Wrong True Wrong True Wrong True Wrong True Wrong
10 0 200 0.105 0.015 0.077 0.010 0.077 0.010 0.017 0.694 0.019 0.999
20 0 400 0.074 0.080 0.056 0.064 0.056 0.064 0.015 0.966 0.014 1.000
30 0 600 0.064 0.198 0.046 0.166 0.046 0.166 0.018 0.997 0.024 1.000
40 0 800 0.054 0.344 0.045 0.313 0.045 0.313 0.012 1.000 0.017 1.000
50 0 1000 0.053 0.487 0.037 0.447 0.037 0.447 0.016 1.000 0.019 1.000
60 0 1200 0.051 0.639 0.032 0.618 0.032 0.618 0.016 1.000 0.018 1.000
70 0 1400 0.041 0.707 0.035 0.690 0.035 0.690 0.013 1.000 0.020 1.000
80 0 1600 0.038 0.779 0.038 0.758 0.038 0.758 0.013 1.000 0.016 1.000
90 0 1800 0.042 0.867 0.038 0.850 0.038 0.850 0.007 1.000 0.015 1.000
100 0 2000 0.041 0.928 0.033 0.917 0.033 0.917 0.017 1.000 0.024 1.000
10 20 200 0.128 0.028 0.110 0.014 0.120 0.015 0.025 0.631 0.017 0.975
20 20 400 0.088 0.076 0.069 0.050 0.078 0.057 0.012 0.932 0.015 1.000
30 20 600 0.065 0.156 0.047 0.131 0.048 0.142 0.014 0.986 0.020 1.000
40 20 800 0.058 0.211 0.050 0.195 0.053 0.229 0.018 0.996 0.019 1.000
50 20 1000 0.045 0.324 0.040 0.294 0.031 0.363 0.014 1.000 0.025 1.000
60 20 1200 0.043 0.377 0.031 0.369 0.037 0.442 0.012 1.000 0.013 1.000
70 20 1400 0.062 0.531 0.054 0.505 0.056 0.619 0.010 1.000 0.012 1.000
80 20 1600 0.060 0.597 0.055 0.583 0.049 0.691 0.023 1.000 0.014 1.000
90 20 1800 0.047 0.709 0.047 0.689 0.056 0.774 0.017 1.000 0.021 1.000
100 20 2000 0.044 0.747 0.036 0.735 0.044 0.817 0.014 1.000 0.030 1.000
10 50 200 0.069 0.037 0.067 0.036 0.079 0.013 0.028 0.500 0.023 0.784
20 50 400 0.078 0.044 0.060 0.038 0.056 0.009 0.016 0.828 0.014 0.986
30 50 600 0.070 0.062 0.058 0.054 0.030 0.024 0.010 0.919 0.031 1.000
40 50 800 0.056 0.089 0.050 0.073 0.029 0.044 0.014 0.975 0.026 1.000
50 50 1000 0.039 0.154 0.037 0.143 0.022 0.083 0.018 0.993 0.026 1.000
60 50 1200 0.058 0.168 0.057 0.156 0.025 0.127 0.010 0.997 0.017 1.000
70 50 1400 0.055 0.220 0.041 0.206 0.009 0.189 0.022 1.000 0.025 1.000
80 50 1600 0.053 0.253 0.050 0.237 0.019 0.230 0.019 0.999 0.022 1.000
90 50 1800 0.055 0.300 0.054 0.277 0.023 0.306 0.013 1.000 0.023 1.000
100 50 2000 0.050 0.327 0.050 0.319 0.014 0.340 0.019 0.999 0.021 1.000
10 80 200 0.054 0.038 0.053 0.043 0.031 0.014 0.039 0.291 0.015 0.268
20 80 400 0.059 0.040 0.063 0.045 0.018 0.007 0.024 0.577 0.030 0.568
30 80 600 0.052 0.042 0.050 0.057 0.018 0.009 0.021 0.713 0.017 0.723
40 80 800 0.045 0.076 0.046 0.077 0.004 0.009 0.021 0.825 0.030 0.866
50 80 1000 0.044 0.054 0.045 0.059 0.004 0.008 0.020 0.902 0.026 0.915
60 80 1200 0.057 0.054 0.057 0.055 0.009 0.009 0.017 0.942 0.038 0.953
70 80 1400 0.049 0.062 0.056 0.067 0.004 0.004 0.016 0.971 0.024 0.971
80 80 1600 0.049 0.070 0.052 0.080 0.004 0.011 0.020 0.977 0.028 0.981
90 80 1800 0.055 0.070 0.050 0.074 0.003 0.010 0.024 0.990 0.024 0.994
100 80 2000 0.049 0.069 0.048 0.078 0.000 0.012 0.021 0.995 0.024 0.996
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