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Section 1

Introduction



Subsection 1

Research Problem



A Genomic Example

High-throughput biotechnologies can measure the expression levels of all
genes. We are interested in discovering the genes related to a complex
disease.
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Formulation of the Statistical Problem

Response: y is a categorical variable indicating types of disease.

Features (variables): x = {xj |j = 1, . . . , p) contains measurements of
p features, such as gene expressions.

The goal is to identify a subset of features that are related to the
response y .
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Challenges of Selecting from High-dimensional Features

High dimensionality
The number of features, p, is greatly larger than n. We face severe
overfitting problems. In other words, it is difficult to identify the
signal from a vast amount of noise.

Grouping structure
High-throughput data have grouping structures. For example, a group
of genes may have similar expression levels. We face severe
collinearity problem.

An anaogy to understand the chanlleges: looking for needles from hay.
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Subsection 2

Literature Review



Univariate Screening Methods (GWAS)

Examples:

t-test, F -test, Significance Analysis of Microarray (SAM).

Diagonal Linear Discriminant Analysis (DLDA).

Prediction Analysis of Microarrays method (PAM).

Problems:

Generally speaking, univariate screening methods ignore the join
effects between genes. We believe that many complex diseases or
traits are polygenetic.

Many marginally correlated features come as the top list.

Features with weak marginal correlation will be omitted. They may
be very useful!
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Penalized Likelihood Methods

LASSO: Least Absolute Shrinkage and Selection Operator (LASSO)
minimizes a likelihood function of β penalized by L1 norm (absolute
shrinkage) to enforce sparse solutions:

β̂ = argminβ

−
n∑

i=1

log(P(yi |x i ,β)) + λ

p∑
j=1

|βj |

 (1)

LASSO solution is not sparse enough when p >> n.
Non-convex penalization

β̂ = argminβ

−
n∑

i=1

log(P(yi |x i ,β)) +

p∑
j=1

tα(βj)

 (2)

where tα(β) is a non-convex penalty function, for example, SCAD, log
t density, horseshoe, NEG priors, and MCP.
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Hyper-LASSO Sparsity of Non-convex Penalty (I)

Compared to LASSO, non-convex penalty can more aggressively shrink
small coefficients towards 0, while retaining large coefficients.

 −0.5 

 −1 

 −1.5 

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

β1

β 2

 −31.1 
 −32.8 

 −33.75 

Log t Contour

Log Laplace Contour

Log Likelihood Contour

1. Introduction/Literature Review 6/36



Hyper-LASSO Sparsity of Non-convex Penalty (II)

Comparing the solution path of LASSO and non-convex penalization:
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Separation of Correlated Features (I)

Non-convex penalty can separate the coefficients of correlated features
into different modes.
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Separation of Correlated Features (II)

Sample representation of a non-convex penalized likelihood of two
coefficients for two highly correlated features:
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Difficulty of Optimizing Non-complex Penalized Likelihood

Unfortunately, non-convex penalized likelihood has many modes. Although
good theoretical properties of the global mode of non-convex penalized
likelihood have been established, practitioners have been reluctant to
embrace these methods for good reason: non-convex penalized likelihoods
are difficult to optimize and often produce unstable solutions (Breheny and
Huang, 2011, AOAS).
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Other Methods Using the Grouping Structure in Features

Group LASSO (GL): Group LASSO uses a penalty function to
enforce similarity of coefficients within a group:

LL(β|xi , yi ) = −
n∑

i=1

log(P(yi |x i ,β)) + λ

L∑
l=1

√
pl ||βl ||2, (3)

Group LASSO achieves better prediction accuracy, but makes
selection within group harder
Two-stage selection: For example, supervised group LASSO (SGL)
applies LASSO to each feature group first then fit LASSO with all the
features selected from each group.
SGL cannot consider joint effect of features across group.
Both GL and two-stage selection require a pre-defined grouping
structure.
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Our Propoal: Explore Multi-mode Posterior with MCMC

Markov chain Monte Carlo sampling (MCMC) can travel across many
modes of the non-convex penalized likelihood. We propose to use a
sophisticated HMC based method to explore the posterior of Robit
model assigned with a class of heavy-tailed priors—t distribution with
moderate degree freedom (such as 1, corresponding to Cauchy
distribution) and small scale.

We then divide MCMC samples from many modes to find multiple
feature subsets.

We will refer to our method as fully Bayesian Robit with heavy-tailed
priors, or FBRHT to be short.
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Section 2

Fully Bayesian Robit Regression with Heavy-tailed
Priors



Robit Models with Heavy-tailed Priors

The heavy-tailed Robit model can be written as:

P(yi |xi ,β) = Tα0,ω0(xiβ)yi (1− Tα0,ω0(xiβ))1−yi , (4)

βj |λj ∼ N(0, λj), (5)

λj
iid∼ Inverse-Gamma(α1/2, α1ω1/2), (6)

where Tα0,ω0(·) is the CDF of t-distribution with degree freedom α0

and scale parameter
√
ω0

Integrating λj way in (5) and (6), we have

βj ∼ T (α1, ω1)

We fix α1 = 1, ω1 = exp(−10) after a seires of simulation studies.
We fix α0 = 1, ω0 = 0.5 so that Tα0,ω0(·) is similar to logistic
regression but is more robust to outliers.
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Restricted Gibbs Sampling with HMC

Given a previous state for (β, λ), we iteratively obtain a new state denoted
by (β̂, λ̂) as follows:

Step 1: For each j , draw a new λ̂j from the conditional distribution
f (λj |βj), that is,

λ̂j ∼ Inverse-Gamma

(
α1 + 1

2
,
α1ω1 + β2j

2

)
.

Step 2: Determine a subset of features to update in next step:

U = {j |λ̂j > η}

Step 3: Update βU = {βj |j ∈ U} by applying Hamiltonian Monte Carlo
(HMC) to the conditional distribution of βU . Other βj are
unchanged.
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Exploration of Many Modes with HMC

The major advantage of HMC is that it can travel efficiently according to
the least constrained direction when there are strong correlations between
features. As a result HMC is helpful to move from one posterior mode to
another one. A schematic demonstration of this property is shown below:
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Two Stage Sampling

For interpretation purpose, we implement two-stage sampling for robit
models when the number of features p is large (such as thousands):

Stage 1: We first apply the sampling scheme to the dataset with all p
features.

Stage 2: Choose only the top 100 features with the largest mean values in
MCMC samples. We apply the sampling scheme to the dataset
with only the 100 features selected in stage 1.
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Divide MCMC Samples to Find Feature Subsets

Our scheme is described as follows:

Step 1: Truncating small coefficients in each MCMC sample indexed by i
We set Ij ,i = 1 if |βj ,i | > 0.1×max{|β1,i |, . . . , |βp,i |}, and Ij ,i = 0
otherwise.

Step 2: Further discard the features with overall low frequency in step 1.

We calculate fj = 1
R

R∑
i=1

Ij ,i . We will discard a feature j if fj is

smaller than a pre-defined threshold, such as 5%.

Step 3: Find a list of feature subset by search unique columns in I . Each
unique column in I represents a different feature subset.
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Feature Subset Evaluation Using Cross-validation

Obtain Predictive Probabilities:
Given a selected feature subset S we apply LOOCV (Leave-one-out
Cross Validation) to dataset (Y ,X1:n,S) to obtain the predictive
probabilities p̂i (yi ) using penalized logistic regression (bayesglm).

Assessment Criteria:

ER (error rate):

ER =
1

n

n∑
i=1

I (ŷi 6= yi ), (7)

Average minus log-probability on observed yi (information criterion):

AMLP = −1

n

n∑
i=1

log(p̂i (yi )). (8)

AUC value: area under the curve of ROC.
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Section 3

Simulation Studies



Subsection 1

A Toy Example of Correlated Features



Data Generating Scheme

The mean of feature xj in class c is denoted by µcj , for c = 0, 1. We fix

µ0j = 0, µ1j = 2 for j = 1, 2.

The response yi and feature values x i = (xi1, xi2) for each case i are
generated as follows:

P(yi = c) = 1/2, for c = 0, 1, (9)

zi ∼ N(0, 1), εij ∼ N(0, 12), for j = 1, 2 (10)

xij = µyij + zi + 0.1εij , for j = 1, 2. (11)
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Demonstration of within-group selection
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Feature Subset Selection and Prediction Results

(a) Feature subsets selected by FBRHT

fsubsets freqs coefs AMLP ER AUC

1 0.56 2.62 0.37 0.185 0.91
2 0.42 2.58 0.37 0.180 0.91

1,2 0.02 0.67, 1.94 0.37 0.178 0.91

(b) LASSO, PLR (bayesglm) and Random Forest (RF)

Method coefs AMLP ER AUC

LASSO 1.15, 1.27 0.37 0.184 0.91
RF 1.26, 1.26 Inf 0.219 0.88

PLR 24.63, 24.53 0.37 0.184 0.91
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Subsection 2

Simulation Studies Using Datasets with Group Structure



Data Generating Scheme

Each dataset has p = 2000 features and n = 1200 cases, 200 of which are
used as training cases and the other 1000 cases are used as test cases.
With zij , εij , ei generated from N(0, 1), we generate the feature values xij
for i = 1, ..., n, j = 1, ..., p in four groups and the class label yi as follows:

xil = zi1 + 0.5εil , i = 1, ..., n, l = 1, ..., 50, (Group 1) (12)

xim = zi2 + 0.5εim, i = 1, ..., n,m = 51, ..., 100, (Group 2) (13)

xik = zi3 + 0.5εik , i = 1, ..., n, k = 101, ..., 150, (Group 3) (14)

xij ∼ N(0, 1), i = 1, ..., n, j = 151, ..., 2000, (Group 4) (15)

yi = 1 if (zi1 + zi2 + zi3)/
√

3 + 0.1ei > 0; = 0 otherwise. (16)
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A Graphical Representation (Structural Equations)
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Feature Subsets Selected by FBRHT

Table 1: “fsubsets” gives I.D. of features in each subset, “cvAMLP” - “cvAUC”
are cross-validatory predictive power measures of each feature subset.

fsubsets freqs cvAMLP cvER cvAUC

1 1,57,140 0.22 0.13 0.09 0.99
2 1,51,140 0.11 0.13 0.08 0.99
3 16,57,140 0.10 0.14 0.08 0.99
4 1,51,101 0.09 0.14 0.08 0.99
5 12,57 0.04 0.41 0.39 0.89
...
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Comparison of Top 3 Features

Table 2: Comparison of out-of-sample predictive power of different subsets
containing 3 features on a dataset with independent groups of features. The
predictive measures are obtained by applying bayesglm to make predictions for
the test cases.

Method fsubsets AMLP ER AUC

FBRHTtop 1,57,140 0.22 0.10 0.97
FBRHTopt 1,57,140 0.22 0.10 0.97
LASSO 16,57,61 0.46 0.22 0.87
GL 16,32,57 0.44 0.20 0.88
SGL 16,138,140 0.47 0.24 0.86
RF 28,50,67 0.46 0.22 0.86
PLR 12,32,218 0.63 0.34 0.72
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Comparing with Complete Subsets of Other Methods

Table 3: Comparison of feature selection and out-of-sample prediction
performance of different methods. The number of features are counted by
thresholding the absolute coefficients by 0.1 times the maximum.

(a) Numbers of selected features in respective group

FBRHTtop FBRHTopt FBRHTavg LASSO GL SGL RF PLR

Group 1 1 1 - 6 49 7 49 50
Group 2 1 1 - 5 50 10 49 50
Group 3 1 1 - 6 50 6 48 50
Group 4 0 0 - 13 341 12 14 1305
Total 3 3 ≤100 30 490 35 160 1455

(b) Out-of-sample predictive performance

ER 0.10 0.10 0.06 0.09 0.07 0.10 0.08 0.08
AMLP 0.22 0.22 0.15 0.21 0.22 0.24 0.38 0.18
AUC 0.97 0.97 0.99 0.97 0.99 0.97 0.98 0.98
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Replicated Results on 100 Datasets

Table 4: Comparison of feature selection and out-of-sample prediction
performance of different methods by averaging over 100 datasets with
independent group of features.

(a) Numbers of selected features in respective group

FBRHTtop FBRHTopt FBRHTavg LASSO GL SGL RF PLR

Group 1 1.00 1.07 - 6.01 49.95 6.20 47.82 50.00
Group 2 1.00 1.08 - 6.00 49.94 5.99 47.48 50.00
Group 3 1.00 1.06 - 5.94 49.95 6.04 48.34 50.00
Group 4 0.00 0.19 - 14.44 401.33 8.83 3.78 1297.68

Total 3.00 3.40 ≤100 32.39 551.17 27.06 147.42 1447.68

(b) Out-of-sample predictive performance

ER 0.05 0.06 0.04 0.08 0.06 0.08 0.10 0.08
AMLP 0.15 0.16 0.12 0.21 0.20 0.20 0.39 0.17

AUC 0.99 0.99 0.99 0.98 0.99 0.98 0.97 0.98
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Section 4

Real Data Analysis



Subsection 1

Analysis of Breast Cancer Methylation Data



Breast Cancer Methylation Data

The DNA methylation level of each sample was measured with
Human Methylation27 DNA Analysis BeadChip (GPL8490), which
includes 27,578 probes. log2 transformation was applied to the
original ratio of the methylation level.

Response of interest

48 samples with moderately estrogen receptor-positive (ER+).
53 samples with receptor-negative (ER-).
There are effective treatment methods (e.g. tamoxifen) for ER+
patients since cancer cells with ER+ depends on estrogen to grow.

We select top p=5000 genes (out of 27,578) with SAM for
classification model based analysis.

We are interested in finding DNA locations whose methylation levels
can predict ER+ and ER-.
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Comparison of Subsets of Top Features

Table 5: LOOCV predictive measures of feature subsets found from Breast Cancer
Data.

(a) Feature subsets given by FBRHT

fsubsets freqs cvAMLP cvER cvAUC

1 23,77 0.05 0.21 9/101 0.98
2 77,554 0.03 0.25 11/101 0.96
3 1,366,1795 0.02 0.11 4/101 0.99
4 23,77,1587 0.02 0.16 6/101 0.99
5 1,1526 0.02 0.23 12/101 0.96

(b) Feature subsets given by other methods

Method fsubsets cvAMLP cvER cvAUC

LASSO 25,266,614 0.27 10/101 0.95
GL 2256,1795,266 0.52 21/101 0.82
SGL 266,2256,1756 0.51 25/101 0.83
RF 10,8,103 0.32 13/101 0.93
PLR 1,2256,4832 0.27 12/101 0.95
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Comparing with Complete Subsets of Other Methods

Table 6: Comparison of out-of-sample predictive performance on Breast Cancer
Data.

FBRHTopt FBRHTtop FBRHTavg LASSO GL SGL RF PLR

No. of Genes 2.98 2.02 ≤ 100 39.57 2209.73 36.62 187.63 2667.47
ER×101 9 21 10 8 9 10 10 12
AMLP 0.33 0.51 0.33 0.28 0.27 0.42 0.34 0.33
AUC 0.96 0.88 0.91 0.94 0.94 0.95 0.93 0.94

4. Real Data Analysis/Analysis of Breast Cancer Methylation Data 30/36



Subsection 2

Analysis of Leukemia Microarray Data



Leukemia Microarray Data

Gene expression data (with Swegene Human DNA microarray
platform) on leukemia patients was collected at Lund University
Hospital and Linkoping University Hospital (Andersson et. al., 2007).
We downloaded the dataset from GEO (GSE7186).

Response of interest

98 samples with acute lymphoblastic leukemia (ALL)
23 samples with acute myeloid leukemia (AML)

We preprocessed the data using SAM and kept p = 5000 genes for
the following analysis.
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Comparison of Top Features

Table 7: LOOCV predictive measures of feature subsets found from Acute
Leukaemia Data.

(a) Feature subsets given by FBRHT

fsubsets freqs cvAMLP cvER cvAUC

1 32 0.38 0.06 2/121 1.00
2 30 0.18 0.07 4/121 0.99
3 36 0.09 0.09 2/121 0.99
7 30,35 0.02 0.03 1/121 1.00
8 32,35 0.02 0.03 1/121 1.00

(b) Feature subsets given by other methods

Method fsubsets cvAMLP cvER cvAUC

LASSO 32,35 0.03 1/121 1.00
GL 35,115 0.15 4/121 0.95
SGL 115,35 0.13 4/121 0.96
RF 36,28 0.07 4/121 1.00
PLR 1,5794 0.20 12/121 0.96
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Scatterplots of Top Features

Figure 1: Scatterplots of two feature subsets found from the leukamia data.
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Comparison with Complete Subsets of Other Methods

Table 8: Comparison of out-of-sample predictive performance on Breast Cancer
Data.

FBRHTtop FBRHTopt FBRHTavg LASSO GL SGL RF PLR

No. of Genes 1.00 1.95 ≤ 100 26.43 2783.26 50.34 149.33 3484.88
ER×121 3 5 2 1 0 2 2 10
AMLP 0.07 0.09 0.09 0.04 0.05 0.03 0.12 0.34
AUC 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
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Section 5

Conlusions and Discussions



Conclusions

FBRHT makes selection within groups automatically without a
pre-specified grouping structure. Meanwhile, the joint effects of
features from different groups can also be considered.

FBRHT finds succinct feature subsets, which are much easier to
interpret or comprehend based on existing biological knowledge, and
easier for further experimental investigations.

The succinct feature subsets found by FBRHT have comparable
predictive power as other much larger feature subsets found by other
methods.

The multiple feature subsets found by FBRHT provide multiple
explanations of the associations for scientists to further explore.
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Future Work

Applications to real high-throughput data analysis. I am involved in a
huge CFREF project which aims to “design” crops for helping feed
the world through transformative innovations in agriculture and food
production. Many high-throughput data arise in this project.

Improve the method for intepreting MCMC samples. A very
interesting method is the “reference” approach.

Extensions of fully Bayesian methods with heavy-tailed priors to other
models.

Fitting structural equaiton modelling to high-throughput data.
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