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Introduction

In the textbook by Wasserman (2004), under a Section titled “Strengths and Weak-

nesses of Bayesian Inference” (pages 186-189), he used a simple example to “demon-

strate” the weaknesses of Bayesian inferences in high-dimensional and nonparametric

problems.

I have carried out a simple Bayesian analysis for this example, obtaining a simple

Bayes estimate, and used a frequentist method — mean square error, to compare

with Horwitz-Thompson he suggested to use for this problem.
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Wasserman’s Example

The model in the example may be appropriate for sampling survey problems. Ob-

servation Yi is modeled by a mixture distribution of a huge number, B, of Bernoulli

distributions, parameterized by θb, for b = 1, . . . , B:

Xi ∼ Uniform(1, . . . , B), (1)

Yi |Xi ∼ Bernoulli(θXi
). (2)

In practice it is possible that some of these Yi are unobserved, for example when

those sampled individuals refuse to respond. Let ξb denote the probability that the

individual indexed by b will respond to the question. Then, given Xi, the distribution

of Ri is

Ri |Xi ∼ Bernoulli(ξXi
). (3)

In addition, we assume that Ri and Yi are independently distributed given Xi.

Interested Parameter:

ϕ =
1

B

B
∑

b=1

θb = P (Yi = 1). (4)
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Likelihood Function of the Example

The likelihood function of θ and ξ based on the data D is the product of the joint

distributions of either (Xi, Ri = 1, Yi) or (Xi, Ri = 0), for i = 1, . . . , n:

L(θ, ξ ; D) =
1

Bn

n
∏

i=1

ξRi

Xi
(1− ξXi

)1−Ri

∏

{i: Ri=1}

θYi

Xi
(1− θXi

)1−Yi (5)

Wasserman’s argument based on this likelihood function is rephrased as follows:

The above likelihood function is relevant to at most n different θb. Therefore, when

B is greatly larger than n, the likelihood function contains information of only a tiny

fraction of θ. The posterior distribution of θ is almost equal to the whatever prior

distribution, therefore cannot lead to a good inference for the interested parameter,

ϕ.
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Horwitz-Thompson Estimator

Wasswerman suggested the following estimator for ϕ:

ϕ̂HT =
1

n

n
∑

i=1

Ri Yi

ξXi

, (6)

where, when Ri = 0, Yi is imaginary and can be assigned arbitrarily. This estimator

treats both observed Yi = 0, and sets missing Yi to 0, and count 1/ξXi
times each

observed Yi = 1. Note that he assumes that the parameter ξ is known.

One can easily show that this estimate has mean ϕ, by iterative expectation formula.

This estimator is also consistent since its MSE converges to 0 as n → ∞:

MSE(ϕ̂HT ) =
1

n
Var

(

RiYi

ξXi

)

(7)

=
1

n

(

E

(

RiYi

ξ2Xi

)

− ϕ2

)

(8)

=
1

n

(

1

B

B
∑

b=1

θb
ξb

− ϕ2

)

. (9)
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A Bayesian Analysis
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Prior Specification

I will assume that θ and ξ are independent given some hyperparameters.

The prior for θ:

θ1, . . . , θB |αT , f
IID

∼ Beta(θ |αTf, αT (1− f)), (10)

f, αT ∼ Beta(f |αF , αF )× πT (αT ). (11)

Some properties of the above prior:

E(θb) = f (12)

V ar(θb) =
f(1− f)

αT + 1
(13)

θb|f, αT →d Bernoulli(f), as αT → ∞ (14)

The prior for ξ is denoted by πξ(ξ). We don’t need to specify it as it will be unrelated

to the posterior of θ once we assume that θ and ξ are independent. Similar for

πT (αT ).
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Posterior Analysis

When B is very large, ϕ is very close to f from LLN. I will turn to find the posterior

distribution of f given D.

I will start with joint distribution of data and parameters:

P (D, θ, ξ, f, αT |αF )

∝
∏

{i|Ri=1}

θYi

Xi
(1− θXi

)1−Yi ×

B
∏

b=1

[

Beta(θb |αT f, αT (1− f))
]

× Beta(f |αF , αF )πT (αT )×

n
∏

i=1

θRi

Xi
(1− θXi

)1−Ri × πξ(ξ)

Let IX = {X1, . . . , Xn}. Since B is greatly larger than n, I will assume that all

Xi’s are distinct for finding an approximate estimate of the posterior of f .
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Posterior Analysis (Cont’d)

I will next integrate θ away from the above joint distribution:

(1) Those θb for b 6∈ IX can be integrated away from their prior, leading to 1.

(2) Those θb for b ∈ IX can be integrated away too, leading to a Bernoulli distribu-

tion for Yi:

∫

1

0

θ
Yi(b)

b (1− θb)
1−Yi(b) Beta(θb |αTf, αT (1− f) ) d θb

= fYi(b)(1− f)1−Yi(b) .

We can also integrate ξ away, leading to an expression unrelated to f .

After integrating away ξ and θ, we obtain the joint distribution of data and f :

P (D, f |αF ) = c×
∏

{i:Ri=1}

fYi(1− f)1−Yi × Beta(f |αF , αF ), (15)
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Bayes Estimator

The posterior distribution of f is therefore a Beta distribution:

P (f | D, αF ) = Beta(f |n1 + αF , n0 + αF ), (16)

where

n1 =
∑

{i:Ri=1}

Yi =
n
∑

i=1

Ri Yi, (17)

n0 =
∑

{i:Ri=1}

(1− Yi) =
n
∑

i=1

Ri − n1. (18)

The best guess for f that minimizes the expected square loss is the mean of the

posterior distribution of f , which leads to the Bayes estimator for f :

ϕ̂BS =
n1 + αF

n0 + n1 + 2αF

. (19)

I will compare ϕ̂HT and ϕ̂BS with criterion of mean square error.
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End of Bayesian Analysis
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Comparison of MSEs (1)

In the first comparison, I set ξ all equal to δ. For each δ, a set of θ are drawn from

a transformed normal random numbers:

θb ∼ Φ(Zb), Zb ∼ N(0, 0.52), for b = 1, . . . , B (20)
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Comparison of MSEs (1)
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Comparison of MSEs (2)

In the second comparison, I generated pairs of θ and ξ from transformed multivariate

normal numbers with different correlations. The MSE with similar ξ and similar

correlations (generated from the same parameters) are plotted in a graph against

the true values of ϕ:
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Comparison of MSEs (2)
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Histograms of the Simulated Estimators

I generated three pairs of nearly independent θ and ξ with high ϕ values. With each

pair, I simulated 5000 values of two estimators, and drew their histograms:
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Histograms of the Simulated Estimators
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Conclusion

From my comparisons, the simple Bayes estimator isn’t weak for Wasserman’s

example. Indeed, it is stronger than Horwitz-Thompson estimator for most parameter

configurations.

Indeed, Bayesian inferences have been applied successfully to many high-dimensional

and nonparametric problems. Appropriate Bayesian inferences can avoid overfitting

problem of MLE, easily model data with complex structure, naturally use prior

knowledge to improve inference, and automatically consider uncertainty in inference.

They therefore show superiority in many “hard” problems.
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Thank You!

Questions and Comments?
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