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Asymptotic Variance of an i.i.d. Monte Carlo Estimator

Suppose we want to evaluate the expectation u of function f(x) w.r.t.
the distribution with p.d.f. w(x). If we can draw i.i.d. samples
Xy, -+, X, from 7(x), the Monte Carlo estimator of u is given by
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The Central Limit Theorem says

V(iin = p) =% N(0,0%(f))

where

o?(f) = Var(f(X;)) = lim nVar(i,)

n——+oo



Asymptotic Variance of an MCMC Estimator

When we can not draw 1.i.d. samples, instead we obtain Xy, ---, X,
from a Markov chain whose transition probability 7" has 7(x) as its
unique stationary distribution. Under some regularity conditions, the
Central Limit Theorem still holds, but the asymptotic variance is no
longer o2. It is defined by

+o00
o3 (f) = |l nVar(i,) = o® +23 " Covr(f(X. X,)
1=1

Different Markov chain samplers can be compared based on this

asymptotic variance. T} is said to be not less efficient than T5 if
or,(f) < o1, (f), for all f

Let denote above ordering regarding 17 and 15 by 17 >¢ 15



Peskun’s Theorem(1973)

The state space X is finite. Let 17 and 715 are two reversible, aperiodic,

irreducible transition matrix w.r.t. .

If
Ti(i,7) > Ts(i,j), foralli #j€ X

then T1 Ze T2



Tierney’s Theorem(1998)

Tierney generalized Peskun’s theorem to general state space. Also a
weaker ordering was proposed:

Let 17 and 15 are two reversible, aperiodic, irreducible transition

kernels w.r.t. .

If

Covr, (f(Xo), f(X1)) < Covr, (f(Xo), f(X1)) for all f
then T1 Ze TQ.

This theorem says that for reversible Markov chains, that T} has
smaller lag-1 correlation than 75 is sufficient to imply that it has

smaller asymptotic variance than 75.



Existing Proofs

Peskun’s method: Differentiate the asymptotic variance that is expressed
in matrix form due to Kenney w.r.t. T'(i,5) , then show that it is a

decreasing function of T'(z, 7).

Tierney’s method: In general space, a reversible Markov chain corresponds
to a self-joint operator. He resorted to the spectral decomposition of

self-joint operators to proof the result.

Neal’s method: Neal(2004) shows the Peskun’s theorem with an intuitive
and creative way by defining a block transition using the Delta difference of

the element (7, j) between T1 and T%.

However, all of above methods are lengthy and make the theorems seem
mysterious. Next I will show that, when the space is finite, the Tierney’s
theorem is actually just a simple corollary of a well-known fact regarding
positive-definite matrix. Also I will show that Peskun’s theorem is very easy
to obtain from Tieney’s theorem. The proof is shorter and more elementary

than Tierney’s.



Matrix Expression of Asymptotic Variance

Let T be the transition matrix, and let (7, -,

probability, where s is the number of states in X'. Let
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Kenney(1963) shows that the asymptotic variance is given by

or(f)=f" (2B[I - (T — A)]"' — B+ BA) f

where f = (f1,--, fs)’ . The inverse in above expression is guaranteed

existing for finite Markov chain. Peskun’s proof starts from this expression.



The Joint Probability Matrix for the Successive States

[ mT(1,1) mT(1,2) - mT(Ls) )
BT _ 7T2T(2, 1) 7T2T(2, 2) s 7T2T(2, S)
\ 7 T(5,1) mT(s,2) - wT(s,5) |

The element (7, j) of BT is the joint probability of (Xg =i, X; = j),
i.e. P(Xg=1,X1 =), where Xy ~ m and X; is the next state of X
on the Markov chain governed by T, i.e. X7 |Xg =1~ T(1,")



New Proof of Tierney’s theorem

1) T is reversible w.r.t. m1 <= BT is a symmetric matrix. BA is also

symmetric. Therefore B(I —T + A) is symmetric.

2) Suppose Xy ~ 7 and X; be the next state of Xy on the Chain governed by
T, then

['BTf = > fifimiT(i,5) = E[f (Xo) f(X1))
['Bf = E(f(X1)") = E(f(Xo0)")
f'BAf = ) fimmm = (E(f(X0)))* > 0
So for f # 0,
2f BU-T+A)f = E(f(Xo0)*)+E(f(X1)?) = 2E[f(Xo0)f(X1)] + (E(f(X0)))”
= E((f(Xo) = f(X1))*) + (E(f(X0)))* > 0

From 1) and 2), it follows that B(I — T + A) is positive definite matrix.



New Proof of Tierney’s Theorem (Cont.)

3) Let T7 and T5 is two reversible transition matrices,

o7, (f) < oz,(f) for all f e R*—{0}

(Bf) (B — BT\ + BA)"*(Bf) < (Bf)(B — BT> + BA)™*(Bf)
(B— BT, + BA)™' < (B—- BT, +BA)™*
B—-BT,+BA>B— BT, + BA

f'BTif < f'BT»f for all f € R® —{0}

Covr, (f(Xo), f(X1)) < Covr, (f(Xo), f(X1)) for all f € R® — {0}

[ A

In the fourth line of above, we use a simple fact regarding the positive
definite matrix: For A > 0,B >0, A> B «<— A~! < B!
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Note that

Proof of Peskun’s Theorem

Er ((f(Xo) = f(X1))%) = Er(((f(Xo) — ) — (f(X1) — p))?)

Hence,

—
<~

= 2Var(f(Xo)) — 2Covr (f(Xo), f(X1))

i,jEX i,jEX
Ti(i,7) > Ts(i,j), foralli #j€ X
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Discussions

e This proof is the simplest to my knowledge for these theorems
restricted in finite Markov chains. It makes these theorems look
quite straigtforward.

e My original purpose is to show similar things for nonreversible
chains. This proof points out that the essential step for proving
Tierney’s theorem is to show A > B = A~! < B~!. When A and
B are symmetric, correspondingly the Markov chains are reversible,
this is true. We present a new topic for mathematical people to
work on: How to relax the condition of symmetry to obtain the

above conclusion?

e There might be similar proofs for Markov chains on general space
using the generalized concepts in operators theory, like inverse

operator, inner product.
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