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Problem description
Motivating Examples:
1) Many human complex traits may be related to interactions
of multilocus genes and environmental exposures. As re-
ported in the literature, the examples of such traits include
breast cancer, post-PTCA stenosis, essential hypertension,
atrial fibrillation and type 2 diabetes.
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2) It is believed that there exists long-range dependency
among nucleotides in “non-coding” region of human genome.
Considering this dependency in modeling nucleotide se-
quences will improve many statistical applications in genome,
such as haplotype inference and discovery of transcription-
factor binding sites.
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Statistical problem:
For discrete variables y, x1, . . . , xp, we want to model the predictive probability:

P (y|x1, . . . , xp)
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Difficulties with a naive method

A naive method for considering interactions: estimate the probability of y for
each combination of x1, . . . , xp:
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P̂ (y = +|Gene A, Gene B)

Difficulties: The number of combinations increases exponentially as p. When
p is large, there are very few observations in each cell. The estimates of the
probabilities are therefore very inaccurate; Considering models of lower order
makes the estimates more accurate, but at the risk of omitting useful high-order
interactions; Useful interaction patterns may have different orders.
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Regression models using interaction patterns

A toy example with only 3 cases and 3 binary (1/2) features
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Graphical representation of parameters:
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Bayesian logistic sequence model

We want to model P (xO+1 | x1, . . . , xO), where x1, . . . , xO, xO+1 is a discrete
sequence. We use a linear logistic model:

P (xO+1 = k | x1:O, β(1), . . . , β(K)) =
exp(l (x1:O, β(k)))

∑K

j=1 exp(l (x1:O, β(j)))

where

l (x1:O, β(k)) =
∑

P∈S

β
(k)
P

I(x1:O ∈ P) = β
(k)
[0···0] +

O
∑

t=1

β
(k)
[0···xt···xO ]

where S is the set of all patterns of O or fewer of the preceding O symbols.

We use the following priors, where o(P) is the order of pattern P:

log(σt) ∼ Normal(µt, wt), for t = 0, . . . , O

β
(k)
P

| σo(P) ∼ N(0, σ2
o(P)) or Cauchy(0, σo(P)), for P ∈ S
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Remarks on logistic sequence model

By expressing l((x1, x2, x3), β) as the sum of parameters for interactions from
low order to high order, we actually add a prior information that the predictive
probabilities P (x4|x1, x2, x3) are closer for similar x1, x2, x3.

We are not forced to use a short sequence for avoiding overfitting. Useful
high-order interactions can be discovered if some do exist. The model will
automatically adjust the complexity of the relationship.

When order O is large, the number of parameters is huge in this model. But,
we notice that many predictor variables have the same value f or all cases
in data. We will use this fact to compress parameters.
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Compressing parameters

When groups of predictor variables have the same value for all training cases, the
likelihood function of a linear regression model depends only on the sums over
groups:

Lβ(β11, . . . , β1,n1 , . . . , βG1, . . . , βG,nG
) = L

(

n1
∑

k=1

β1k, . . . ,

nG
∑

k=1

βGk

)

= L(s1, . . . , sG)

Since we use priors as βgk ∼ N(0, σ2
gk) or βgk ∼ Cauchy(0, σgk), the priors of

the sg ’s can be found easily:

sg ∼ N

(

0,

ng
∑

k=1

σ2
gk

)

or sg ∼ Cauchy

(

0,

ng
∑

k=1

σgk

)

The posterior of the sg ’s given the training data D:

P (s | D) =
1

c(D)
L(s1, . . . , sG) P s

1 (s1) · · · P s
G(sG)

where P s
g is the prior density function of the compressed parameter sg.
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Splitting compressed parameters

After obtaining the samples of sg ’s using MCMC, we recover the original parame-
ters, using the splitting distribution:

P (βg1, . . . , βg,ng−1 | sg) =

(

∏ng−1
k=1 Pgk(βgk)

)

Pg,ng

(

sg −
∑ng−1

k=1 βgk

)

P s
g (sg)

where Pgk is the prior density function of the original parameter βgk.

The splitting distribution is unrelated to D. We can directly sample from it.

The sampling procedure can be depicted as follows:

direct sampling
splitting s1 by

s1

β2 β3

Markov chain transition Markov chain transition Markov chain transition
. . . . . .

β1

direct sampling
splitting s3 by

s2 s3

splitting s2 by
direct sampling
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Splitting sg into two parts

The following graph demonstrates the splitting distribution when sampling for in-
dependent β1 and β2 constrained to lie on the blue line.
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An English text data

An online article, which introduces the Department of Statistics at the University
of Toronto, is encoded:

1 = vowel letters, 2 = consonant letters, 3 = all other characters

There are a total of 3930 characters, giving 3910 overlapped sequences of length
21.

We tested our method by predicting the 21st character based on varying numbers
of preceding characters.The first 1000 sequences were used as training cases.
The remaining 2910 were used as test cases.
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Parameter reduction
The following graph displays the reduction of the number of parameters and train-
ing time by MCMC.
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Prediction performance
The following graph displays the prediction performance on test set measured by
error rate and average minus log probability.
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Concluding remarks

We propose a method to reduce the number of parameters in Bayesian high-
order models, with application to logistic sequence models.

It is unnecessary to restrict the model complexity in Bayesian high-order mod-
els for statistical reason. With our compression method, restricting the model
complexity for computational reason is also unnecessary.
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