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Outline

High Dimensional Measurements, such as Gene Expression Data

Commonly select a small subset of features by looking at how “useful”
they are in predicting y. However, this procedure will make y appear more
predictable than it actually is. We propose a Bayesian method to avoid
this bias.

Considering High-order Interactions of Discrete Features

The number of interactions increases exponentially with the order
considered. We propose a Bayesian method to compress the parameters.
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Part 1

Avoiding Bias from Feature Selection
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Bias from Feature Selection: Stronger Relationship

Selecting a subset of features by looking at the correlations with y, will make the
relationship between y and x stronger than it actually is:
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Bias from Feature Selection: Effect on Predictions

Predictive probabilities are lack of calibration:

P (Y = 1 | Ŷ (X) ∈ (c1, c2)) 6= E(Ŷ (X) | Ŷ (X) ∈ (c1, c2))

Predictive probabilities are overconfident:

The predictive probabilities of y(i) = 1 are close to 1, say 0.9, for a set of
test cases, but actually the frequency of y(i) = 1, is smaller, say 0.7

Error rates are underestimated:

The expected error rate is smaller than the actual error rate
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Our Method for Avoiding Bias from Feature Selection

Idea: Our predictions should condition not only on the retained features xtrain
1:k ,

but also on the fact that the other p−k features have sample correlations with
the response less than γ in absolute value:

ytrain, xtrain
1:k, and |COR(ytrain, xtrain

t )| ≤ γ for t = k+1, . . . , p

Models: Given the response y, a model parameter α, and perhaps some
latent values z train, the features x1, . . . , xp, are modeled to be independent and
has identical distribution:

P (x1, · · · , xp | y, α, z train) =

p
∏

t=1

[

P (xt | y, α, z train)
]

Adjustment factor: The likelihood function of α and latent value z train based
only on ytrain, xtrain

1:k is multiplied by:

P ( |COR(ytrain, xtrain
t )| ≤ γ for t = k+1, . . . , p | α, z train, ytrain)

=
[

P ( |COR(ytrain, xtrain
t )| ≤ γ | α, z train, ytrain)

]p−k
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Part 1.1

Application to Naive Bayes Models
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A Bayesian Naive Bayes Model for Binary Data
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x
(i)
j | y(i), φ ∼ Bernoulli (φy(i),j), for i = 1, . . . , n and j = 1, . . . , p

φ0,j , φ1,j | α, θj
IID
∼ Beta (αθj , α(1−θj)), for j = 1, . . . , p
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Sample Correlation of Binary Data

COR(xtrain
t , ytrain) can be written as:

COR(xtrain
t , ytrain) =

(0 − y) I0 + (1 − y) I1
√

ny(1−y)
√

I0 + I1 − (I0 + I1)2/n

where I0,I1 are:

ytrain
:

xtrain :
t

0       0       0        0       1       1       1       1

0       1       1        1       0       0       0       1

0 I I 
1

= 3 = 1
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Computation of the Adjustment Factor

 3   +0.30  +0.11  −0.04  −0.17  −0.30  −0.41  −0.52  −0.64  −0.76
 4   +0.36  +0.18  +0.04  −0.09  −0.21  −0.33  −0.45  −0.57  −0.69
 5   +0.41  +0.25  +0.11  −0.02  −0.14  −0.26  −0.38  −0.50  −0.63
 6   +0.46  +0.31  +0.18  +0.05  −0.07  −0.19  −0.31  −0.44  −0.57
 7   +0.52  +0.38  +0.24  +0.12   0.00  −0.12  −0.24  −0.37  −0.52
 8   +0.57  +0.44  +0.31  +0.19  +0.07  −0.05  −0.18  −0.31  −0.46
 9   +0.63  +0.50  +0.38  +0.26  +0.14  +0.02  −0.11  −0.25  −0.41
10   +0.69  +0.57  +0.45  +0.33  +0.21  +0.09  −0.04  −0.18  −0.36
11   +0.76  +0.64  +0.52  +0.41  +0.30  +0.17  +0.04  −0.11  −0.30
12   +0.83  +0.72  +0.61  +0.50  +0.39  +0.27  +0.13  −0.03  −0.24

14   +1.00  +0.90  +0.81  +0.72  +0.62  +0.53  +0.42  +0.29   0.00
13   +0.91  +0.80  +0.70  +0.60  +0.49  +0.38  +0.25  +0.09  −0.16

0

       0      1      2      3      4      5      6      7      8

1
I

I

 0    0.00  −0.29  −0.42  −0.53  −0.62  −0.72  −0.81  −0.90  −1.00
 1   +0.16  −0.09  −0.25  −0.38  −0.49  −0.60  −0.70  −0.80  −0.91
 2   +0.24  +0.03  −0.13  −0.27  −0.39  −0.50  −0.61  −0.72  −0.83

P ( |COR(xtrain
t , ytrain)| ≤ γ | α, ytrain) = 1 − 2

∑

(I0,I1)∈H+

P (I0, I1 | α, ytrain)

H+ −→
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A Simulation Experiment on the Naive Bayes Model

Generating data

α = 300, p = 10000, 200 training cases, 2000 test cases

Selecting features

4 subsets with only 1, 10, 100 and 1000 features with largest correlations
(in absolute value) were selected

Priors

α ∼ Inverse-Gamma(0.5, 5)

Computations

We applied Simpson Rule to the integral over θj ; apply midpoint Rule to
the integral over α
Computation times for uncorrected methods and corrected me thods are almost
identical .
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Calibration of Predictions

100 features selected out of 10000

Corrected Uncorrected

Category # Pred Actual # Pred Actual

0.0 – 0.1 155 0.067 0.077 717 0.017 0.199
0.1 – 0.2 247 0.151 0.162 133 0.150 0.391
0.2 – 0.3 220 0.247 0.286 70 0.251 0.429
0.3 – 0.4 225 0.352 0.356 68 0.351 0.515
0.4 – 0.5 237 0.450 0.494 58 0.451 0.500
0.5 – 0.6 227 0.545 0.586 78 0.552 0.603
0.6 – 0.7 202 0.650 0.728 77 0.654 0.532
0.7 – 0.8 214 0.749 0.785 80 0.746 0.662
0.8 – 0.9 182 0.847 0.857 98 0.852 0.633
0.9 – 1.0 91 0.935 0.923 621 0.979 0.818
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Actual and Expected Error Rate
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Approximate Posterior Distribution of log(α)
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Part 1.2

Application to Mixture Models
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A Bayesian Mixture Model for Binary Data
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(i)
j | z(i), φ ∼ Bernoulli (φz(i),j), for i = 1, . . . , n and j = 0, 1, . . . , p

φ0,j , φ1,j | α, θj
IID
∼ Beta (αθj , α(1−θj)), for j = 1, . . . , p
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Computation of the Adjustment Factor

Computation of the adjustment factor for this mixture model is similar to the
preceding naive Bayes model. But it is more difficult because:

It depends on the unknown latent values z train. We have to use MCMC to
sample for z train, and therefore have to recompute the adjustment factor
whenever we change z train.

I0 and I1 are not independent given z train, xtrain
0 ,θt, and α. We need to split I0

into I
[z]
0 for z = 0, 1, as well as for I1.

P (I0, I1 | xtrain
0 , z train, θt, α) =

∑

I
[0]
0

+ I
[1]
0

= I0

I
[0]
1

+ I
[1]
1

= I1

1
∏

z=0

P (I
[z]
0 , I

[z]
1 | xtrain

0 , z train, θt, α)

Longhai Li @ University of Toronto Bayesian Classification and Regression with High Dimensional Features – p.17/32



Part 2

Compressing Parameters in Bayesian Models
with High-order Interactions
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Predictor Variables Derived from Interactions
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Facts:

The number of predictor variables increases exponentially with the order
considered.

Many predictor variables derived this way have the same value for all training
cases.
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Compressing Parameters

When groups of predictor variables have the same value for all training cases,
the likelihood function of a linear regression model depends only on the sums
over groups:

Lβ(β11, . . . , β1,n1
, . . . , βG1, . . . , βG,nG

) = L

(

n1
∑

k=1

β1k, . . . ,

nG
∑

k=1

βGk

)

= L(s1, . . . , sG)

We use priors as βgk ∼ N(0, σ2
gk) or βgk ∼ Cauchy(0, σgk), because the priors

of the sg ’s can be found easily:

sg ∼ N

(

0,

ng
∑

k=1

σ2
gk

)

or sg ∼ Cauchy

(

0,

ng
∑

k=1

σgk

)

The posterior of the sg ’s given the training data D:

P (s | D) =
1

c(D)
L(s1, . . . , sG) P

(s)
1 (s1) · · · P (s)

g (sG)
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Splitting Compressed Parameters

After obtaining the samples of sg ’s using MCMC, we can recover the original
parameters, using the splitting distribution:

P (βg1, . . . , βg,ng−1 | sg) =

ng−1
∏

k=1

Pgk(βgk) Pg,ng

(

sg −

ng−1
∑

k=1

βgk

)

/ P s
g (sg)

The splitting distribution is unrelated to D. We can directly sample from it.

To save space, we can split sg temporarily for each test case.

Parameters for a test case:

2
SGS1

Compressed parameters:

S

Need only to split sg into two parts for a particular test case:

P (st
g | sg) = P (1)

g (st
g) P (2)

g (sg − st
g) / P s

g (sg)
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Splitting sg into Two Parts: Graphical Illustration
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Splitting sg into Two Parts: Formulae

Split a sum of Gaussian variables:

st
g | sg ∼ N

(

sg

σ2
1

σ2
1 + σ2

2

, σ2
1

(

1 −
σ2

1

σ2
1 + σ2

2

))

Split a sum of Cauchy variables:

F (st
g ; sg, σ1, σ2) =

1

C

[

r log

(

(st
g)

2 + σ2
1

(st
g − sg)2 + σ2

2

)

+

p0

(

arctan

(

st
g

σ1

)

+
π

2

)

+

ps

(

arctan

(

st
g − sg

σ2

)

+
π

2

)]

Being able to compute the CDF, we can use inversion method to sample from
the above distribution, with the inverse CDF found numerically.
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Cauchy priors VS Gaussian priors

A Cauchy distribution centered at 0 describes more accurately the scenario that
most parameters are close to 0 but a few may be very large.

For example, if we expect 95% parameters are in interval (−1.96, 1.96), we
should use N(0, 1) or Cauchy(0, 0.15). Their log density function are plotted as:
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Part 2.1

Application to Logistic Sequence Prediction Models
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A Picture of Logistic Sequence Prediction Models
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Remarks:

By including low-order interactions, the predictive distributions given similar
preceding sequences are similar.

We are not forced to use a short sequence. Some useful high-order
interactions can be considered.
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Experiments on English Text

An online article, which introduces the Department of Statistics at University of
Toronto, is encoded:

1 = vowel letters

2 = consonant letters

3 = all other characters, such as space, number, special symbols (remove
consecutive instances)

There were a total of 3930 characters, giving 3910 overlapped sequences of
length 21. Tested our method by predicting the 21st character based on varying
numbers of preceding characters.

The first 1000 sequences were used as training cases. The remaining 2910 were
used as test cases.
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Parameter Reduction
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Error Rate and Average Minus Log Probability (AMLP)
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Part 2.2

Application to Logistic Classification Models
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A Picture of Logistic Classification Model
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Conclusions

We propose a Bayesian method to make well-calibrated predictions using a
small subset of features selected from a large number.

We propose a method to compress the parameters in Bayesian models with
high-order interactions. The number of parameters is reduced greatly.

We demonstrate empirically that Cauchy distributions could be better than
Gaussian distributions as the priors for the regression coefficients of
high-order models for some problems.
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