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Review of Statistical Classification
 Goal: Given a feature vector x, we want to predict the associated response y,

i.e. find a predictive function C from x to y:

ŷ = C(x).
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Review of Statistical Classification
 Goal: Given a feature vector x, we want to predict the associated response y,

i.e. find a predictive function C from x to y:

ŷ = C(x).

 How do we find ŷ?
 First find the predictive distribution of y given x:

P (y|x)

 Given x, predict y with ŷ that minimizes expected loss E(L(y, ŷ)|x).
e.g., y is binary, and L(y = 0, ŷ = 1)/L(y = 1, ŷ = 0) = r,

ŷ =

{

1 if P (y = 1|x) ≥ 1 − 1
1+r

,

0 if P (y = 1|x) < 1 − 1
1+r
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Review of Statistical Classification
 Goal: Given a feature vector x, we want to predict the associated response y,

i.e. find a predictive function C from x to y:

ŷ = C(x).

 How do we find ŷ?
 First find the predictive distribution of y given x:

P (y|x)

 Given x, predict y with ŷ that minimizes expected loss E(L(y, ŷ)|x).
e.g., y is binary, and L(y = 0, ŷ = 1)/L(y = 1, ŷ = 0) = r,

ŷ =

{

1 if P (y = 1|x) ≥ 1 − 1
1+r

,

0 if P (y = 1|x) < 1 − 1
1+r

 Statistical Method: Estimate P (y|x) by learning from the available data
{(x(1), y(1)), . . . , (x(n), y(n))}, collectively {xtrain, ytrain}, called training data.
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Review of Statistical Classification
 Goal: Given a feature vector x, we want to predict the associated response y,

i.e. find a predictive function C from x to y:

ŷ = C(x).

 How do we find ŷ?
 First find the predictive distribution of y given x:

P (y|x)

 Given x, predict y with ŷ that minimizes expected loss E(L(y, ŷ)|x).
e.g., y is binary, and L(y = 0, ŷ = 1)/L(y = 1, ŷ = 0) = r,

ŷ =

{

1 if P (y = 1|x) ≥ 1 − 1
1+r

,

0 if P (y = 1|x) < 1 − 1
1+r

 Statistical Method: Estimate P (y|x) by learning from the available data
{(x(1), y(1)), . . . , (x(n), y(n))}, collectively {xtrain, ytrain}, called training data.

 Example: Given gene expression data of a patient, classify the type of tumour.
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Why do We Need to Select Features?
 Examples of High Dimensional Features
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 Gene Expression Data: Measure the expression levels of tens of thousands
of genes.
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Why do We Need to Select Features?
 Examples of High Dimensional Features

 Gene Expression Data: Measure the expression levels of tens of thousands
of genes.

 Document Classification: Count the frequency (times of occurrence) of all
words in a large dictionary, which may have, for example, 30,000 words.

 Difficulties with High Dimensional Features:

 In Time: Computation time grows with the number of features.
 In Money: Costly in measuring the features for future cases.
 In Statistics:

 When the number of observations is smaller than the number of parame-
ters, the likelihood function P (xtrain, ytrain|θ) based on a simple model, such
as a linear model, will favour “too good” θ.

 Our models may fail when applied to high-dimensional features, e.g., we
may not be able to model the dependency between features very well; our
priors for high-dimensional parameters may be inappropriate.
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Optimistic Bias from Feature Selection
Feature Selection:

For previous reasons or others, one may like to select a subset of features
to use based on some measure of the dependency (e.g. absolute cor-
relation) between the features and y. There are also more sophisticated
Bayesian/non-Bayesian methods by looking at how well the subset can pre-
dict y (e.g.,LASSO, Bayesian methods using a prior with mass at 0 for coef-
ficients).
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relation) between the features and y. There are also more sophisticated
Bayesian/non-Bayesian methods by looking at how well the subset can pre-
dict y (e.g.,LASSO, Bayesian methods using a prior with mass at 0 for coef-
ficients).

Optimistic Bias:

However, such procedures will make the relationship between y and x ap-
pears stronger than it actually is, i.e., the response appears more pre-
dictable from the features. We will be overconfident with our prediction.
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Optimistic Bias from Feature Selection
Feature Selection:

For previous reasons or others, one may like to select a subset of features
to use based on some measure of the dependency (e.g. absolute cor-
relation) between the features and y. There are also more sophisticated
Bayesian/non-Bayesian methods by looking at how well the subset can pre-
dict y (e.g.,LASSO, Bayesian methods using a prior with mass at 0 for coef-
ficients).

Optimistic Bias:

However, such procedures will make the relationship between y and x ap-
pears stronger than it actually is, i.e., the response appears more pre-
dictable from the features. We will be overconfident with our prediction.

An Extreme Example:

All features x1, . . . , xp and the response y are actually independent. We
select only k features x∗

1, . . . , x
∗

k using the criterion of absolute correlation.
These k features will exhibit strong relationship with y in training data, when
p ≫ k.
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What Causes Bias from Feature Selection?
Let’s look at the absolute correlations of 10, 000 binary features with a binary
response from a data set simulated using a method to be discussed later.
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The absolute correlations of these
features with y are high in training
set, but very low in test set.

When we measure more fea-
tures, this bias may be more
severe, as more “fake” fea-
tures compete with our “sig-
nal” features.
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Problems Resulting from Feature Selection Bias (I)

The following graph displays a typical plot of predictive probabilities based on se-
lected features versus the actual predictive probabilities based on all information
available:
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Problems Resulting from Feature Selection Bias (I)

The following graph displays a typical plot of predictive probabilities based on se-
lected features versus the actual predictive probabilities based on all information
available:
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Predictive probabilities based on selected features
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Actual Probability of Making an Error

1
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Predictive probabilities based on all information

The predictive probabilities are over-
confident. For example, if we use 1

2 as
cutoff for predicting the class labels, ex-
pected error rate,

1

n

n
∑

i=1

(

p̂(i)
s I(p̂(i)

s <
1
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)+(1−p̂(i)

s )I(p̂(i)
s ≥

1
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,

is smaller than actual error rate
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∑

i=1

I(y(i) 6= ŷ(i)
s )
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Problems Resulting from Feature Selection Bias (II)

More seriously, when the loss by misclassifying 0 to 1 is different from the loss by
misclassifying 1 to 0, the prediction based on selected features results in more
loss in practice than that based on all information available, i.e.,
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Predictive probabilities based on all information

E(L(ŷ(∗)
s , y(∗))) ≥ E(L(ŷ

(∗)
B , y(∗)))

where,

ŷ(∗)
s =

{

1 if p̂
(∗)
s ≥ cutoff

0 if p̂
(∗)
s < cutoff

,

and cutoff = 1 − 1
1+r

, and r = L0→1

L1→0
.

ŷ
(∗)
B is similar, but using the predictive

probability p̂
(∗)
B based on all information

available.
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Our Method for Avoiding Features Selection Bias
 All available information: Our predictions should condition not only on the re-

tained features xtrain
1:k , but also on the fact that the other p−k features have

sample correlation with the response that is less than γ in absolute value:

ytrain, xtrain
1:k, |COR(ytrain, xtrain

t )| ≤ γ for t = k+1, . . . , p
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Our Method for Avoiding Features Selection Bias
 All available information: Our predictions should condition not only on the re-

tained features xtrain
1:k , but also on the fact that the other p−k features have

sample correlation with the response that is less than γ in absolute value:

ytrain, xtrain
1:k, |COR(ytrain, xtrain

t )| ≤ γ for t = k+1, . . . , p

 Models: The response and the predictors are modeled jointly. Given the re-
sponse y and a model parameter α, the features x1, . . . , xp, are modeled to be
independent and has identical distribution:

P (x1, · · · , xp|y, α) =

p
∏

t=1

[

P (xt|y, α)
]
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Our Method for Avoiding Features Selection Bias
 All available information: Our predictions should condition not only on the re-

tained features xtrain
1:k , but also on the fact that the other p−k features have

sample correlation with the response that is less than γ in absolute value:

ytrain, xtrain
1:k, |COR(ytrain, xtrain

t )| ≤ γ for t = k+1, . . . , p

 Models: The response and the predictors are modeled jointly. Given the re-
sponse y and a model parameter α, the features x1, . . . , xp, are modeled to be
independent and has identical distribution:

P (x1, · · · , xp|y, α) =

p
∏

t=1

[

P (xt|y, α)
]

 Adjustment factor: The likelihood function of α based on ytrain, xtrain
1:k is multiplied

by:

P ( |COR(ytrain, xtrain
t )| ≤ γ for t = k+1, . . . , p|α, ytrain)

=
[

P ( |COR(ytrain, xtrain
t )| ≤ γ|α, ytrain)

]p−k
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A Bayesian Naive Bayes Model for Binary Data
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θ p

x
(i)
j | y(i), φ ∼ Bernoulli (φy(i),j), for i = 1, . . . , n and j = 1, . . . , p

φ0,j , φ1,j | α, θj
IID
∼ Beta (αθj , α(1−θj)), for j = 1, . . . , p
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Computation of the adjustment factor (I)

COR(xtrain
t , ytrain) can be written in terms of I0 =

∑n

i=1 I(y(i) = 0, x
(i)
t = 1) and

I1 =
∑n

i=1 I(y(i) = 1, x
(i)
t = 1):

COR(xtrain
t , ytrain) =

(0 − y) I0 + (1 − y) I1
√

ny(1−y)
√

I0 + I1 − (I0 + I1)2/n

I0,I1 are visualized:

0O I 0 O1 I 1

ytrain
:

xtrain :
t

0       0       0        0       1       1       1       1

0       1       1        1       0       0       0       1
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Computation of the adjustment factor (II)

The following graph displays the values of |COR(xtrain
t , ytrain)| in terms of I0 and I1

for a particular example, with the threshold of magnitude of correlation in selecting
features is γ = 0.2:
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12   +0.83  +0.72  +0.61  +0.50  +0.39  +0.27  +0.13  −0.03  −0.24

14   +1.00  +0.90  +0.81  +0.72  +0.62  +0.53  +0.42  +0.29   0.00
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Computation of the adjustment factor (III)
 P (I0, I1 | α, ytrain) is symmetric for H+ and H−, so

P ( |COR(xtrain
t , ytrain)| ≤ γ | α, ytrain) = 1 − 2

∑

(I0,I1)∈H+

P (I0, I1 | α, ytrain)

 Conditioning on θt:

∑

(I0,I1)∈H+

P (I0, I1 | α, ytrain) =

∫ 1

0

∑

(I0,I1)∈H+

P (I0, I1 | α, θt, ytrain) dθt

 |COR(xtrain
t , ytrain)| is monotone with respect to I0 or I1, so

∑

(I0,I1)∈H+

P (I0, I1 | α, θt, ytrain) =

ny
∑

I1=b0

rI1
∑

I0=0

P (I0, I1 | α, θt, ytrain)

 I0 and I1 are independent given α, θt, ytrain, so

P (I0, I1 | α, θt, ytrain) = P (I1 | α, θt, ytrain)P (I0 | α, θt, ytrain)
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Computation of the adjustment factor (IV)

Finally, we can easily compute probability of I0 and I1:

P (I1 | α, θt, ytrain) =

(

N1

I1

)

U(αθt, α(1−θt), I1, N1 − I1)

and

P (I0 | α, θt, ytrain) =

(

n − N1

I0

)

U(αθt, α(1−θt), I0, n − N1 − I0)
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A Simulation Experiment

 Generating data: α = 300, p = 10, 000, 100 training cases, 2000 test cases

 Selecting features: 4 subsets with only 1, 10, 100 and 1000 features were
selected, with smallest absolute value of correlation being 0.36,0.27,0.21, and
0.13.

 Prior: f0 = f1 = 1, a = 0.5, b = 5
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Plot of Predictive Probabilities
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Calibration of Predictive Probabilities

100 features selected out of 10000

Corrected Uncorrected

Category # Pred Actual # Pred Actual

0.0 – 0.1 155 0.067 0.077 717 0.017 0.199
0.1 – 0.2 247 0.151 0.162 133 0.150 0.391
0.2 – 0.3 220 0.247 0.286 70 0.251 0.429
0.3 – 0.4 225 0.352 0.356 68 0.351 0.515
0.4 – 0.5 237 0.450 0.494 58 0.451 0.500
0.5 – 0.6 227 0.545 0.586 78 0.552 0.603
0.6 – 0.7 202 0.650 0.728 77 0.654 0.532
0.7 – 0.8 214 0.749 0.785 80 0.746 0.662
0.8 – 0.9 182 0.847 0.857 98 0.852 0.633
0.9 – 1.0 91 0.935 0.923 621 0.979 0.818
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Expected versus Actual Error Rates
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p̂(i)I(p̂(i)< 1
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2 )
)

——– : Actual Error Rate = 1
n

∑n

i=1 I(y 6= ŷ(i))
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Comparison of Average Loss
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Comparison of Average Minus the Log Probabilities

AMLP = −
1

n

n
∑

i=1

(

y(i) log(p̂(i)) + (1 − y(i)) log(1 − p̂(i))
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Posterior Distribution of log(α)

Red: Uncorrected Green: Corrected Black: Based on all features
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Computation Times

# of Features Selected 1 10 100 1000 10000

Uncorrected 12.66 28.80 203.60 2065.73 20627.71
Corrected 12.72 29.55 204.54 2076.21
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A Test with Gene Expression Data

 Data set: 2000 genes, 62 cases (40 Cancerous vs 22 Normal tissues)

 Converted into binary data by thresholding at medians of features

 Split 2000 genes randomly into 10 subsets each with 200 genes.

 5 Genes were selected out of 200 genes

 Used leave-one-out cross-validation to obtain predictive probabilities

 Prior the same as previous simulation experiment
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Plot of Predictive Probabilities
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Expected versus Actual Error Rates
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Comparison of Average Loss
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Comparison of Average Minus the Log Probabilities
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Conclusions and Discussions

 We propose a correction method to avoid the bias from feature selection.
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Conclusions and Discussions

 We propose a correction method to avoid the bias from feature selection.

 We’ve applied the method to binary naive Bayes models. The simulation re-
sults show that it does avoid the bias from feature selection and it is faster
than using all features. The results from microarray datasets show that the
corrected method improves the predictive performance.
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Conclusions and Discussions

 We propose a correction method to avoid the bias from feature selection.

 We’ve applied the method to binary naive Bayes models. The simulation re-
sults show that it does avoid the bias from feature selection and it is faster
than using all features. The results from microarray datasets show that the
corrected method improves the predictive performance.

 We have devised a fast method for computing it in binary naive Bayes models.
This method can be generalized to all discrete naive Bayes models. However,
the computation of the adjustment factor is difficult generally.

 When there is enough data, we better use different subsets to select features
and fit the models, if we do not know how to correct for the feature selection
bias.

 More generally, if we do not know how to correct for the feature selection bias,
we better avoid doing feature selection.
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Future Work
 For real data sets, such as gene expression data, the independence assump-

tion may not be true. We must apply the bias correction method to the inde-
pendent factors governing the observed data. Some simple methods, such as
principal component analysis, may be appropriate. Further work will be done
to find a good way to do this.
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sian models for continuous data) and other selection criteria (e.g. t statistic).
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Future Work
 For real data sets, such as gene expression data, the independence assump-

tion may not be true. We must apply the bias correction method to the inde-
pendent factors governing the observed data. Some simple methods, such as
principal component analysis, may be appropriate. Further work will be done
to find a good way to do this.

 One could pretty easily extend the method to other simple models (e.g. Gaus-
sian models for continuous data) and other selection criteria (e.g. t statistic).

 We’ve applied the correction method to binary mixture models and factor analy-
sis models. Computation of the adjustment factor for these two models is more
difficult but still feasible. Further work is necessary to improve efficiency of
computing adjustment factor for such models, since we need to perform a large
amount of this computation (e.g. in each iteration of Markov chain sampling).
Some numerical methods, such as using importance sampling framework, are
very promising.
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Thank You! Questions and Comments?
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