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Asymptotic Variance of an i.i.d. Monte Carlo Estimator

Suppose we want to evaluate the expectation µ of function f(x) w.r.t.

the distribution with p.d.f. π(x). If we can draw i.i.d. samples

X1, · · · , Xn from π(x), the Monte Carlo estimator of µ is given by

µ̂n =

∑n

i=1
f(Xi)

n

The Central Limit Theorem says

√
n(µ̂n − µ) →d N(0, σ2(f))

where

σ2(f) = Var(f(Xi)) = lim
n→+∞

nVar(µ̂n)
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Asymptotic Variance of an MCMC Estimator

When we can not draw i.i.d. samples, instead we obtain X1, · · · , Xn

from a Markov chain whose transition probability T has π(x) as its

unique stationary distribution. Under some regularity conditions, the

Central Limit Theorem still holds, but the asymptotic variance is no

longer σ2. It is defined by

σ2
T (f) = lim

n→+∞
nVar(µ̂n) = σ2 + 2

+∞
∑

i=1

CovT (f(X0, Xi))

Different Markov chain samplers can be compared based on this

asymptotic variance. T1 is said to be not less efficient than T2 if

σ2
T1

(f) ≤ σ2
T2

(f), for all f

Let denote above ordering regarding T1 and T2 by T1 ≥e T2
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Peskun’s Theorem(1973)

The state space X is finite. Let T1 and T2 are two reversible, aperiodic,

irreducible transition matrix w.r.t. π.

If

T1(i, j) ≥ T2(i, j), for all i 6= j ∈ X

then T1 ≥e T2
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Tierney’s Theorem(1998)

Tierney generalized Peskun’s theorem to general state space. Also a

weaker ordering was proposed:

Let T1 and T2 are two reversible, aperiodic, irreducible transition

kernels w.r.t. π.

If

CovT1
(f(X0), f(X1)) ≤ CovT2

(f(X0), f(X1)) for all f

then T1 ≥e T2.

This theorem says that for reversible Markov chains, that T1 has

smaller lag-1 correlation than T2 is sufficient to imply that it has

smaller asymptotic variance than T2.
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Existing Proofs

Peskun’s method: Differentiate the asymptotic variance that is expressed

in matrix form due to Kenney w.r.t. T (i, j) , then show that it is a

decreasing function of T (i, j).

Tierney’s method: In general space, a reversible Markov chain corresponds

to a self-joint operator. He resorted to the spectral decomposition of

self-joint operators to proof the result.

Neal’s method: Neal(2004) shows the Peskun’s theorem with an intuitive

and creative way by defining a block transition using the Delta difference of

the element (i, j) between T1 and T2.

However, all of above methods are lengthy and make the theorems seem

mysterious. Next I will show that, when the space is finite, the Tierney’s

theorem is actually just a simple corollary of a well-known fact regarding

positive-definite matrix. Also I will show that Peskun’s theorem is very easy

to obtain from Tieney’s theorem. The proof is shorter and more elementary

than Tierney’s.
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Matrix Expression of Asymptotic Variance

Let T be the transition matrix, and let (π1, · · · , πs) be the invariant

probability, where s is the number of states in X . Let

B =















π1

π2

. . .

πs















A =













π1 π2 · · · πs

π1 π2 · · · πs

· · · · · ·

π1 π2 · · · πs













(1)

Kenney(1963) shows that the asymptotic variance is given by

σ
2

T (f) = f
′
(

2B[I − (T − A)]−1
− B + BA

)

f

where f = (f1, · · · , fs)
′ . The inverse in above expression is guaranteed

existing for finite Markov chain. Peskun’s proof starts from this expression.
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The Joint Probability Matrix for the Successive States

BT =















π1T (1, 1) π1T (1, 2) · · · π1T (1, s)

π2T (2, 1) π2T (2, 2) · · · π2T (2, s)

· · · · · ·
πsT (s, 1) πsT (s, 2) · · · πsT (s, s)















The element (i, j) of BT is the joint probability of (X0 = i, X1 = j),

i.e. P (X0 = i, X1 = j), where X0 ∼ π and X1 is the next state of X0

on the Markov chain governed by T , i.e. X1 |X0 = i ∼ T (i, ·)
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New Proof of Tierney’s theorem

1) T is reversible w.r.t. π ⇐⇒ BT is a symmetric matrix. BA is also

symmetric. Therefore B(I − T + A) is symmetric.

2) Suppose X0 ∼ π and X1 be the next state of X0 on the Chain governed by

T , then

f
′
BTf =

∑

i,j∈X

fifjπiT (i, j) = E[f(X0)f(X1)]

f
′
Bf = E(f(X1)

2) = E(f(X0)
2)

f
′
BAf =

∑

i,j∈X

fiπiπjπj = (E(f(X0)))
2
≥ 0

So for f 6= 0,

2f
′
B(I − T + A)f = E(f(X0)

2) + E(f(X1)
2) − 2E[f(X0)f(X1)] + (E(f(X0)))

2

= E((f(X0) − f(X1))
2) + (E(f(X0)))

2
> 0

From 1) and 2), it follows that B(I − T + A) is positive definite matrix.
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New Proof of Tierney’s Theorem (Cont.)

3) Let T1 and T2 is two reversible transition matrices,

σ2
T1

(f) ≤ σ2
T2

(f) for all f ∈ Rs − {0}
⇐⇒ (Bf)′(B − BT1 + BA)−1(Bf) ≤ (Bf)′(B − BT2 + BA)−1(Bf)

⇐⇒ (B − BT1 + BA)−1 ≤ (B − BT2 + BA)−1

⇐⇒ B − BT1 + BA ≥ B − BT2 + BA

⇐⇒ f ′BT1f ≤ f ′BT2f for all f ∈ Rs − {0}
⇐⇒ CovT1

(f(X0), f(X1)) ≤ CovT2
(f(X0), f(X1)) for all f ∈ Rs − {0}

In the fourth line of above, we use a simple fact regarding the positive

definite matrix: For A > 0, B > 0, A ≥ B ⇐⇒ A−1 ≤ B−1
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Proof of Peskun’s Theorem

Note that

ET

(

(f(X0) − f(X1))
2
)

= ET

(

((f(X0) − µ) − (f(X1) − µ))2
)

= 2Var(f(X0)) − 2CovT (f(X0), f(X1))

Hence,

CovT1
(f(X0), f(X1)) ≤ CovT2

(f(X0), f(X1))

⇐⇒ ET1

(

(f(X0) − f(X1))
2
)

≥ ET2

(

(f(X0) − f(X1))
2
)

⇐⇒
∑

i,j∈X

(fi − fj)
2πiT1(i, j) ≥

∑

i,j∈X

(fi − fj)
2πiT2(i, j)

⇐= T1(i, j) ≥ T2(i, j), for all i 6= j ∈ X
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Discussions

• This proof is the simplest to my knowledge for these theorems

restricted in finite Markov chains. It makes these theorems look

quite straigtforward.

• My original purpose is to show similar things for nonreversible

chains. This proof points out that the essential step for proving

Tierney’s theorem is to show A > B ⇒ A−1 < B−1. When A and

B are symmetric, correspondingly the Markov chains are reversible,

this is true. We present a new topic for mathematical people to

work on: How to relax the condition of symmetry to obtain the

above conclusion?

• There might be similar proofs for Markov chains on general space

using the generalized concepts in operators theory, like inverse

operator, inner product.
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