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Abstract

The mode of a distribution provides an important summary of data and is often es-

timated based on some non-parametric kernel density estimator. This article devel-

ops a new data analysis tool called modal linear regression in order to explore high-

dimensional data. Modal linear regression models the conditional mode of a response

Y given a set of predictors x as a linear function of x. Modal linear regression differs

from standard linear regression in that standard linear regression models the condi-

tional mean (as opposed to mode) of Y as a linear function of x. We propose an

Expectation-Maximization algorithm in order to estimate the regression coefficients

of modal linear regression. We also provide asymptotic properties for the proposed

estimator using the algorithm under the assumption of a skewed error density. Our

empirical studies with simulated data and real data demonstrate that the proposed

modal regression gives shorter predictive intervals than mean linear regression, median

linear regression, and MM-estimators.
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1. Introduction

Mode provides an important summary of data. Many authors have made efforts to

identify modes of population distributions for low-dimensional data (see or example Muller

and Sawitzki (1991); Scott (1992); Friedman and Fisher (1999); Chaudhuri and Marron

(1999); Fisher and Marron (2001); Davies and Kovac (2004); Hall, Minnotte, and Zhang

(2004); Ray and Lindsay (2005); Yao and Lindsay (2009), as well as documentations of the

R package “np” for non-parametric mode estimation). In high-dimensional data, it is often

of interest to estimate conditional distributions in order to identify associations between a

response and a set of predictors. To the best of our knowledge, little research has been done

to hunt conditional modes in regression problems.

Suppose we have collected a random sample {(xi, yi), i = 1, . . . , n}, where xi is a p-

dimensional column vector and yi is observation of a continous response variable Y . We are

interested in estimating the conditional density function of Y given x, denoted by f(y | x).

Conventional regression methods usually model the mean or median of f(y | x) as a linear

function of x. Another regression approach is to model the mode of f(y | x) as a linear

function of x (Lee, 1989). We will refer to this approach as modal linear regression (or

MODLR for short) throughout this paper. Compared to other regression approaches, modal

linear regression has the following features:

1. MODLR attempts to capture the “most probable” value — the mode (instead of

the mean, median, or quantile) of the conditional distribution of Y given x. The

conditional mode may be a more useful summary than the conditional mean, median,

or quantile when the conditional distribution of Y given x is asymmetric.

2. MODLR may provide shorter prediction intervals than other linear regression ap-

proaches for a nominal confidence level, since an interval around a conditional mode

can cover more samples than an interval of the same length around a conditional mean.
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3. MODLR is robust to outliers that don’t follow the same relationship exhibited by

the majority of a sample and is particularly robust to heavy-tailed conditional error

distributions. This is because modal regression focuses on modelling the majority of

the distribution of Y given x.

4. MODLR is well justified in situations where conditional distributions are highly skewed.

Many robust regression methods, such as median regression and MM-estimators, re-

quire symmetries in conditional distributions in order to achieve good performance.

Quantile regression methods allow for skewed conditional distributions, but MODLR

gives estimates of conditional modes which may be of more interest than a quantile in

some application contexts.

Modal linear regression is potentially a very useful addition to current data analysis

tools. However, estimation of modal regression coefficients is not trivial. In this article, we

propose an EM algorithm that minimizes a kernel-based objective function for estimating

modal regression coefficients. We have studied asymptotic and other theoretical properties of

the proposed estimation procedure. We also propose a method for constructing asymmetric

prediction intervals that can have better coverage than symmetric prediction intervals when

conditional distributions are highly skewed.

The rest of this article is organized as follows. In Section 2, we introduce the kernel-based

objective function and the EM algorithm for maximizing it; we also provide the theoretical

properties of the estimating procedure. In Section 3, we use simulated datasets to compare

the proposed MODLR with least square regression, median regression, and MM-estimators.

We also compare these regression methods using forest fire data. Our empirical results

show that MODLR provides significantly shorter prediction intervals than other regression

methods. The article is concluded in Section 4 with discussions of possible future work.

Proofs of the consistency of our estimators and necessary technical conditions are given in
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the Appendix.

2. Modal linear regression

2.1. Introduction to modal linear regression

Suppose that a response variable Y given a set of predictor x is distributed with a

probability density function f(y | x). Assume that the mode of f(y | x), denoted by

Mode(Y | x) = arg maxy(f(y | x)), is unique. Furthermore, assume that Mode(Y | x) is a

linear function of x, i.e.

Mode(Y | x) = xT β. (2.1)

In (2.1) we assume that the first element of x is 1; this represents the intercept term. Let

ε = y−xT β; we denote the conditional density of ε given x by g(ε | x) and refer to it as the

error distribution. Note that the estimation method (and its asymptotic justification) that

we will propose next allows for the error distribution to depend on x.

If g(ε | x) is symmetric about 0, the β in (2.1) will be the same as the coefficients obtained

by conventional linear regression; however, if g(ε | x) is skewed, modal regression coefficients

and conventional linear regression coefficients will be different. It is possible that the mode

of Y given x is a linear function of x but the conventional mean is nonlinear. The following

example illustrates the difference between modal regression function and conventional mean

regression function when the error distribution is skewed.

Example 1: Let (x, Y ) satisfy the following model assumption

Y = m(x) + σ(x)ε, (2.2)

where ε has density h(·). Suppose h(·) is a skewed density with mean 0 and mode 1.
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a) If m(x) = xT β and σ(x) = xT α, then

E(Y | x) = xT β and Mode(Y | x) = xT (β + α).

Thus, Y depends on x linearly from the point of view of both mean regression and modal

regression even though their regression parameters are different.

b) If m(x) = 0 and σ(x) = xT α, then

E(Y | x) = 0 and Mode(Y | x) = xT α.

Therefore, in terms of conditional mean, Y does not depend on x; however, in terms of

conditional mode, Y does depend linearly on x. From this example we see that variable

selection techniques based on modal regression might reveal some useful predictors when

mean regression cannot.

To estimate the modal regression parameter β in (2.1), we propose maximizing the

kernel-based objective function

Qh(β) ≡ 1

n

n∑
i=1

φh(yi − xT
i β), (2.3)

where φh(t) = h−1φ(t/h) and φ(t) is a kernel density function symmetric about 0. For the

remainder of the paper we will assume that φ is the standard normal density (for simplicity

of computation). Based on this choice of kernel, the M-step of the MEM algorithm presented

next has the closed-form solution shown in Equation (2.6). It should be noted that all the

asymptotic results presented in this article still hold if other kernels are used. We will denote

the maximizer of (2.3) by β̂ and call it the modal linear regression estimator, shortened by

MODLRE.
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We now explain why (2.3) can be used to estimate the modal regression coefficients. We

first look at the simplest case in which there is no predictor, i.e. β = β0. For such cases,

(2.3) is simplified to become

Qh(β0) ≡
1

n

n∑
i=1

φh(yi − β0), (2.4)

Where Qh(.) is the kernel estimate of the density function of Y . Therefore, the maximizer of

(2.4) is the mode of the kernel density function based on y1, . . . , yn. When n→∞ and h→ 0,

the mode of this kernel density function will converge to the mode of the distribution of Y .

Such a modal estimator has been proposed by Parzen (1962). When there are predictors

present, for any fixed β, Qh(β) in (2.3) is the value of the kernel density function based on

the residuals εi = yi − xiβ at ε = 0. Maximizing (2.3) with respect to β yields the line xβ̂

such that the kernel density function of residuals εi has highest value at 0. In the special

case that φh(t) = (2h)−1I(|t| ≤ h), a uniform kernel, maximizing (2.3) yields the line xT β̂

such that the band xT β̂ ± h covers the largest number of response values yi.

Lee (1989) used a uniform kernel to estimate modal regression coefficients. In his the-

oretical investigation, h is fixed and does not depend on the sample size n. In order to

get consistency results for the estimator, Lee assumed the error distribution to be symmet-

ric. Note that in such cases the modal line is the same as the traditional mean regression

line. Thus, Lee’s theoretical results didn’t justify applications of MODLR for situations with

skewed error distributions (where MODLR is more useful than other regression methods).

In this article, we prove (see Appendix for details) that if we let h → 0 when n → ∞,

the β̂ found by maximizing Qh(β) in (2.3) is a consistent estimate of the modal regression

parameter in (2.1) for very general error density functions without symmetry assumptions.

2.2. Modal EM algorithm

There is no closed-form expression of the maximizer of (2.3); therefore, we propose to
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extend the modal expectation-maximization (MEM) algorithm (Li, Ray, and Lindsay, 2007;

Yao, 2013) in order to maximize (2.3).

Similar to an EM algorithm, the MEM algorithm consists of an E-step and an M-step:

Starting with β(0), repeat the following two steps until it converges:

E-Step: In this step, we calculate weights π(j | β(k)), j = 1, . . . , n as

π(j | β(k)) =
φh(yj − xT

j β(k))∑n
i=1 φh(yi − xT

i β(k))
∝ φh(yj − xT

j β(k)). (2.5)

M-Step: In this step, we update β(k+1)

β(k+1) = arg max
β

n∑
j=1

{
π(j | β(k)) log φh(yj − xT

j β)
}

= (XT W kX)−1XT W ky, (2.6)

where X = (x1, . . . ,xn)T , W k is an n × n diagonal matrix with diagonal elements

π(j | β(k))s, and y = (y1, . . . , yn)T .

Some remarks on the proposed MEM algorithm:

1. The major difference between the least squares estimate (LSE) and the modal re-

gression estimate (MODLRE) lies in the E step. For the LSE, each observation has

equal weights, whereas for MODLRE the weights depend on how close yi is to the

modal regression line. This weighting scheme allows MODLRE to reduce the effect of

observations far away from the modal regression line in order to achieve robustness.

2. When the normal kernel is used for φ in (2.3), the function optimized in the M-step is

a weighted sum of log likelihoods corresponding to ordinary linear regression. In this

case we obtain a closed-form expression for the maximizer in (2.6). If other kernels are

used, some optimization algorithms are needed in the M-step.
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3. The converged value obtained by the MEM algorithm depends on the starting point

chosen, and there is no guarantee that the algorithm will converge to the global optimal

solution of (2.3). Therefore, it is prudent to run the algorithm multiple times using

several different starting points and choose the best local optima found.

We have proved (see Appendix) the ascending property of the proposed MEM for any

choice of kernel for φ in (2.3):

Theorem 2.1. Each iteration of (2.5) and (2.6) will monotonically non-decrease the objec-

tive function (2.3), i.e., Qh(β
(k+1)) ≥ Qh(β

(k)), for all k.

The iteratively reweighted least squares (IRWLS) algorithm has been commonly used for

general M-estimators. Since the maximizer of (2.3) can be considered as a special case of

M-estimators, the IRWLS algorithm can be applied to find β̂. When the normal kernel φ(·)

is used, the IRWLS algorithm is indeed equivalent to the proposed MEM algorithm, but

when other kernels are used, the two algorithms are different. IRWLS has been proven to

be ascending (i.e. monotonically non-decreases the objective function) if −φ(x)/x is non-

increasing (Huber, 1981). However, when φ(x) is a normal density function, −φ(x)/x is not

non-increasing. Therefore the existing theories of IRWLS cannot justify Theorem 2.1 if the

normal kernel φ(·) is used. Because the proof of Theorem 2.1 is for any kernel density φ(·),

including the normal kernel, Theorem 2.1 provides an extension to existing IRWLS theories.

2.3. Asymptotic properties of β̂

The asymptotic properties established for traditional M-estimators are based on assump-

tions that the error density is symmetric and the objective function is fixed. In addition, the

target of traditional M-estimators is conditional mean. For our proposed modal regression,

we will allow that the tuning parameter h in the objective function goes to zero and the error

density can be skewed. Therefore, the theoretical results on the traditional M−estimators
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cannot be directly applied to the proposed modal linear regression estimator. In this section,

we will give the results about the consistency of our proposed modal regression estimator β̂

for model (2.1), its convergence rate, and its asymptotic distribution. Their proofs are given

in the Appendix.

Theorem 2.2. When h→ 0 and nh5 →∞, under the regularity conditions (A1)—(A3) in

the Appendix, there exists a consistent maximizer of (2.3) such that

||β̂ − β0|| = Op{h2 + (nh3)−1/2},

where β0 is the true coefficient of the modal regression function defined in (2.1).

Theorem 2.3. Under the same assumptions as Theorem 2.2, the β̂ that satisfies the con-

sistency result given in Theorem 2.2, has the following asymptotic normality result

√
nh3

[
β̂ − β0 −

h2

2
J−1K{1 + op(1)}

]
D−→ N

{
0, ν2J

−1LJ−1
}
, (2.7)

where ν2 =
∫
t2φ2(t)dt and

J = E{g′′(0 | xi)xix
T
i };K = E{g′′′(0 | xi)xi};L = E{g(0 | xi)xix

T
i }.

Pazen (1962) and Eddy (1980) have proven similar asymptotic results for kernel estima-

tors of the mode of the distribution of Y without conditioning on x. Therefore, the results

of Paren (1962) and Eddy (1980) can be considered as a special case of Theorem 2.3 when

there is no predictor involved, i.e., x = 1.

By Theorem 2.3, the asymptotic bias of β̂ is h2J−1K/2 and the asymptotic variance is

ν2J
−1LJ−1/(nh3). A theoretic optimal bandwidth h for estimating β can be obtained by
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minimizing the asymptotic weighted mean squared errors (MSE)

E
{

(β̂ − β0)
TW (β̂ − β0)

}
≈ KTJ−1WJ−1Kh4/4 + (nh3)−1ν2tr

(
J−1LJ−1W

)
,

where tr(A) is the trace of A and W is a diagonal matrix, whose diagonal elements reflect the

importance of the accuracy in estimating different coefficients. Therefore, the asymptotic

optimal bandwidth h is

ĥopt =

[
3ν2tr (J−1LJ−1W )

KTJ−1WJ−1K

]1/7

n−1/7. (2.8)

If W = (J−1LJ−1)−1 = JL−1J , which is proportional to the inverse of the asymptotic

variance of β̂, then

ĥopt =

[
3ν2(p+ 1)

KTL−1K

]1/7

n−1/7. (2.9)

Let β = (β0,βs)
T , where β0 is a scalar intercept parameter and βs is the slope parameter.

If ε is independent of x, then

J−1K = (1, 0, . . . , 0)Tg′′′(0)/{2g′′(0)},

and thus the asymptotic bias of the slope parameter βs is 0. Therefore, the optimal band-

width h for estimating βs should go to infinity, which implies that the resulting estimate β̂s

is a least square estimate with root n consistency. This is expected since when ε is indepen-

dent of x, the slope parameter βs of modal regression line is the same as the slope parameter

of conventional mean regression line and thus can be estimated at root n convergence rate.

Given the root n consistent estimate β̂s (using LSE, for example), we propose to further

estimate β0 by

β̂0 = arg max
β0

1

n

n∑
i=1

φh(yi − xT
i β̂s − β0). (2.10)
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The above maximization can be done similarly using the MEM algorithm proposed in Section

2.2. We have the following result for β̂0. Its proof is given in the Appendix.

Theorem 2.4. Under the same assumption as Theorem 2.2, if ε is independent of x and

g′′(0) 6= 0, the β̂0 defined in (2.10) has the following asymptotic distribution:

√
nh3

{
β̂0 − β0 −

g′′′(0)h2

2g′′(0)
+ op(h

2)

}
D−→ N

{
0,
g(0)ν2

[g′′(0)]2

}
. (2.11)

Note that when ε is independent of x, J−1LJ−1 = g′′(0)−2g(0)E(xxT )−1. Let

A = E(xxT ) =

 1 A12

AT
12 A22


and a11 be the (1,1) element of A−1. Noting that a11 = (1−A12A

−1
22 A

T
12)

−1 and A22 is positive

definite, we have a11 ≥ 1. Therefore, based on Theorem 2.3 and 2.4, we can see that using the

root n consistent estimate β̂s as initial, we can get more efficient estimate of the intercept

β0 than the one found by maximizing (2.3) directly. This is reasonable since the estimate β̂0

in (2.10) need not account for the uncertainty of β̂s due to its root n consistency and thus

β̂0 is asymptotically as efficient as if βs were known.

From Theorem 2.4, we can see that the asymptotic bias of β̂0 is {2g′′(0)}−1g′′′(0)h2 and

its asymptotic variance is [{g′′(0)}2nh3]−1g(0)ν2. By minimizing the asymptotic MSE, we

can get the asymptotic optimal bandwidth h for estimating β0:

ĥopt =

[
3g(0)ν2

{g′′′(0)}2

]1/7

n−1/7. (2.12)

2.4. Finite sample breakdown point

To investigate robustness of the MODLRE, we also calculate its finite sample breakdown

point. A breakdown point is used to quantify the proportion of bad data in a sample that an
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estimator can tolerate before returning arbitrary values. Since usually the breakdown point is

most useful in a small sample setup (Donoho, 1982; Donoho and Huber, 1983), we will mainly

focus on the finite sample breakdown point. A number of definitions for the finite sample

breakdown point have been proposed (see, for example, Hampel, 1971, 1974; Donoho, 1982;

Donoho and Huber, 1983). In this paper, we shall work with the finite sample contamination

breakdown point. Let zi = (xi, yi). Given the sample Z = (z1, . . . ,zn), denote T (Z) the

MODLRE β̂, as defined as the maximizer of (2.3). We can corrupt the original sample Z by

adding m arbitrary points Z ′ = (zn+1, . . . ,zn+m). The corrupted sample Z ∪ Z ′ then has

sample size n +m and contains a fraction δ = m/(m + n) of bad values. The finite sample

contamination breakdown point δ∗ is defined as

δ∗(Z, T ) = min
1≤m≤n

{
m

n+m
: sup

Z ′
||T (Z ∪Z ′)|| =∞

}
, (2.13)

where || · || is Euclidean norm.

Theorem 2.5. Given observations Z = (z1, . . . ,zn), suppose T (Z) = β̂, the MODLRE

estimate defined as the maximizer of (2.3). Let

M =
√

2πh
n∑

i=1

φh(yi − xT
i β̂). (2.14)

Then the finite sample contamination breakdown point of MODLRE is

δ∗(Z, T ) =
m∗

n+m∗ , (2.15)

where m∗ is an integer satisfying dMe ≤ m∗ ≤ bMc+1, bac is the largest integer not greater

than a, and dae is the smallest integer not less than a.

The proof of Theorem 2.5 is given in the Appendix. From the above theorem, we can see
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that the breakdown point depends not only on φ(·), and the tuning parameter h, but also

on the sample configuration. (However, Huber (1984) pointed out if the scale (contained

in the bandwidth h of the MODLRE) is determined from the sample itself, empirically, the

breakdown point is quite high.)

3. Simulation Study and Application

In this section we conduct a Monte Carlo simulation study in order to assess the per-

formance of our proposed MODLRE under a finite sample size scenario. We will compare

MODLRE with some other regression methods. A real data application is also provided.

3.1. Bandwidth selection

The modal regression estimator requires a selection of the bandwidth. The asymptotically

optimal bandwidth formula (2.9) contains the unknown quantities g(v)(0 | x), v = 0, 2, 3, i.e.

the vth derivative of the conditional density of ε given x. Hence, they are not ready to use.

A commonly used method is to replace these unknown quantities with estimates. Given

the initial residual ε̂i = yi − xT
i β̂, where β̂ is the traditional least squares estimate (or a

robust estimate if there are some outliers) of β, we can estimate their mode, denoted by

m̂, by maximizing the kernel density estimator (Paren, 1962). Under the assumption of

independence of ε and x, ε̂i − m̂ approximately has density g(·) and thus g(v)(0 | x) can be

estimated by (see, for example, Silverman, 1986 and Scott, 1992)

ĝ(v)(0 | x) =
1

nhv+1

n∑
i=1

K(v)

{
ε̂i − m̂
h

}
, v = 0, 2, 3,

where h is chosen using the method reported by Botev et.al. (2010) and K(v)(·) is the vth

derivative of kernel density function K(·). Then we can estimate J , K, and L by

Ĵ = n−1

n∑
i=1

ĝ′′(0 | xi)xix
T
i , K̂ = n−1

n∑
i=1

ĝ′′′(0 | xi)xi, and L̂ = n−1

n∑
i=1

ĝ(0 | xi)xix
T
i ,
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and apply Equation (2.9) to estimate ĥopt. To refine the bandwidth selection, one might

further iteratively update a chosen bandwidth by recalculating the residual ε̂i given by the

modal linear regression estimate.

3.2. A Monte Carlo simulation study

We generated an iid sample {(xi, yi), i = 1, . . . , n} from the following model

Y = 1 + 3X + σ(X)ε,

where X ∼ U(0, 1), ε ∼ 0.5N(−1, 2.52) + 0.5N(1, 0.52), and σ(X) = 1 + 2X. Note that

E(ε) = 0, Mode(ε) = 1, and Median(ε) = 0.67 (the last two quantities are approximate).

For this model, the conditional mean regression function is E(Y | X) = 1 + 3X and the

conditional modal regression function is Mode(Y | X) = 2 + 5X. The modal regression

residual is Y −Mode(Y |X) = (1+2X)(ε−1), whose distribution peaks at 0 but is negatively

skewed. The conditional median function is Median(Y |X) = 1.67 + 4.34X. We consider

and compare the following four methods: 1) traditional mean regression based on the least

squares estimator (LSE); 2) median regression (MEDREG); 3) MM-estimate (M-estimate

with a initial robust M-estimate of scale, Yohai, 1987) based on Tukey’s biweight ψ-function;

4) the proposed modal linear regression (MODLR).

Figure 1 shows the scatter plot of a typical generated sample with n = 200, as well as

regression lines corresponding to the 4 regression methods. From the plot we can see that

the modal regression line goes through the area containing the most number of points. A

small prediction band around this line is expected to contain the most number of future

points. In contrast, the mean regression line based on LSE is skewed to a flatter line and lies

in a much less dense area for capturing the conditional mean. The regression lines based on

the median regression and the MM-estimate lie in higher density areas than the regression

line based on LSE.
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Table 1 reports the average and standard error (Std) of the parameter estimates for

each method based on 1,000 replicates. From this table we see that LSE, MEDREG, and

MODLRE estimate their target parameters well. However, the MM-estimate does not esti-

mate the conditional mean function well; this is because the assumption of symmetric error

density is violated. Surprisingly, the MODLRE has smaller standard error than the other

methods in this example (when the error is skewed), especially when n = 200 or n = 400.

Therefore for finite samples the MODLRE not only has a good modal explanation but also

might have better estimation accuracy than other methods when the error is skewed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−15

−10

−5

0

5

10

15

x

y

Observation
LSE
MEDREG
MM−estimate
MODLR

Figure 1: Scatter plot of a typical sample with n = 200 for Example 1 with different estimated
regression lines: ‘−.’ denotes the mean regression line based on LSE; ‘−−’ denotes the median
regression line; ‘−∗’ denotes the regression line based on MM-estimate; ‘−’ denotes the modal
regression line.

Table 2 reports the average (and standard error) of the coverage probabilities of prediction

intervals of similar lengths centered around each estimated regression line in 1,000 replicates.
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We consider three different lengths of intervals: 0.1σ, 0.2σ, and 0.5σ, where σ = 2 is the

approximate standard error of ε. For each of the 1,000 replications the coverage probability

is estimated from 1,000 new cases where the predictor x is equally spaced between 0.1 to

0.9. From Table 2 we see that MODLRE provides higher coverage probabilities than the

other three methods. In addition, MEDREG provides larger coverage probabilities than the

MM-estimate and LSE, while the MM-estimate provides larger coverage probabilities than

LSE. Note that when the lengths of these intervals are large enough the different methods

will provide similar coverage probabilities.

Table 1: Average (Std) of parameter estimates over 1,000 repetitions.

Method Parameter n=50 n=100 n=200 n=400

LSE β0 = 1 1.022(0.964) 0.989(0.659) 1.007(0.490) 1.009(0.322)

β1 = 3 2.890(2.260) 3.063(1.500) 2.977(1.160) 2.976(0.733)

MEDREG β0 = 1.67 1.587(0.707) 1.613(0.422) 1.636(0.301) 1.667(0.188)

β1 = 4.34 4.226(1.670) 4.372(0.981) 4.339(0.705) 4.312(0.457)

MM-estimate β0 = 1 1.051(0.782) 1.040(0.530) 1.022(0.376) 1.035(0.265)

β1 = 3 5.123(1.640) 5.234(1.060) 5.271(0.744) 5.271(0.512)

MODLRE β0 = 2 1.789(0.670) 1.841(0.372) 1.875(0.229) 1.912(0.140)

β1 = 5 4.829(1.750) 5.024(0.948) 5.044(0.574) 5.020(0.387)

16



Table 2: Average (Std) of coverage probabilities over 1,000 repetitions with σ = 2.

Width Method n=50 n=100 n=200 n=400

0.1σ LSE 0.034(0.015) 0.032(0.011) 0.030(0.009) 0.029(0.007)

MEDREG 0.073(0.018) 0.077(0.014) 0.078(0.012) 0.080(0.010)

MM-estimate 0.065(0.023) 0.067(0.019) 0.066(0.015) 0.067(0.012)

MODLRE 0.087(0.016) 0.092(0.012) 0.095(0.010) 0.095(0.009)

0.2σ LSE 0.069(0.028) 0.065(0.022) 0.061(0.015) 0.059(0.013)

MEDREG 0.144(0.033) 0.153(0.024) 0.155(0.019) 0.158(0.015)

MM-estimate 0.129(0.042) 0.133(0.034) 0.132(0.027) 0.134(0.021)

MODLRE 0.170(0.027) 0.179(0.018) 0.184(0.013) 0.186(0.012)

0.5σ LSE 0.186(0.062) 0.181(0.047) 0.174(0.035) 0.171(0.028)

MEDREG 0.338(0.061) 0.355(0.040) 0.360(0.029) 0.365(0.022)

MM-estimate 0.313(0.080) 0.322(0.062) 0.325(0.046) 0.330(0.036)

MODLRE 0.378(0.049) 0.395(0.029) 0.404(0.018) 0.407(0.015)

3.3. Application to forest fire data

Forest fires, also called wildfires, cause great ecological and economical damage. Fast

detection of a forest fire is vital for successful fire fighting, but traditional human or automatic

surveillance (such as by satellites, infrared or smoke scanners) is expensive. Recently the use

of low-cost meteorological data (such as temperature, wind, and precipitation data) to warn

the public of a potential wildfire has received a lot of attention. This inexpensive form of

information can also be used to get a quick estimate of post-fire damage.

In this section we compare the proposed MODLR and other regression techniques with a

forest fire dataset (Cortez and Morais, 2007). The data was downloaded from http://www.

dsi.uminho.pt/∼pcortez/forestfires. This forest fire data contains 517 observations

and was collected between January 2000 and December 2003 from the Montesinho natural

park of the Trás-os-Montes northeast region of Portugal. On a daily basis, every time a

forest fire occurred many features were recorded, such as the time, date, spatial location,

and weather conditions. Following Cortez and Morais (2007), we use four meteorological

variables: outside temperature (temp), outside relative humidity (RH), outside wind speed
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(wind), and outside rain (rain), as predictors for the total burned area (area). We fit the data

by LSE, MEDREG, MM-estimate, and MODLRE. One important feature of this dataset is

that it contains outliers and a positively-skewed response variable (area); therefore it is

expected that the the proposed modal linear regression will compare favorably to other

methods.

To compare the four regression methods we look at the widths of each prediction interval

(with the same confidence level). For constructing confidence intervals, we assume that

the error distribution of ε is independent of x. Suppose we have obtained the parameter

estimate β̂ and the corresponding error (residual) ε̂i = yi−xT
i β̂ for i = 1, . . . , n; we will use

ε̂[i] to denote the ith smallest value of the residuals. The traditional prediction interval with

confidence level α for the new predictor xnew is symmetric about the point prediction of ynew:

(xT
newβ̂ − ε̂[n1],x

T
newβ̂ + ε̂[n2]), where n1 = bnα/2c and n2 = n− n1. This symmetric method

will be ideal if the regression error distribution is symmetric. To consider and make use of

the skewness of the error distribution, we propose to construct asymmetric prediction

intervals as follows. Suppose ĝ(·) is the kernel density estimate of ε based on the residuals

ε̂1, . . . , ε̂n that are estimated by MODLRE. We propose to find the indexes k1 < k2 such that

k2 − k1 = n2 − n1 = dn(1− α)e and ĝ(ε̂[k1]) ≈ ĝ(ε̂[k2]). The proposed prediction interval for

the new predictor xnew is (xT
newβ̂ − ε̂[k1],x

T
newβ̂ + ε̂[k2]). We propose the following iterative

algorithm to find indexes k1 and k2: Let k1 = n1 and k2 = n2 be the initial values for k1 and

k2.

Step 1: If ĝ(ε̂[k1]) < ĝ(ε̂[k2]) and ĝ(ε̂[k1+1]) < ĝ(ε̂[k2+1]), k1 ← k1 + 1 and k2 ← k2 + 1; if

ĝ(ε̂[k1]) > ĝ(ε̂[k2]) and ĝ(ε̂[k1−1]) > ĝ(ε̂[k2−1]), k1 ← k1 − 1 and k2 ← k2 − 1.

Step 2: Iterate the above procedure until none of above two conditions is satisfied or (k1−

1)(k2 − n) = 0.

We use this method to construct prediction intervals for MODLR.
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Table 3: Average widths (percentage of coverage) of the prediction intervals

Methods
Nominal confidence levels

10% 30% 50% 90%

LSE 2.166(0.101) 6.687(0.294) 12.70(0.493) 53.03(0.896)

MEDREG 0.975(0.091) 2.638(0.292) 6.506(0.491) 48.52(0.894)

MM-estimate 1.144(0.099) 2.910(0.294) 6.499(0.497) 48.49(0.906)

MODLRE 0.012(0.112) 0.035(0.311) 0.571(0.499) 26.44(0.899)

In Table 3, we report the average widths and the actual coverage rates of the predic-

tion intervals for 10%, 30%, 50%, and 90% confidence levels. The actual coverage rates are

estimated based on leave-one-out cross validation. From Table 3, we have the following

findings:

1. All the prediction intervals are well-calibrated — the actual coverage rates are very

close to the nominal confidence levels.

2. The average widths of prediction intervals constructed around the point prediction

defined by MODLRE are significantly shorter than the prediction intervals constructed

around the other three estimates.

3. Both MEDREG and MM-estimate have shorter prediction intervals than LSE.
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4. Summary and Discussions

In this article we proposed a new data analysis tool called modal linear regression in order

to explore the relationship between a response variable and a set of predictors. Modal

linear regression investigates this relationship using the conditional mode instead of the

conditional mean or other summaries used by traditional regression techniques. When the

error distribution is skewed, modal linear regression provides a more meaningful prediction

than LSE. Our empirical results show that the modal linear regression provides significantly

shorter prediction intervals than other regression methods.

In the application to the forest fire dataset, we provided one possible way to construct

asymmetric prediction intervals for MODLR. Based on cross-validation results, the proposed

skewed prediction intervals for MODLR were much shorter than the prediction intervals con-

structed by some of the other commonly used regression methods for forest fire data. Further

research can be conducted to find out how to construct the shortest (skewed) prediction in-

terval for a given confidence level using the information of skewed error density. One related

work is by Kim and Lindsay (2011), who proposed to use confidence distribution sampling

to visualize confidence sets.

Modal linear regression assumes that the mode of the conditional density of Y given x

is a linear function of x. The idea of modal linear regression can be easily generalized to

other models such as nonlinear regression, non-parametric regression, and varying coefficient

partial linear regression. In addition, it would also be interesting to see how to select the

most informative variables based on this modal regression idea. This will comprise our future

research work.
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Appendix

The following technical conditions are imposed in this section.

(A1) g(v)(t | x), v = 0, 1, 2, 3 is continuous in a neighborhood of 0, and g′(0 | x) = 0 for any

x.

(A2) n−1
∑n

i=1 g
′′(0 | xi)xix

T
i = J + op(1), n−1

∑n
i=1 g

′′′(0 | xi)xi = K + op(1), and

n−1
∑n

i=1 g(0 | xi)xix
T
i = L + op(1), where J < 0, i.e., −J is a positive definite

matrix.

(A3) n−1
∑n

i=1 ‖xi‖4 = Op(1).

0, and g′(0 | x) = 0.any x.

The above conditions are mild and are fulfilled in many applications. Note that the J,K,

and L are defined in Theorem 2.3. All the results proved in this section also hold if general

kernels are used for φ in (2.3) under some mild conditions adopted for traditional kenel

density estimator (for example, φ is symmetric about 0 and has bounded continuous third

derivative. In addition, φ has finite second moment with
∫
t2φ2(t)dt <∞).

Proof of Theorem 2.1: Note that

log{Qh(β
(k+1))} − log{Qh(β

(k))} = log

{
n∑

i=1

φh(yi − xT
i β(k+1))

}
− log

{
n∑

i=1

φh(yi − xT
i β(k))

}

= log

[
n∑

i=1

φh(yi − xT
i β(k+1))∑n

i=1 φh(yi − xT
i β(k))

]

= log

[
n∑

i=1

φh(yi − xT
i β(k))∑n

i=1 φh(yi − xT
i β(k))

φh(yi − xT
i β(k+1))

φh(yi − xT
i β(k))

]

= log

[
n∑

i=1

π(i | β(k))
φh(yi − xT

i β(k+1))

φh(yi − xT
i β(k))

]
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Based on the Jensen’s inequality, we have

log{Qh(β
(k+1))} − log{Qh(β

(k))} ≥
n∑

i=1

π(i | β(k)) log

{
φh(yi − xT

i β(k+1))

φh(yi − xT
i β(k))

}
.

Based on the property of M step in (2.6), we have

log{Qh(β
(k+1))} − log{Qh(β

(k))} ≥ 0

and thus Qh(β
(k+1)) ≥ Qh(β

(k)).

Proof of Theorem 2.2: Note that

φ′′h(t) = h−3(
t2

h2
− 1)φ(t/h) and φ′h(t) = − t

h3
φ(t/h).

Let an = (nh3)−1/2 +h2. It is sufficient to show that for any given η > 0, there exists a large

constant c such that

P{ sup
‖µ‖=c

Qh(β0 + anµ) < Qh(β0)} ≥ 1− η. (A.1)

Let X = (x1, . . . ,xn)T and y = (y1, . . . , yn)T . Denote

Kn ≡
∂Qh(β0)

∂β
= − 1

n

n∑
i=1

φ′h(yi − xT
i β0)xi (A.2)

Jn ≡
∂2Qh(β0)

∂ββT
=

1

n

n∑
i=1

φ′′h(yi − xT
i β0)xix

T
i , (A.3)

where Qh(β) is defined in (2.3) and β0 is the true parameter value.

Based on Taylor expansion and symmetric property of φ(t), we can get the mean and
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variance of Jn and Kn:

E(Jn | x) =
1

n

n∑
i=1

g′′(0 | xi)xix
T
i {1 + op(1)} = J{1 + op(1)},

Var(Jn | x) = Op{(nh5)−1},

E(Kn | x) =
h2

2n

n∑
i=1

g′′′(0 | xi)xi(1 + op(1)) =
h2

2
K{1 + op(1)},

Cov(Kn | x) =
1

n2h3
ν2

n∑
i=1

g(0 | xi)xix
T
i {1 + o(1)} =

1

nh3
ν2L{1 + op(1)}, (A.4)

where J = limn−1
∑n

i=1 g
′′(0 | xi)xix

T
i , K = limn−1

∑n
i=1 g

′′′(0 | xi)xi, and L = limn−1
∑n

i=1 g(0 |

xi)xix
T
i . By default, when calculating the variance of a matrix, we find the variance of each

element of the matrix. Using the result X = E(X) + Op({Var(X)}1/2), since nh5 → ∞,

Jn = J + op(1). Notice that

Qh(β0 + anµ)−Qh(β0) = anK
T
n µ+

a2
n

2
µTJnµ−

a3
n

6nh4

n∑
i=1

φ
′′′
(
yi − xT

i β∗

h
)(xT

i µ)3

= M1 +M2 +M3 , (A.5)

where ||u|| = c and ||β∗ − β0|| ≤ can. From (A.4), we get Kn = Op(an) and hence M1 =

Op(a
2
n). Note that M2 = 0.5a2

nµ
TJµ{1 + op(1)}. Based on the boundness of φ(4)(t) and

||β∗ − β0|| ≤ can, we have

φ
′′′
(
yi − xT

i β∗

h
) = φ

′′′
(
yi − xT

i β0

h
)(1 + op(1)).

Noting that φ
′′′
(t) = (3t−t3)φ(t), based on the Taylor expansion and the symmetric property
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of φ(t), we have that

E

{
φ′′′

(
Yi − xT

i β0

h

) ∣∣∣x}
= Op(h

4), Var

{
φ′′′

(
Yi − xT

i β0

h

) ∣∣∣x}
= Op(h). (A.6)

Since nh5 →∞, we can prove that M3 = op(a
2
n).

For any η > 0, we can choose c big enough, such that the second term M2 dominates the

other two terms in (A.5) with probability 1 − η. Since J < 0, Qh(β0 + anµ) − Qh(β0) < 0

with probability 1− η. The result of Theorem 2.2 follows. �

Proof of Theorem 2.3: Suppose β̂ is the consistent solution to ∂Qh(β)/∂β found in

Theorem 2.2. Based on the Taylor expansion, we have

0 =
∂Qh(β̂)

∂β
= Kn + (Jn + Ln)(β̂ − β0) , (A.7)

where

Ln = − 1

2nh4

n∑
i=1

[
φ

′′′
(
Yi − β∗T xi

h
)
{

(β̂ − β0)
T xi

}
xix

T
i

]
,

where ‖β∗ − β0‖ ≤ ‖β̂ − β0‖.

Based on the result of (A.7), we have β̂−β0 = (Jn +Ln)−1Kn. Since ||β̂−β0|| = Op(an),

where an = (nh3)−1/2 + h2, similar to the proof of M3 in (A.5), we have Ln = op(1). Hence,

based on (A.4), we have β̂−β0 = J−1Kn(1+op(1)). Next we prove the asymptotic normality

for K∗
n =
√
nh3Kn.

For any unit vector d ∈ Rp+1, we prove

{dT Cov(K∗
n)d}−

1
2{dTK∗

n − dT E(K∗
n)} D−→ N(0, 1)
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Let

ξi = − 1√
nh
φ′(

Yi − xT
i βT

0

h
)dT xi.

Then dTK∗
n =

∑n
i=1 ξi. We check the Lyapunov’s condition. Based on the results (A.4), we

know

Cov(Kn) =
L

nh3
ν2{1 + o(1)}. (A.8)

Hence Var(dTK∗
n) = nh3dT Cov(Kn)d = g(0)ν2d

TLd + o(1). So we only need to prove

nE|ξ1|3 → 0. Noticing that (dT xi)
2 ≤ ‖xi‖2‖d‖2 = ‖xi‖2, and φ′(·) is bounded, we have

nE|ξ1|3 ≤ O{(nh3)−1/2} → 0. So, the asymptotic normality for K∗
n holds, i.e., we have

√
nh3

{
Kn − h2K/2(1 + op(h

2))
} D−→ N(0, ν2L).

Based on the Slutsky’s theorem, we have

√
nh3

[
β̂ − β − h2

2
J−1K{1 + op(h

2)}
]

D−→ N
{
0, ν2J

−1LJ−1
}
. �

Proof of Theorem 2.4:

Since β̂s has root n consistency, the asymptotic result of β̂0 is the same as if β̂s were

known and its asymptotic distribution can be derived from Theorem 2.3 by assuming x = 1

and the independence of ε and x, under which we have J−1K = g′′′(0)/(2g′′(0)) and

J−1LJ−1 = g′′(0)−2g(0). Then the result follows.

Proof of Theorem 2.5: Let φ∗(t) =
√

2πhφh(t). Then M =
∑n

i=1 φ
∗(yi − xT

i β̂), where

β̂ = T (Z). Notice that φ∗(·) has a maximum at 0 with φ∗(0) = 1 and φ∗(·) decreases

monotonely toward both sides, and that limφ∗(t) = 0 for |t| → ∞.

We first prove that T (Z ∪ Z ′) stays bounded if m < M . Let ξ > 0 be such that
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m + nξ < M , and let C be such that φ∗(t) ≤ ξ for |t| ≥ C. Let β be any real vector such

that |y − xT β| ≥ C for all z = (x, y) in Z. Then

m+n∑
i=1

φ∗(yi − xT
i T (Z)) ≥M (A.9)

and
m+n∑
i=1

φ∗(yi − xT
i β) ≤ nξ +m. (A.10)

From (A.9) and (A.10), one knows that T (Z ∪Z ′) must satisfy |y − xTT (Z ∪Z ′)| < C for

a point in Z and thus T (Z ∪Z ′) is bounded.

On the other hand, if m > M , let ξ > 0 such that m − mξ > M , and let C be such

that φ∗(t) ≤ ξ for |t| ≥ C. Assume that all points {(xn+1, yn+1), . . . , (xn+m, yn+m)} in Z ′

are the same and satisfy a linear relationship y = xTβ∗. Let β be any vector such that

|yn+1 − xT
n+1β| < C. Then

m+n∑
i=1

φ∗(yi − xT
i β) ≤M +mξ, (A.11)

and
m+n∑
i=1

φ∗(yi − xT
i β∗) ≥ m. (A.12)

From (A.11) and (A.12), one knows that T (Z∪Z ′) must satisfy |yn+1−xT
n+1T (Z∪Z ′)| ≤ C.

If we let yn+1 → ∞ with xn+1 fixed, ||T (Z ∪ Z ′)|| must go off to infinity, and we have

breakdown. �
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