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1) Principle of DNA Microarray Technigues

2) Pre-processing an affymetrix data related to prostate
cancer with Bi oconduct or tools

3)A Simple Example of Using Expression Data:

Finding differential genes related to a phenotype variable
using univariate screening.
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Part |

Principle of DNA Microarray Technigues
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The genetic information is stored in the DNA molecules.
When the cells are producing proteins, the expression of
genetic information occurs in two stages:

1)transcription, during which DNA is transcribed into mRNA

2)translation, during which mRNA is translated to produce
proteins.

DNA -> mRNA -> protein

During this process, there are other important aspects of
regulation, such as methylation, alternative splicing, which
controls which genes are transcribed in different cells.
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« To Investigate activities in different cells, we could measure
protein levels. However, this is still very difficult.

« Alternatively, we can measure the abundance of all
MRNAs (transcriptome) in cells. mRNA or transcript
abundance sensitively reflect the state of a cell:

- Tissue source: cell type, organ.
- Tissue activity and state:
- Stage of cell development, growth, death.
« Cell cycle.
* Disease or normal.
« Response to therapy, stress.
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DNA Microarray Is based on the base-paring rules, which are
used in DNA replication and transcription of DNA to mRNA.

Four nucleotide bases:
purines: A, G
pyrimidine: T, C

-------

A pairs with T, 2 H bonds
C pairs with G, 3 H bonds

In transcribing DNA to mRNA,
A pairs with Uracil in mRNA

-------
.......
.......

Mucleatide
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« We can use DNA single strands to make probes
representing different genes.

* In principle, the mRNA that complements a probe

seguence by the base-paring rules will be more likely to
bind (or hybridize) to the probe.

« We measure mRNA levels of a sample by looking at the
hybridization levels to different probes.
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The main types of gene expression assays:
« Serial analysis of gene expression (SAGE);

Short oligonucleotide arrays (Affymetrix);

Long oligonucleotide arrays (Agilent Inkjet);

Fibre optic arrays (lllumina);

Spotted cDNA arrays (Brown/Botstein).
RNA-seq.
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 Probes: DNA sequences spotted on the array

 Targets: Fluorescent cDNA samples synthesized from
MRNA samples following base-paring rules.

 The ratio of the red and fluorescence intensities for
each spot is indicative of the relative abundance of the
corresponding DNA probe in the two nucleic acid target
samples.
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Prepare cDNA target Brepare MICTroarray
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- Each gene or portion of a gene is represented by 16 to 20
oligonucleotides of 25 base-pairs.

« Probe: an oligonucleotide of 25 base-pairs, i.e., a 25-metr.

- Perfect match (PM): A 25-mer complementary to a
reference sequence of interest (e.g., part of a gene).

- Mismatch (MM): same as PM but with a single
homomeric base change for the middle (13th) base
(transversion purine <-> pyrimidine, G <->C, A <->T) .

* Probe-pair: a (PM,MM) pair.

« The purpose of the MM probe design is to measure non-
specific binding and background noise.

 Affy ID: an identifier for a probe-pair set.
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GeneChip® Expression Array Design

mMRBNA reference sequence

Spaced DNA probe pai
Reference sequence ,/' " & p pairs

TGTGATGGTGGGAATGGGTCAGAA'GIGAGTDCTATGTGGGTGACGAGGCG

4 TTACCCAGTCTTCICTGAGGATACACCC,&C Perfect Match Oligo
_TTACCCAGTCTTGICTGAGGATACACCCAC  Mismatch Oligo

. Pertect match probe cells
Fluorescence Intensity Image
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Mismatch probe cells

Figure 1-3 Expression tiling strategy
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Part Il

Pre-processing an affymetrix data related to prostate cancer
with Bioconductor tools

Preliminary:

Install bioconductor and packages:

> source("http://bioconductor.org/biocLite. R")
> pbiocLite ("affy") ## install affy package

> pbiocLite ("oligo") ## install oligo package
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 Place raw data (CEL files) of all arrays in a directory
» Import CEL Data

> |1 brary ("affy")
> Prostate <- ReadAffy()
# Prostate Is an affyBatch cl ass obj ect

* Access Meta information

> probeNanmes( Prost at e)

> feat ureNanes(Prostate)

> pData (Prostate) # access phenotype data
> annot ati on (Prostate)

* Access Probe-level PM Data
> pm (Prostate, "1001 at")

Introduction to DNA Microarray Data 7 November 2014 17/44



 Display intensity of probeset (gene) "1001_at"
> matplot(t(pm Prostate, "1001 at")), type ="1")

* Show boxplots of 20 arrays on probeset “1001_at”
> boxpl ot (pm(Prostate, "1001 at")[, 1:20])
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Draw smoothed histograms of all probes of 50 arrays
> hist (Prostate[, 1:50], col = 1:50)
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« A generic model for the value of the intensity Y of a single
probe on a microarray Iis given by

Y=B+aS

where B is background noise, usually composed of optical
effects and non-specific binding, a is a gain factor, and S Is
the amount of measured specific binding.

« The signal S is considered a random variable as well and
accounts for measurement error and probe effects:

log(S)=0+qp+e

Here O represents the logarithm of the true abundance of a
gene, @ Is a probe-specific effect, and € accounts for
measurement error.
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Many background correction methods have been proposed in
the microarray literature. Two examples:

* MAS 5.0: The chip is divided into a grid of k (default k =
16) rectangular regions. For each region, the lowest 2% of
probe intensities are used to compute a background value
for that grid.

* RMA convolution: The observed PM probes are modelled
as the sum of a Gaussian noise component, B, with mean
U and variance a2 and an exponential signal component,
S. Based on this model, adjust Y with:

E(S|Y:y):a+b®?()b_)|_®((%b))_l
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 Find available methods for background correction
> pbgcorrect. net hods()

[1] "bg.correct" "nms" "none" "rm"

 Correct for background with rma convolution method

> Prostate.bg.rma <- bg.correct (Prostate, nethod =
11 r rm")
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Matplot of intensities of probeset “1001_at” of 20 normal tissues:
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boxplot of intensities of probeset “1001_at” on 20 normal tissues:
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Smoothed histogram of all probe intensities of 50 arrays (tissues)
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Normalization refers to the task of manipulating data to make
measurements from different arrays comparable. One characterization is
that the gain factor a varies for different arrays. Many methods are
proposed to normalize microarray data. Two examples:

- Scaling: A baseline array is chosen and all the other arrays are
scaled to have the same mean intensity as this array.

- Quantile normalization: Impose the same empirical distribution of
Intensities to all arrays.Transform each value with

Xi = FL [G(x)],

where G is estimated by the empirical distribution of each array and F
IS the empirical distribution of the averaged sample quantiles.
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x=F~-1(G(x))

g(x) f(x)
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« Check available methods for normalizing
> normal i ze. met hods ( Prostate)

[1] "constant” “contrasts" "I nvariantset"
[4] "I oess" "met hods™ "gspl i ne"

[ 7] "quantiles" "quanti | es. robust™ "vsn"

[ 10] "quantil es. probeset” "scaling"

« Normalize with quantiles method

> Prostate.normquantile <- nornmalize
(Prostate.bg.rma, nethod = "quantil es")
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Matplot of intensities of probeset “1001_at” of 20 normal tissues:

Before Normalization After Normalization
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boxplot of intensities of probeset “1001_at” on 20 normal tissues:

Before Normalization

After Normalization
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Smoothed histogram of log intensities of all probes of 50 arrays (tissues)
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« Check out available methods for summarizing intensities a
probeset into a single expression value:

> express. sunmary. st at. net hods()

« Use a few 3-step generic functions, such as expr esso
and t hr eest ep, which also do background correction and
normalization, as well as correction for PM values with MM
values If desired. For example:

Prostate_eset nedpol <- expresso(Prostate,

normal i ze. net hod = "quantil es",
bgcorrect. nmethod = "rm",
pntorrect. method = "pnonly",
summary. net hod = "nmedi anpol i sh")
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 To obtain an expression measure, assume that for each
nrobe set n, the background-adjusted, normalized, and
og-transformed PM intensities, denoted with Y}, , follow a

Inear additive model:
Yin =Hint 00+, =1,...,1, j=1,...,3, n=1,...,N

with p. representing the log scale expression level for array
, a; a probe affinity effect, and ¢; representing an

iIndependent identically distributed error term with mean 0.

« The estimate of p;, gives the expression measures for
probe set n on array |I.
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* There are also specialized functions that do all of the
three steps, such as rma and gcr ma. In r ma function,
RMA is used for background correction, gquantile is used
for normalization, and a robust multi-array method Is
used to summarize intensities of probesets.

- Using rma
> Prostate eset rnma <- rma (Prostate)
- Using gcrma
> Prostate _eset _gcrma <- gcrna (Prostate)

* The results, such as Prost ate_eset rma, are an
Expr essi onSet object.
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Boxplots of log expression values of all 12625 genes of 20 arrays

Using RMA
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Smoothed histogram of log expression values of all 12625 of 50 arrays

Using RMA
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We need only three commands to produce expression
matrix from CEL data files:

- read CEL data into af f yBat ch object:
> Prostate <- ReadAffy()

* Preprocess Probe-level data and generate
Expr essi onSet object:

> Prostate _eset rma <- rma (Prostate)

In this step, one can choose other preprocessing
functions too.

« Access expression values in matrix
> exprs(Prostate eset rmm)
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Part Il
A Simple Example of Using Expression Data:

Finding differential genes related to a phenotype variable
using univariate screening
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« Specify phenotype and design data
> cancer <- c(rep (1, 50), rep (2, 52))

 Fit linear model for each gene as a response
> fit rma <- InFit (Prostate eset rma, cancer)

« Compute moderated t-statistics and others by
empirical Bayes moderation of the standard errors.

> efit _rnma <- eBayes (fit)

« Extract a table of the top-ranked genes

> topTable rma <- topTable (efit_rma, nunber = 20)

« Find a list of top genes (Probe ID)
> topgenes rma <- rownanes (topTable rm)
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A snapshot of top genes table:

> head (topTabl e rnm)

41468 _at
37639 _at
37366 _at
41706_at
36491 at
1740 g _at

| ogFC AveExpr
4. 356643 6.920753
5.087711 8. 324154
4.175774 6. 743498
3.774081 6.132773
3.503627 5.665337
3. 799499 6.088183
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A quick sample

|1 brary(" GO db") ## (Go dat abase
|1 brary("hgu95av2. db") ## gene chip (platforn database

## To list the kinds of things that can be retrieved
> col ums( hgu95av2. db)

## |1 st ENTREZI D, GENENAMES wth probe id in topgenes rma
> sel ect (hgu95av2. db, topgenes rma, c("ENTREZI D', " GENENAME"),
" PROBEI D")

## find and extract the GO i1ds associated with the first i1d
> O top <- select(hgu95av2.db, topgenes rmg[2], "GO, "PROBEID")

## use GO. db to find the Terns associated with GO top
head(sel ect (GO. db, GO top$GO "TERM', "GO D'))
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A Snapshot of GO terms related the top selected gene:
> head(sel ect (G0 db, GO top$GO "TERM', "GO D"))

GO D TERM
1 GO 0004252 serine-type endopepti dase activity
2 GO 0005515 protei n binding
3 GO 0005789 endopl asm c reticul um menbr ane
4 GO 0005886 pl asma nmenbr ane
5 &0 0005887 integral conponent of plasma nenbrane
6 GO 0005911 cell-cell junction
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« Today, It Is very easy to generate and analyze micorarray
expression matrix with bi oconduct or tools

- Microarray data have many limitations. The actual mMRNA
signals are contaminated by various noise, including
background noise, varying gaining factor, and cross-
hybridization noise. In addition, multiple probe sets
represent the same gene.

 RNA-Seq Is a powerful technology that is predicted to
replace microarrays for transcriptome profiling. RNA-Seq
avoids technical issues in microarray studies related to
probe performance such as cross-hybridization. However,
the cost of RNA-seq is still too high. Also, the tools for
RNA-Seq data analysis are far from mature.
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« Gentleman, Robert, Vincent J. Carey, Wolfgang Huber,
Rafael A. Irizarry, and Sandrine Dudoit. Bioinformatics and
Computational Biology Solutions Using R and
Bioconductor. Springer, 2005.

The book is free and comprehensive.

* http://www.bioconductor.org. The website contains a large
archive of software documentations, workshop slides, and
workflow examples for different tasks.
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