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Outline

1)Principle of DNA Microarray Techniques

2)Pre-processing an affymetrix data related to prostate 
cancer with Bioconductor tools

3)A Simple Example of Using Expression Data: 

Finding differential genes related to a phenotype variable 
using univariate screening.



Introduction to DNA Microarray Data 4/44

Part I

Principle of DNA Microarray Techniques
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Central Dogma of Molecular Biology 
The genetic information is stored in the DNA molecules. 
When the cells are producing proteins, the expression of 
genetic information occurs in two stages:

1) transcription, during which DNA is transcribed into mRNA

2) translation, during which mRNA is translated to produce  
proteins.

                         DNA  ->  mRNA  -> protein 

During this process, there are other important aspects of 
regulation, such as methylation, alternative splicing, which 
controls which genes are transcribed in different cells.
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Central Dogma of Molecular Biology 
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Transcriptome

● To investigate activities in different cells, we could measure 
protein levels. However, this is still very difficult.

● Alternatively, we can measure the abundance of all 
mRNAs (transcriptome) in cells. mRNA or transcript 
abundance sensitively reflect the state of a cell:

– Tissue source: cell type, organ.
– Tissue activity and state:

● Stage of cell development, growth, death. 
● Cell cycle.
● Disease or normal.
● Response to therapy, stress.
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Base-paring Rules in DNA and RNA

Four nucleotide bases:  
purines: A, G
pyrimidine: T, C

A pairs with T, 2 H bonds 
C pairs with G, 3 H bonds

In transcribing DNA to mRNA, 
A pairs with Uracil in mRNA

DNA Microarray is based on the base-paring rules, which are 
used in DNA replication and transcription of DNA to mRNA.
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Hybridization

● We can use DNA single strands to make probes 
representing different genes.
 

● In principle, the mRNA that complements a probe 
sequence by the base-paring rules will be more likely to 
bind (or hybridize) to the probe.

● We measure mRNA levels of a sample by looking at the 
hybridization levels to different probes.   
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Hybridization
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Types of Gene Expression Assays

The main types of gene expression assays:
● Serial analysis of gene expression (SAGE);
● Short oligonucleotide arrays (Affymetrix);
● Long oligonucleotide arrays (Agilent Inkjet); 
● Fibre optic arrays (Illumina);
● Spotted cDNA arrays (Brown/Botstein).
● RNA-seq.
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Spotted DNA Microarrays

● Probes:  DNA sequences spotted on the array
● Targets: Fluorescent cDNA samples synthesized from 

mRNA samples following base-paring rules.
● The ratio of the red and green fluorescence intensities for 

each spot is indicative of the relative abundance of the 
corresponding DNA probe in the two nucleic acid target 
samples.
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Spotted DNA Microarrays
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Oligonucleotide chips (Affymetrix)
● Each gene or portion of a gene is represented by 16 to 20 

oligonucleotides of 25 base-pairs.
● Probe: an oligonucleotide of 25 base-pairs, i.e., a 25-mer.

– Perfect match (PM): A 25-mer complementary to a 
reference sequence of interest (e.g., part of a gene).

– Mismatch (MM): same as PM but with a single 
homomeric base change for the middle (13th) base 
(transversion purine <-> pyrimidine, G <->C, A <->T) .

● Probe-pair: a (PM,MM) pair. 
● The purpose of the MM probe design is to measure non-

specific binding and background noise.
● Affy ID: an identifier for a probe-pair set.
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Probe-pair Set
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Part II 

Pre-processing an affymetrix data related to prostate cancer 
with Bioconductor tools

Preliminary: 

Install bioconductor and packages:
> source("http://bioconductor.org/biocLite.R")

> biocLite ("affy") ## install affy package

> biocLite ("oligo") ## install oligo package
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Import and Access Probe-level Data
● Place raw data (CEL files) of all arrays in a directory
● Import CEL Data
> library ("affy")

> Prostate <- ReadAffy() 

# Prostate is an affyBatch class object

● Access Meta information
> probeNames(Prostate)
> featureNames(Prostate)  
> pData (Prostate) # access phenotype data
> annotation (Prostate)

● Access Probe-level PM Data
> pm (Prostate, "1001_at")
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Visualize Raw Probe-level Data
● Display intensity of probeset (gene) "1001_at" 
   > matplot(t(pm(Prostate, "1001_at")),  type = "l”)
● Show boxplots of 20 arrays on probeset “1001_at”
> boxplot (pm(Prostate, "1001_at")[,1:20])
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Visualize Raw Probe-level Data
Draw smoothed histograms of all probes of 50 arrays
> hist (Prostate[,1:50], col = 1:50)
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A Generic Error Model

● A generic model for the value of the intensity Y of a single 
probe on a microarray is given by

where B is background noise, usually composed of optical 
effects and non-specific binding, α is a gain factor, and S is 
the amount of measured specific binding.

● The signal S is considered a random variable as well and 
accounts for measurement error and probe effects:

Here θ represents the logarithm of the true abundance of a 
gene, φ is a probe-specific effect, and ε accounts for 
measurement error. 

Y=B+αS

log(S )=θ+ϕ+ϵ
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Background Correction

Many background correction methods have been proposed in 
the microarray literature. Two examples:
● MAS 5.0: The chip is divided into a grid of k (default k = 

16) rectangular regions. For each region, the lowest 2% of 
probe intensities are used to compute a background value 
for that grid. 

● RMA convolution: The observed PM probes are modelled 
as the sum of a Gaussian noise component, B, with mean 
μ and variance σ2 and an exponential signal component, 
S. Based on this model, adjust Y with: 
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Background Correction

● Find available methods for background correction
> bgcorrect.methods()

[1] "bg.correct" "mas"        "none"       "rma" 

● Correct for background with rma convolution method
> Prostate.bg.rma <- bg.correct (Prostate, method = 
"rma")
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Background Correction
Matplot of intensities of probeset “1001_at” of 20 normal tissues:
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Background Correction
boxplot of intensities of probeset “1001_at” on 20 normal tissues:
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Background Correction
Smoothed histogram of all probe intensities of 50 arrays (tissues)
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Normalization

Normalization refers to the task of manipulating data to make 
measurements from different arrays comparable. One characterization is 
that  the gain factor α varies for different arrays.  Many methods are 
proposed to normalize microarray data.  Two examples:
● Scaling: A baseline array is chosen and all the other arrays are 

scaled to have the same mean intensity as this array. 
● Quantile normalization: Impose the same empirical distribution of 

intensities to all arrays.Transform each value with 

xi = F−1 [G(xi)], 

where G is estimated by the empirical distribution of each array and F 
is the empirical distribution of the averaged sample quantiles. 
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Quantile Normalization
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Normalization

● Check available methods for normalizing
> normalize.methods (Prostate)
[1] "constant"           "contrasts"          "invariantset"      
[4] "loess"              "methods"            "qspline"           
[7] "quantiles"          "quantiles.robust"   "vsn"               
[10] "quantiles.probeset" "scaling"  

● Normalize with quantiles method
> Prostate.norm.quantile <- normalize 
(Prostate.bg.rma, method = "quantiles")
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Normalization
Matplot of intensities of probeset “1001_at” of 20 normal tissues:
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Normalization
boxplot of intensities of probeset “1001_at” on 20 normal tissues:
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Normalization
Smoothed histogram of log intensities of all probes of 50 arrays (tissues)
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Generate Expression Values

● Check out available methods for summarizing intensities a 
probeset into a single expression value:
> express.summary.stat.methods()

● Use a few 3-step generic functions, such as expresso 
and threestep, which also do background correction and 
normalization, as well as correction for PM values with MM 
values if desired. For example:
Prostate_eset_medpol <- expresso(Prostate, 

                         normalize.method = "quantiles",

                         bgcorrect.method = "rma", 

                         pmcorrect.method = "pmonly",

                         summary.method = "medianpolish")
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RMA Summary of Probe-level Intensities

● To obtain an expression measure,  assume that for each 
probe set n, the background-adjusted, normalized, and 
log-transformed PM intensities, denoted with Yijn , follow a 
linear additive model:

Yijn =μin+αjn+εijn, i=1,...,I,  j=1,...,J, n=1,...,N 

with μi representing the log scale expression level for array 
i, αj a probe affinity effect, and εij representing an 

independent identically distributed error term with mean 0. 

● The estimate of μin gives the expression measures for 
probe set n on array i.
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● There are also specialized functions that do all of the 
three steps, such as rma and gcrma. In rma function, 
RMA is used for background correction, quantile is used 
for normalization, and a robust multi-array method is 
used to summarize intensities of probesets.

– Using rma 
> Prostate_eset_rma <- rma (Prostate)

– Using gcrma
> Prostate_eset_gcrma <- gcrma (Prostate)

● The results, such as Prostate_eset_rma, are an 
ExpressionSet object.  

Generate Expression Values
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Generate Expression Values
Boxplots of log expression values of all 12625 genes of 20 arrays
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Generate Expression Values
Smoothed histogram of log expression values of all 12625 of 50 arrays
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A Quick Summary for Part II

We need only three commands to produce expression 
matrix from CEL data files:
● read CEL data into affyBatch object:

> Prostate <- ReadAffy()

● Preprocess Probe-level data and generate  
ExpressionSet object:

> Prostate_eset_rma <- rma (Prostate)

In this step, one can choose other preprocessing 
functions too. 

● Access expression values in matrix
> exprs(Prostate_eset_rma)
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Part III 

A Simple Example of Using Expression Data: 

Finding differential genes related to a phenotype variable 
using univariate screening
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Generate Top Genes Table

● Specify phenotype and design data
> cancer <- c(rep (1, 50), rep (2, 52))

● Fit linear model for each gene as a response
> fit_rma <- lmFit (Prostate_eset_rma, cancer)

● Compute moderated t-statistics and others by 
empirical Bayes moderation of the standard errors.
> efit_rma <- eBayes (fit)

● Extract a table of the top-ranked genes
> topTable_rma <- topTable (efit_rma, number = 20)

● Find a list of top genes (Probe ID)
> topgenes_rma <- rownames (topTable_rma)
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Generate Top Genes Table

A snapshot of top genes table:
> head (topTable_rma)

             logFC  AveExpr        t      P.Value    adj.P.Val        B

41468_at  4.356643 6.920753 40.79516 5.549054e-67 7.005680e-63 142.5652

37639_at  5.087711 8.324154 39.22109 2.864858e-65 1.260118e-61 138.6458

37366_at  4.175774 6.743498 39.20376 2.994341e-65 1.260118e-61 138.6019

41706_at  3.774081 6.132773 38.32262 2.896583e-64 9.142341e-61 136.3449

36491_at  3.503627 5.665337 37.30346 4.232732e-63 1.068765e-59 133.6760

1740_g_at 3.799499 6.088183 36.83541 1.481559e-62 3.117447e-59 132.4287
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Access Annotation Information

A quick sample

library("GO.db") ## Go database
library("hgu95av2.db") ## gene chip (platform) database

## To list the kinds of things that can be retrieved
> columns(hgu95av2.db)

## list ENTREZID, GENENAMES with probe id in topgenes_rma
> select(hgu95av2.db, topgenes_rma, c("ENTREZID","GENENAME"), 
"PROBEID")

## find and extract the GO ids associated with the first id
> GO_top <- select(hgu95av2.db, topgenes_rma[2], "GO", "PROBEID")

## use GO.db to find the Terms associated with GO_top
head(select(GO.db, GO_top$GO, "TERM", "GOID"))
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Access Annotation Information

A Snapshot of GO terms related the top selected gene:
> head(select(GO.db, GO_top$GO, "TERM", "GOID"))

        GOID                                  TERM
1 GO:0004252    serine-type endopeptidase activity

2 GO:0005515                       protein binding

3 GO:0005789        endoplasmic reticulum membrane

4 GO:0005886                       plasma membrane

5 GO:0005887 integral component of plasma membrane

6 GO:0005911                    cell-cell junction
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Conclusions and Discussions

● Today, it is very easy to generate and analyze micorarray 
expression matrix with bioconductor tools

● Microarray data have many limitations. The actual mRNA 
signals are contaminated by various noise, including 
background noise,  varying gaining factor, and cross-
hybridization noise. In addition, multiple probe sets 
represent the same gene.  

● RNA-Seq is a powerful technology that is predicted to 
replace microarrays for transcriptome profiling. RNA-Seq 
avoids technical issues in microarray studies related to 
probe performance such as cross-hybridization. However, 
the cost of RNA-seq is still too high. Also, the tools for 
RNA-Seq data analysis are far from mature.
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