
Compressing Parameters In Bayesian High-order Models

Longhai Li∗ and Radford M. Neal†

∗Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada. Email: longhai@math.usask.ca
†Department of Statistics and Department of Computer Science, University of Toronto, Toronto, Canada. Email: radford@utstat.toronto.edu

Abstract

Bayesian classification and regression with high-order interactions is largely
infeasible because Markov chain Monte Carlo (MCMC) would need to be
applied with a great many parameters, whose number increases rapidly
with the order considered. We show how to make it feasible by effectively
reducing the number of parameters, exploiting the fact that many interac-
tions have the same values for all training cases. Our method uses a single
“compressed” parameter to represent the sum of all parameters associated
with a set of patterns that have the same value for all training cases. We
apply this method to logistic sequence models and demonstrated it with
an English text data set.

Predictor variables derived from interaction patterns

Below is a toy example with only 3 training cases and 2 binary (1/2)
features, illustrating the indicators whether interaction patterns occur.
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Facts:

• The number of predictor variables increases exponentially with the order
considered. This brings many difficulties:

– intensive computation, especially for Bayesian methods implemented
by Markov chain Monte Carlo (MCMC)

– overfitting the data with maximum likelihood method

• Many predictor variables have the same value for all training cases, for
example, the predictor variables enclosed by boxes of the same colour
in the above example. Namely, these interactions are expressed by the
same training cases. Particularly, when an interaction pattern of cer-
tain order is expressed by only 1 case, all interactions of higher order
expressed by this case have the same value. We exploit this fact to
reduce the number of parameters.

Compressing parameters

When groups of predictor variables have the same value for all training
cases, the likelihood function of a linear regression model depends only on
the sums over groups:
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We use priors as βgk ∼ N(0, σ2
gk) or βgk ∼ Cauchy(0, σgk), because

the priors of the sg’s can be found easily:
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The posterior of the sg’s given the training data D:

P (s | D) =
1

c(D)
L(s1, . . . , sG) P s

1 (s1) · · · P s
G(sG)

where P s
g is the prior density function of the compressed parameter sg.

Splitting compressed parameters

After obtaining the samples of sg’s using MCMC, we recover the original
parameters, using the splitting distribution:
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)
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)
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where Pgk is the prior density function of the original parameter βgk.

The splitting distribution is unrelated to D. We can directly

sample from it.

To save space, we can split sg temporarily for each test case.

Parameters for a test case:

2
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Compressed parameters:

S

Need only to split sg into two parts for a particular test case:
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Splitting sg into two parts

• Split a sum of Gaussian variables:
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• Split a sum of Cauchy variables:
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Being able to compute the CDF, we can use inversion method to sample
from the above distribution, with the inverse CDF found numerically.

The following graph demonstrates the splitting distribution when sampling
for independent β1 and β2 constrained to lie on the blue line.
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Logistic sequence models

We want to model P (xO+1 | x1, . . . , xO), where x1, . . . , xO, xO+1 is a
discrete sequence. We use a linear logistic model:

P (xO+1 = k | x1:O, β(1), . . . , β(K)) =
exp(l (x1:O, β(k)))

∑K
j=1 exp(l (x1:O, β(j)))

where

l (x1:O, β(k)) =
∑

P∈S

β
(k)
P I(x1:O ∈ P) = β

(k)
[0···0]

+

O
∑

t=1

β
(k)
[0···xt···xO]

where S is the set of all patterns of O or fewer of the preceding O symbols.

We use the following priors, where o(P) is the order of pattern P :

σt ∼ Inverse-Gamma(αt , (αt + 1) wt), for t = 0, . . . , O

β
(k)
P | σo(P) ∼ N(0, σ2

o(P)
) or Cauchy(0, σo(P)), for P ∈ S

Picture of a logistic sequence model

The picture below displays the regression coefficients of a binary sequence
model with 3 preceding states. The linear function l((x1, x2, x3), β) is
equal to the sum of β linked by straight lines.
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Remarks on logistic sequence models:

• By expressing l((x1, x2, x3), β) as the sum of parameters for interac-
tions from low order to high order, the predictive distributions given
similar preceding sequences are similar. This is a natural prior belief,
and helps avoid overfitting.

• We are not forced to use a short sequence for avoiding overfitting. Useful
high-order interactions can be discovered if some do exist. The model
will automatically adjust the complexity of the relationship.

Grouping parameters in logistic sequence models
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Experiments on English text

An online article, which introduces the Department of Statistics at the
University of Toronto, is encoded:

1 = vowel letters, 2 = consonant letters, 3 = all other characters
There are a total of 3930 characters, giving 3910 overlapped sequences of
length 21. We tested our method by predicting the 21st character based
on varying numbers of preceding characters.The first 1000 sequences were
used as training cases. The remaining 2910 were used as test cases.

The following graph displays the reduction of the number of parameters
and training time by MCMC.
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The following graph displays the prediction performance on test set mea-
sured by error rate and average minus log probability.
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We show the Markov chain traces (3 independent runs) for some particular
β, for example, ‘ CC:V’, the parameter for predicting that a vowel follows
“others”,“consonant”,“consonant”. The posterior of supposedly small β
(e.g. ‘CC:V’) concentrates more around 0 in the Cauchy model than in
the Gaussian model, but the posterior of supposedly large β (e.g. ‘ CC:V’)
favors much larger value in the Cauchy model than in the Gaussian model.
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Conclusions and discussions

• We propose a method to reduce the number of parameters in Bayesian
high-order models, with application to logistic sequence models. This
method can also be applied to general logistic classification models (see
Li, 2007).

• We demonstrate empirically that Cauchy distributions could be better
than Gaussian distributions as the priors for the regression coefficients
of high-order models for some problems.

• This method could be applied to many diverse problems, such as data
compression, speech recognition and bioinformatics.

Reference: Li, L. (2007), Bayesian Classification and Regression with

High Dimensional Features, Ph.D. thesis, University of Toronto


