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Abstract: An example was given in the textbook All of Statistics (Wasserman,

2004, pages 186-188) for arguing that, in the problems with a great many pa-

rameters Bayesian inferences are weak, because they rely heavily on the like-

lihood function that captures information of only a tiny fraction of the total

parameters. Alternatively he suggested non-Bayesian Horwitz-Thompson esti-

mator, which cannot be obtained from a likelihood-based approaches, including

Bayesian approaches. He argued that Horwitz-Thompson estimator is good since

it is unbiased and consistent. In this paper, I compared the mean square errors

of Horwitz-Thompson estimator with a Bayes estimator at a wide range of pa-

rameter configurations. I also simulated these two estimators to visualize them

directly. From these comparisons, I conclude that the simple Bayes estimator

works better than Horwitz-Thompson estimator for most parameter configura-

tions. Hence Bayesian inferences are not weak for this example.
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1 Introduction

In the textbook by Wasserman (2004), under a Section titled “Strengths and Weaknesses

of Bayesian Inference” (pages 186-189), he used an example, which was simplified from

Robins and Ritov (1997), to support his comments on the weaknesses of Bayesian inferences:

The moral of the story is this. Bayesian methods are tied to the likelihood function.

But in high dimensional (and nonparametric) problems, the likelihood may not yield

accurate inferences. . . . Bayesians are slaves to the likelihood function. When the

likelihood goes awry, so will Bayesian inference. . . . Generally, Bayesian methods run

into problems when the parameter space is high dimensional.

Sims (2006) has analyzed the example in details and shown that for this example Bayesian

inferences are not weak. However, in his analysis some changes were made to the model,

which doesn’t change the essence of the example, but makes the argument less convincing.

In this paper, I will focus on the very example without any modification, and show that a

Bayes estimator is not weaker, actually stronger, than the suggested non-Bayesian Horwitz-

Thompson estimator for most parameter configurations.

The above comments on Bayesian inferences have also been refuted silently by numerous

successful applications of Bayesian inferences in high dimensional and nonparametric models,

such as Bayesian neural network models (see eg. Neal, 1996), Gaussian process regression

and classification models (see eg. Rasmussen and Williams, 2006), Dirichlet process mixture

models (see eg. MacEachern and Mueller, 1998; Jain and Neal, 2004), and Bayesian logistic

regression models with high-order interactions (Li and Neal, 2008). However, many students

and young researchers do not have chances of seeing the aforementioned real but complicated

Bayesian works, therefore such a simple example in a textbook by a prominent statistician

may still be very influential. The purpose of this paper is to reduce such influence, which I

think inappropriate.

I will start with describing the example, then propose an estimator derived from a

Bayesian approach for the interested parameter, and use simulations to compare it with

Horwitz-Thompson estimator, based on the frequentist criterion — mean square error.

2 The example

I will first describe the example presented in Wasserman (2004). In this example, observation

Yi is modeled by a mixture distribution of a huge number, B, of Bernoulli distributions,
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parameterized by θb, for b = 1, . . . , B. Let Xi denote the component label of Yi. This

mixture model can be expressed as:

Xi ∼ Uniform(1, . . . , B), (1)

Yi |Xi ∼ Bernoulli(θXi
). (2)

The above model is appropriate for sampling survey problems. The B is the size of a

population (eg. residents of a country), which are indexed by integers 1, . . . , B. We randomly

draw an individual (with replacement) from the population, called a surveyee, and then write

down the surveyee’s index, denoted by Xi. The surveyee is then asked a question with only

two choices: 0/1. The answer of the surveyee is denoted by Yi. Differently from conventional

models for such problems, we assume that the surveyee answers the two-choice question

randomly, with probability θXi
for 1. This randomness models that the surveyee’s answer

may also depend on some factors related to the survey environment, such as the surveyee’s

mood at the moment.

In practice it is possible that some of these Yi are unobserved, for example when those

sampled individuals refuse to respond. Let’s use a binary random variable Ri to record

whether Yi is observed or not. The probability of Ri equal to 1 depends on the value of Xi,

ie, it is a property associated with each individual. Let ξb denote the probability that the

individual indexed by b will respond to the question. Then, given Xi, the distribution of Ri

is

Ri |Xi ∼ Bernoulli(ξXi
). (3)

In addition, we assume that Ri and Yi are independently distributed given Xi. This equiva-

lently assumes that the environmental randomnesses related to whether the surveyee chooses

to answer the question and how he/she answers the question are different. Suppose we have

surveyed n individuals. The data on ith surveyee are either (Xi, Ri = 1, Yi) or (Xi, Ri = 0),

with Yi missing when Ri = 0. I will denote these data on n surveyees collectively by D.

I write the model parameters collectively as θ = (θ1, . . . , θB), and ξ = (ξ1, . . . , ξB). The

likelihood function of θ and ξ based on the data D is the product of the joint distributions

of either (Xi, Ri = 1, Yi) or (Xi, Ri = 0), for i = 1, . . . , n:

L(θ, ξ ; D) =
1

Bn

n
∏

i=1

ξRi

Xi
(1 − ξXi

)1−Ri

∏

{i: Ri=1}

θYi

Xi
(1 − θXi

)1−Yi (4)

The parameter we are interested in estimating is the average of θ1, . . . , θB, the unconditional
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probability P (Yi = 1), denoted by ϕ:

ϕ =
1

B

B
∑

b=1

θb. (5)

The likelihood function (4) contains information of at most n of unique θb’s. Wasserman

assumed that B is greatly larger than n. This is realistic in sampling survey problems where

B is the size of population while n is a small number of surveyees. As B is greatly larger

than n, the likelihood function contains information of only a tiny fraction of θ. Wasserman

(2004) therefore argued that the posterior distribution of θ is almost equal to the whatever

prior distribution, therefore cannot lead to a good inference for the interested parameter,

ϕ. It is true that, based on the likelihood function, we cannot obtain much information of

a particular θb, because it is associated with very few cases, mostly only 1. However, we

can infer fairly well the interested parameter ϕ, because it is only a summary of the total

parameters. We can understand this by assuming that the θb can take only 0 or 1, that is,

simplifying to the conventional models for sampling survey problems, where each surveyee

is thought of having a firm opinion of the question asked, unaffected by survey environment.

In such problems, we are confident of the method of estimating the population mean with

the average when B is greatly larger than n. In this paper I will show that the method based

on the average of those Yi with Ri = 1 is also reasonable when θ can take values between 0

and 1.

3 A Bayesian method for estimating the parameter

Taking a Bayesian approach, we first need to assign a prior for the parameters θ and ξ.

We can reasonably assume (θb, ξb) is independent of each other for different b given some

hyperparameters.

I choose the prior for θ as follows:

θ1, . . . , θB |αT , f IID

∼ Beta(θ |αTf, αT (1 − f)), (6)

where Beta(θ | a, b) is the probability density function with parameters a and b. In the above

prior distribution, the mean of θ is f , and αT controls the width of the distribution of θ.

When B is huge, the actual average of θ — ϕ — is very close to the hyperparameter f , as

justified by the Laws of Large Numbers. I therefore turn to infer the single parameter f . I

will find a Bayes estimator for f , and then look at its performance in estimating ϕ.
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We can similarly specify the prior for ξ. However if we assume θ and ξ are independent,

the prior of ξ is irrelevant to the posterior of f . I therefore leave it a general form, denoted

by πξ(ξ). Note that in real problems, a more appropriate prior may be that θ and ξ are

correlated. For example, in some political or religious surveys, individuals with high values

of θb (eg. a minority group favoring a political or religious point-view) may be more likely

to answer the question. Such correlations can be modeled with a joint prior distribution for

θb and ξb. This is one of advantages of Bayesian inferences. Here I assume that they are

independent, such that I can derive a simple Bayes estimator (see (15)) to compare with

Horwitz-Thompson estimator suggested by Wasserman (2004). Otherwise, I have to use

some numerical methods, such as Markov chain Monte Carlo (MCMC) (see eg Neal, 1993),

to infer the parameters. Note that, however, the Bayes estimator derived from independent

priors will be compared in terms of mean square error with correlated θ and ξ. Therefore

this independence assumption doesn’t undermine the results of this paper.

We don’t have good knowledge to fix f and αT , for which we need to assign a higher

level prior distribution. I assign f and αT the following distributions:

(f, αT ) ∼ Beta(f |αF , αF ) × πT (αT ), (7)

with αF fixed at some value. The αF controls the concentration of f around 1/2. A natural

choice of αF is 1, which implies that f is uniformly distributed over (0, 1). If we choose a

smaller value, the posterior of f depends more on the data, possibly closer to 0 or 1. We also

need to give αT a prior, such as an Inverse-Gamma or log-normal distribution (Gelman et al.,

2004). However, as we will see, in the problems where B is greatly larger than n, the posterior

of f is approximately independent of the value of αT . I therefore leave its prior a general

form, as it is irrelevant to the posterior of f .

The joint distribution of the data D, all model parameters and hyperparameters is written

as:

P (D, θ, ξ, f, αT |αF )

= L(θ, ξ;D) ×
B
∏

b=1

[

Beta(θb |αT f, αT (1 − f)) πξ(ξb)
]

× Beta(f |αF , αF ) × πT (αT ). (8)

Since we are interested only in the posterior of f , I first integrate θ away from the above

joint distribution (8). Based on the assumption that B is greatly larger than n, I assume

that all Xi, for i = 1, . . . , n, are different, ie, none of the individuals were surveyed twice.

(Note that in order to have all different Xi, we can also modify the sampling procedure
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from with-replacement to without-replacement, with the distribution of (X1, . . . , Xn) in (1)

replaced with a uniform distribution over all possible combinations of choosing n items from

B item. This modification changes only the factor 1/Bn, without changing the likelihood

function of θ and ξ. In this paper I don’t rely on this modification in order to keep the

problem considered by Wasserman (2004) intact and therefore don’t undermine the results

of this paper.) Let IX = {X1, . . . , Xn}. The parameters {θb : b 6∈ IX} can be integrated

away easily, as the integrands are just their prior probability density functions. For θb, with

b ∈ IX , the likelihood term is associated with only one observation, whose index is denoted

by i(b), as we assume that no two of Xi are the same, we can therefore analytically integrate

this θb away, as shown in details as follows:

∫ 1

0

θ
Yi(b)

b (1 − θb)
1−Yi(b) Beta(θb |αTf, αT (1 − f) ) d θb

=
Γ(αT )

Γ(αT f)Γ(αT (1 − f))

Γ(αT f + Yi(b)) Γ(αT (1 − f) + (1 − Yi(b))

Γ(αT + 1)
(9)

= fYi(b)(1 − f)1−Yi(b). (10)

That is, with θb integrated out, Yi(b) is a Bernoulli random variable with parameter f , whose

distribution is unrelated to αT . Note that there isn’t such a simple expression when there are

more than one observations associated with θb. The ξ and αT can also be integrated away,

resulting in an expression without f . Integrating θ, ξ and αT out gives the joint distribution

of data D and model parameters f :

P (D, f |αF ) = c ×
∏

{i:Ri=1}

fYi(1 − f)1−Yi × Beta(f |αF , αF ), (11)

where c is a factor without f . The expression (11), with c omitted, is the joint distribution

of a standard Bernoulli-Beta model (Gelman et al., 2004). One can readily see that the

posterior distribution of f is

P (f | D, αF) = Beta(f |n1 + αF , n0 + αF ), (12)

where

n1 =
∑

{i:Ri=1}

Yi =

n
∑

i=1

Ri Yi, (13)

n0 =
∑

{i:Ri=1}

(1 − Yi) =

n
∑

i=1

Ri − n1. (14)
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If we want to minimize the square error in guessing f , the best estimate is the mean of

the posterior distribution (Schervish, 1995), given by:

ϕ̂BS =
n1 + αF

n0 + n1 + 2 αF

. (15)

I denote the above fraction as ϕ̂BS as I will use it to estimate ϕ. ϕ̂BS is strongly related to

the fraction of 1 in observed data Yi, with slight modification by αF , which avoids extreme

conclusion when n1 or n0 is nearly 0. I will call ϕ̂BS Bayes estimator.

4 Comparing with Horwitz-Thompson estimator

Wasserman (2004) suggested the following Horwitz-Thompson estimator for estimating ϕ:

ϕ̂HT =
1

n

n
∑

i=1

Ri Yi

ξXi

, (16)

where, when Ri = 0, as a statistic of data, Yi is imaginary and can be assigned arbitrarily,

but as a random variable, it is real, and is distributed as defined by (1) and (2). This

estimator treats both observed Yi = 0, and Yi being missing as 0, and count each observed

Yi = 1 1/ξXi
(which is assumed to be known) times. One can easily show that this estimate

has mean ϕ, by iterative expectation formula. This estimator is also consistent, as shown

below.

To compare the performance of ϕ̂BS and ϕ̂HT , I will take a frequentist approach —

comparing their mean square errors (MSE). Note that although the Bayes estimator is derived

by assuming some form of prior over the parameters, the property of its mean square error

is unrelated to the choice of prior.

The mean square error of ϕ̂HT is equal to its variance:

MSE(ϕ̂HT ) =
1

n
Var

(

RiYi

ξXi

)

(17)

=
1

n

(

E

(

RiYi

ξ2
Xi

)

− ϕ2

)

(18)

=
1

n

(

1

B

B
∑

b=1

θb

ξb

− ϕ2

)

. (19)

From (19), we can see that ϕ̂HT is consistent, because its MSE will converge to 0, as n → +∞.
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However, this doesn’t mean that it works well when n is finite, especially when n is greatly

smaller than B, as assumed by Wasserman (2004) to argue against Bayesian inferences. To

look at this, let’s exam ϕ̂HT in a special case when ξ are all the same, equal to δ, then the

expression in (19) is simplified as:

MSE(ϕ̂HT ) =
1

n
(ϕ/δ − ϕ2). (20)

We can see that with n and ϕ fixed when δ → 0, MSE(ϕ̂HT ) converges to +∞. From this

special case we can see clearly that ϕ̂BS will work very poorly when most of ξ are small.

In contrast, when δ → 0,
∑n

i=1 Ri converges to 0, therefore ϕ̂BS converges to 1/2, with

consequence of that the mean square error converging to (ϕ − 1/2)2 ≤ 1/4.

We may not find a simple expression of the MSE of ϕ̂BS. I therefore used Monte Carlo

simulations to estimate it. The simulations were implemented in R language (Team, 2008),

with R function sim bayes given in Section Appendix. In all of the following comparisons

in this section, I set the number of simulations of ϕ̂BS equal to 1000, and αF in ϕ̂BS equal to

0.1. In this paper I only show experiment results with the number of sample size, n, set to

100, and the population size, B, set to 100000. The results are similar to other choices of

small n and large B.

The MSEs of ϕ̂BS and ϕ̂HT were compared at a wide variety of ξ and θ converted from

multivariate normal random numbers with the standard normal cumulative function Φ. More

specifically, (ξb, θb), for b = 1, . . . , B, were generated independently from the distribution

defined as follows:

(

X1

X2

)

∼ N

((

µ1

µ2

)

,

(

σ2
1 r σ1 σ2

r σ1 σ2 σ2
2

))

ξ = Φ(X1), θ = Φ(X2).

(21)

When µ1 is larger, the distribution of ξ is more skewed to 1, otherwise more skewed to 0. It

is similar for θ. The value of r is strongly related to the correlation of ξ and θ. Three such

pairs of random numbers of ξ and θ drawn as above with different values of r are plotted in

Figure 1, with parameters indicated in the titles.

In the first comparison, I set all of ξ to a common value δ, which takes 15 values evenly

spaced between 0.02 and 0.98. Then for each δ, 20 sets of θ were generated with the method

(21) (ξ were discarded), using 20 values of µ2 evenly spaced from −2 to 2, and σ1 and σ2

fixed at 0.5. Note that since ξ are all the same, r doesn’t matter here. The MSE of ϕ̂HT can
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Figure 1: Three pairs of ξ and θ drawn with different values of r.

be computed directly with (20), and the MSE of ϕ̂BS is approximated by simulating 1000

samples and computing the average of square errors in guessing ϕ (see R function mse bs

given in Section Appendix). The MSEs are plotted against the average of θ, namely ϕ, as

shown in Figure 2, where I used gray and dashed lines to display 95% confidence intervals

of the MSE of ϕ̂BS, computed with the Central Limit Theorem.

From Figure 2, we can see clearly that in terms of MSE, ϕ̂BS works better than ϕ̂HT for

most parameter configurations, with the gap wider when δ is smaller or ϕ is larger. When

δ is smaller than 0.5, the MSEs of ϕ̂HT keep increasing as ϕ is approaching to 1. This is

very unusual, as when ϕ is closer to 0 or 1, a reasonable estimator should guess ϕ more

accurately due to reduced uncertainty. This is just the case of ϕ̂BS, whose MSEs peak at

1/2 symmetrically. When δ is closer to 1, the performance of these two estimators becomes

similar, which is not surprising, as when all of ξ are 1, these two estimators are almost the

same, except that ϕ̂BS is modified by αF . When both ϕ and δ are very small, we see that

MSEs of ϕ̂HT are lower than that of ϕ̂BS, as in such situations, the bias in ϕ̂BS becomes

dominating in its MSE, as is usual for biased statistic with smaller MSE.

In the second comparison, I generated pairs of possibly correlated θ and ξ with equations

(21). Fixing σ1 = σ2 = 0.5, I generated one pair of ξ and θ with each combination of µ1

(related to ξ) in set {−2,−1.2, 0, 1.2, 2}, r in set {−0.85, 0, 0.85}, and µ2 (related to θ) in

a set of 20 values evenly spaced between −2 and 2. The MSEs of ϕ̂BS and ϕ̂HT with the

same µ1 and r are plotted along against the values of ϕ, as shown in Figure 3. The titles of

plots in Figure 3 show the average of values of λ (λ = the average of ξ), and the average of

correlations between ξ and θ in the plot, respectively denoted by λ̄ and ρ̄. Similar to the
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previous cases where ξ are fixed, from Figure 3, we can conclude that ϕ̂BS works better than

ϕ̂HT for most parameter configurations. When ξ and θ are more correlated positively the

differences of MSEs of ϕ̂HT to ϕ̂BS become smaller. Particularly, ϕ̂HT has slightly lower MSE

than ϕ̂BS when λ is around 1/2 and ϕ is less than 1/2 (the middle three plots in the rightest

column). However, when ϕ is greater than 0.5, ϕ̂HT is still inferior than ϕ̂BS. The MSEs of

ϕ̂BS are nearly symmetrical about 1/2. For ϕ̂HT , when λ is small the MSEs increase as ϕ

approaches to 1.

To look directly at the difference of these two estimators, I generated Monte Carlo

samples of them at some particular parameter configurations. I generated three pairs of

ξ and θ with µ1 = −1.5, 0, 1.5 respectively, and fixing µ2 = 1.5, r = 0, σ1 = σ2 = 0.5.

Here I want to look at the two estimators when ϕ is high, the situations where ϕ̂BS works

much better than ϕ̂HT from previous investigations with MSE. I generated 5000 samples for

each estimator for each pair of ξ and θ. The histograms of these samples are displayed in

Figure 4. The actual values of λ, ϕ, and correlation, ρ, between ξ and θ are indicated in the

titles of plots. We can see that the samples of ϕ̂BS are more concentrated around the true

ϕ than those of ϕ̂HT . This explains why the MSE of ϕ̂BS is smaller than ϕ̂HT . In addition,

the histograms of ϕ̂HT reveal that there is a fairly large probability that ϕ̂HT exceeds 1, the

largest possible value of ϕ. This clearly shows that ϕ̂HT isn’t a good estimator for ϕ. In

contrast, ϕ̂BS would never estimate ϕ with a value greater than 1, as seen from its expression

(15). ϕ̂HT is unbiased but its large variance makes it worse than ϕ̂BS in terms of mean square

error.

5 Closing remarks

Wasserman (2004) used two examples to support his comments that likelihood-based in-

ferences, including Bayesian inferences, are weak for high dimensional and nonparametric

models. For the first example, the comparisons of this paper have shown clearly that a

simple Bayes estimator, ϕ̂BS, works better than the suggested non-Bayesian estimator, ϕ̂HT ,

for most parameter configurations. Hence Bayesian inferences are not weak for this exam-

ple. The second example is more easily found erroneous (see Sims, 2006). Hence these

examples cannot be used to argue that Bayesian inferences are weak for high-dimensional or

non-parametric models.
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Figure 3: Comparison of mean square errors of ϕ̂BS and ϕ̂HT , when θ and ξ are randomly
drawn with equations (21). The gray and dashed lines show 95% confidence intervals in the
Monte Carlo estimates of MSE of ϕ̂BS. In all plots, x-axis is ϕ, and y-axis is MSE. In the
titles, λ̄ is the average of the averages of ξ in all 20 data sets with different values of θ, and
ρ̄ is the average of the correlations of ξ and θ in all 20 data sets.
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Appendix R functions for simulations

## simulating horwitz-thompson estimator

## no_sim --- number of simulations of phi

## n --- number of observations in estimating phi

## theta --- the given theta values, a vector of length B

## xi --- the given xi values, a vector of length B

sim_horwitz_thompson <- function (no_sim, n, theta, xi)

{

B <- length (theta)

if(B != length (xi)) stop ("theta and xi don’t match")

one_sim <- function ()

{

X <- sample (1:B, n, replace = T)

## draw Bernoulli random numbers with probabilities xi[X]

R <- (runif(n) < xi[X]) * 1

Y <- (runif(n) < theta[X]) * 1

## compute Horwitz-Thompson estimator

mean (R * Y / xi[X])

}

replicate ( no_sim, one_sim() )

}

## simulating Bayes estimator

## no_sim --- number of simulations of phi

## n --- number of observations in estimating phi

## theta --- the given theta values, a vector of length B

## xi --- the given xi values, a vector of length B

## alpha --- parameter of Beta prior for ’phi’

sim_bayes <- function(no_sim, n, theta, xi, alpha)

{

B <- length(theta)

if(B != length(xi)) stop("theta and xi don’t match")

one_sim <- function()

{

X <- sample(1:B, n, replace = T)
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## draw Bernoulli random numbers with probabilities xi[X]

R <- (runif(n) < xi[X]) * 1

Y <- (runif(n) < theta[X]) * 1

## compute Bayes estimator

(sum (Y[R==1]) + alpha) / (sum (R == 1) + 2 * alpha)

}

replicate (no_sim, one_sim())

}

## compute the mean square error (mse) of Bayes estimator for a vector of ’phi’

## arguments:

## phi --- a vector of averages of ’theta’

## lambda --- average of ’xi’, a scalar

## alpha --- parameter of Beta prior for ’phi’

## n --- sample size in estimator

## value:

## a vector of mse for each value in ’phi’, with ’lambda’ fixed at a value

mse_bs <- function(theta, xi, alpha = 0.1, n, no_sim = 1000)

{

square_errors <- (sim_bayes (no_sim,n,theta,xi,alpha) - mean(theta) ) ^2

mse <- mean( square_errors )

sd <- sd (square_errors) / sqrt (no_sim)

list (mse = mse, sd = sd)

}
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