
Feature Selection Bias in Assessing the

Predictivity of SNPs for Alzheimer’s Disease

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Mathematics and Statistics

University of Saskatchewan

Saskatoon

By

Mei Dong

©Mei Dong, May/2019. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Mathematics and Statistics

142 Mcclean Hall, 106 Wiggins Road

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5E6

Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

i

Abstract

In the context of identifying related SNPs for a phenotype of interest (e.g., a disease

status), we consider the problem of assessing the predictivity of SNPs that are selected by

performing genome-wide association studies. Internal cross-validation (ICV) is a wrong but

often used method for this assessment. With ICV, a subset of SNPs are pre-selected based

on all samples then cross-validation (CV) is applied to assess the predictivity of the pre-

selected SNPs. The predictivity estimate of the selected SNPs given by ICV is upwardly

biased. This is often called the feature selection bias problem. The cause of this bias is

that the feature selection procedure, which is a part of training procedure, is not external

to the test samples in ICV. A correct method, called external cross-validation (ECV), is to

re-select features based on only the training samples in each fold of CV such that the feature

selection is external to test samples. The feature selection bias of ICV has been discussed by

a few articles in the context of cancer diagnosis with microarray data. However, this problem

has not received sufficient attention in the literature, especially in the context of predicting

with SNP data. Many articles in the literature use ICV or do not state explicitly that their

feature selection is external to test samples. In this thesis, we use an example of predicting

late-onset Alzheimer’s disease (LOAD) from selected SNPs to demonstrate that ICV could

lead to severe false discovery. We use a real SNP dataset related to LOAD and two synthetic

datasets (simulated response with real SNPs) for this demonstration. For the prediction, we

compare the performances of three regularized logistic regression methods: LASSO, elastic-

net, and a fully Bayesian hyper-LASSO method. For the LOAD dataset, we see that, except

for APOE, no other SNPs can improve the prediction of LOAD using ECV method; however,

the predictivity estimate of selected SNPs given by ICV can reach an R2 as high as 80%. For

the synthetic datasets, we obtain the similar results as in the real dataset; additionally we see

that the predictivity estimate of selected SNPs obtained with ICV can be even higher than

the oracle predictivity of the truly related SNPs used to generate the response. In this study,

we also find that the hyper-LASSO method can achieve better predictive performance than

the LASSO and elastic-net. We recommend that ICV should not be used to measure the

predictivity of selected SNPs and this statement should be made clear in research articles.

ii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Longhai Li, for his

invaluable guidance and continuous support throughout the whole master training period.

It is my great honour to work with him. His immense knowledge, constructive comments,

and warm encouragements helped me a lot during difficult times. This thesis could not have

been written without his invaluable advice and patient guidance.

I would like to thank my co-supervisor, Dr. Lloyd Balbuena, for his assistance in the

topic of GWAS and financial support. I benefit a lot from his meticulous comments on my

thesis. I appreciate my committee member, Dr. Cindy Feng, not only for the knowledge

that I have learnt from her course but also for her support and insightful suggestion in my

thesis. I would like to thank the Department of Mathematics and Statistics for the funding

provided through my Master study.

I am indebted to all my friends and colleagues for their love and support for me for my

life. Special thanks go to my roommate Huiyao Kuang and my friend Nathan Yang, who

shared the knowledge of Linux with me patiently.

Last but not least, I am thankful to my family, my parents Jiayang Dong and Liyin Zhang,

my brother Lu Dong, and my boyfriend Yiran Wang, who have loved me and supported me

all the time.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1

2 Methodology 5
2.1 GWAS and False Discovery Rate . 5

2.1.1 GWAS with Likelihood Ratio Test 5
2.1.2 False Discovery Rate . 6

2.2 Regularized Logistic Regression . 8
2.2.1 LASSO . 8
2.2.2 Elastic-net . 9
2.2.3 Fully Bayesian hyper-LASSO . 11

2.3 Internal and External Cross-Validation . 13
2.3.1 Cross-Validation . 13
2.3.2 Internal Cross-Validation . 13
2.3.3 External Cross-Validation . 14

2.4 Predictive Metrics . 15
2.4.1 Error Rate and AMLP . 15
2.4.2 AUC . 16

3 Data 17
3.1 Alzheimer’s Disease (AD) . 17
3.2 An Whole-Genome Sequence Data Related to AD 18
3.3 Synthetic Datasets . 18

4 Results and Discussions 21
4.1 Results on the AD SNP Data . 21
4.2 Results on the Synthetic Datasets . 24

5 Conclusion and Future Work 32

iv

References 33

Appendix R Code 36
A.1 Utility Functions . 36
A.2 R Code for Feature Selection and Model Fitting using ICV with real Dataset 37
A.3 R Code for Feature Selection and Model Fitting using ECV with Real Dataset 42
A.4 R Code for Generating Simulation Data . 50
A.5 R Code for Feature Selection and Model Fitting with Real Dataset 53

v

List of Tables

2.1 Possible outcomes from m hypothesis tests. 7

3.1 Synthetic parameters of selected SNPs. 19

4.1 Top 10 SNPs selected based on all samples and based on the training samples
in fold 1 of ECV. The number in the bracket indicates the rank of SNP ordered
using the other method to select SNPs. 23

4.2 Top 10 SNPs selected based on all samples and based on the training samples in
fold 1 of ECV for dataset1 and dataset2. SNPs with * represent the true signals.
The number in the bracket indicates the rank of the SNP ordered using the other
method to select SNPs. 27

vi

List of Figures

2.1 A figure of ICV and ECV. Blue shadow represents the selected features. Orange
shadow represents the test set. 14

4.1 The Fdrs based on all samples (left) and the Fdrs based on the training samples
in fold 1 of ECV given the SNP ranking based on all samples (right). 22

4.2 The plots of predictivity of selected SNPs averaged over 10-fold CV for the real
dataset. 24

4.3 The Fdrs based on all samples and the Fdrs of fold 1 in ECV given the SNP
ranking based on all samples for dataset1 (left) and dataset2 (right). The red
dots indicate true signals. 26

4.4 The plots of predictivity of selected SNPs averaged over 10-fold CV for synthetic
datasets. 29

vii

List of Abbreviations

AD Alzheimer’s Disease

AMLP Average Minus Log Probability

APOE ε4 ε4 alleles of apolipoprotein E

AUC Area Under the Curve

CV Cross-Validation

ECV External Cross-Validation

FDR False Discovery Rate

Fdr Tail-Based False Discovery Rate

GWAS Genome-Wide Association Study

LOOCV Leave-One-Out Cross-Validation

LOAD Late-Onset Alzheimer’s Disease

LRT Likelihood Ratio Test

ICV Internal Cross-Validation

pFDR positive FDR

ROC Receiver operating characteristic

SNPs Single Nucleotide Polymorphisms

viii

1. Introduction

Current genotyping technologies have increased the capacity of genome-wide association

studies (GWAS) for identifying genetic variants (single-nucleotide polymorphisms, or SNPs)

that affect phenotypes or traits of interest. The number of SNPs, p, is thousands of times

larger than the number of individuals n. In this thesis, we sometimes use a generic term

“feature” to call SNP. Typically, GWAS calculates the p-value for a single SNP based on

a statistical test and then identifies SNPs with the smallest p-values [1, 2]. To deal with

the multiple comparison problem, some researchers have recommended converting p-values

into false discovery rates [3, 4]. However, features that are highly statistically significant are

not necessarily good predictors of a disease [5, 6]. Some recent studies have shown that the

power of a predictive model is not increased when adding more significant variables from

classical approaches based on significance test [7–9]. Thus, a different approach is needed.

Using appropriate statistical learning methods to conduct predictive analysis in GWAS has

important implications. Predictive analysis can help diagnose human diseases, facilitate the

discovery of biological mechanisms for a phenotype [10], and assess the predictivity by metrics

such as error rate and area under the Receiver operating characteristic (ROC) curve (AUC).

Two methods are often used by researchers to assess the predictivity of selected SNPs

when applying cross-validation (CV): internal cross-validation (ICV) and external cross-

validation (ECV). In ICV, a subset of SNPs is pre-selected based on all samples, and then

CV is applied to assess the predictivity of the pre-selected SNPs. The test data in each fold

of ICV is not external to the feature selection procedure. This practice inflates the predictive

accuracy because the information from test samples has been used in feature selection. The

bias caused by using ICV is also called feature selection bias. ECV, on the other hand,

requires us to re-select SNPs based only on the training data in each fold of CV. Hence, all

model building steps (i.e., feature selection, choosing tuning parameters, and model training)

are implemented in each fold of training data such that no information from the test data

is used in “training” stage. ECV means that we will use external test samples to assess

1

the predictivity of the selected subset. There are two possible reasons why ICV is used: it

reduces computational costs [11], and it gives a stable subset of selected features [12].

The feature selection bias was first observed by Ambroise et al. [13] in the context of

microarray classification. They used leave-one-out cross-validation (LOOCV) for colon can-

cer dataset and leukemia dataset. They found that the biases are above 15% and around

5% respectively for each dataset, which is not negligible. Two approaches, ECV and boot-

strap, were recommended as countermeasures for the selection bias. Krawczuk et al. [14]

investigated the feature selection bias of ICV in an empirical study of 4 feature selection

methods applied to 7 microarray datasets. They found positive selection biases in all the

cases, though the biases vary from case to case. However, there are some different conclu-

sions. Singhi and Kiu [15] concluded that the ICV is not inappropriate for classification using

a Bayesian perspective for synthetic datasets and real text datasets.

The feature selection bias of ICV has not received sufficient attention, especially with

respect to genomic studies. There are many papers that used all samples for feature selection

or did not state clearly that the test samples are external to feature selection procedure. For

example, Derringer et al. [16] used all samples to select SNPs that are significantly associated

with the sensation seeking and used a selected subset to build a model, in an attempt to show

that a system-level approach can identify novel SNPs. They did not perform CV because of

the small number of samples. Briones and Dinu [17] reported that they achieved an error

rate of 9.8% using random forest based on APOE and GAB2 and a subset of pre-selected

199 SNPs in a SNP dataset related to Alzheimer’s disease (AD). They used 10-fold CV but

they did not mention that they repeated the feature selection procedure for each fold of the

CV; that is, they probably used ICV.

In this thesis, we will demonstrate the feature selection bias of ICV in GWAS data using

an example of late-onset Alzheimer’s disease (LOAD). We used a real dataset related to AD

from Mayo Clinic, and two synthetic datasets with synthetic phenotype variables generated

from the real SNPs for this demonstration. The synthetic phenotype was generated by

simple logistic regression models with coefficients varying in size, but all based on ten fixed

SNPs randomly selected from the real dataset. Synthetic dataset1 has small coefficients

representing weak signals which are generated from N(0, 0.12). Synthetic dataset2 has large

2

coefficients representing strong signals which are generated from N(0, 22). The coefficients

of the rest SNP were set equal to 0, which means those SNPs were treated as noises. We

conducted typical GWAS for each SNP by performing likelihood ratio test (LRT) comparing

two logistic regression models, one with ε4 alleles of apolipoprotein E (APOE ε4) dosages

(a known predictor of Alzheimer’s) only, and the other with APOE ε4 dosages and a single

SNP. Then we converted the p-values into the tail-based false discovery rate (Fdr). Different

subsets were selected from ICV and each fold of ECV based on the ordering of the Fdr.

Given different selected subsets of features, we fitted the regularized logistic regression with

different penalties, including L1 LASSO penalty [18] and the combination of L1 and L2

elastic-net penalty [19]. Furthermore, we used the fully Bayesian hyper-LASSO with a t-

prior [20], which had a heavier tail, to achieve a more sparse model. Regularized regression

shrinks many coefficients to zero, which introduces bias but reduces the variance of predicted

values, thus improving overall predictivity. Three predictive metrics, error rate [21], average

minus log probability (AMLP) [20] and AUC [22], were used to assess the predictivity of

selected subsets.

For the real dataset, if we use the ECV method, we find that no other SNPs can improve

the prediction of LOAD using only the APOE ε4 dosages, which has an error rate of 0.3.

However, a subset of SNPs pre-selected based on all samples can give an error rate of 0.07,

which decreases by 83% from the error rate (0.3) of using only APOE ε4 dosages. The

AUC of a subset of 212 pre-selected SNPs from ICV can reach 0.98. For the synthetic

datasets, the results in the dataset where only weak signals exist are similar to the real data

application. Moreover, the predictivity estimates of pre-selected SNPs based on all samples

can be even better than the oracle predictivity of the truly related SNPs that are used to

generate the phenotype. When there are strong signals in the dataset, the top SNPs selected

using ECV can improve the predictive performance of the models. We find that the Fdr

is very informative to detect the false discovery. We also find that hyper-LASSO has a

better performance than LASSO and elastic-net. As more noises are added to the model,

hyper-LASSO is more stable to maintain a good performance than LASSO and elastic-net.

The remaining of this thesis will be organized as follows. In Chapter 2, we will describe

the methodologies that will be used in this thesis. We will describe conducting typical GWAS

3

with LRT and describe the Fdr. We will discuss the three penalized logistic regressions and

the algorithms to find the estimations of the coefficients. We will also compare the different

procedures between ICV and ECV. Then we will describe the predictive metrics that will be

used to assess the predictivity of selected SNPs from ICV and ECV. In Chapter 3, we will

depict what Alzheimer’s disease is and recent knowledge about Alzheimer’s disease. We will

then introduce the real dataset and two synthetic datasets. In Chapter 4, we present the

results of the real dataset and the synthetic datasets and use the empirical study to explain

why ECV can avoid the feature selection bias. Finally, in Chapter 5, we conclude this thesis

by summarizing our findings and discussing advancements for the future. In Appendices, we

present the R codes for producing the analysis in this thesis.

4

2. Methodology

2.1 GWAS and False Discovery Rate

In this section, we introduce how a typical GWAS uses single SNP analysis to select fea-

tures. We also describe the use of the false discovery rate to correct for multiple comparison

problems.

2.1.1 GWAS with Likelihood Ratio Test

GWAS is a way for scientists to identify genetic variants associated with risks of a disease or

a particular trait. This method scans the whole genome for genetic polymorphisms, typically

SNPs, that occur more frequently in cases than in controls. Once such SNPs are identified,

people can use them to understand how genes contribute to the disease and develop better

prevention and treatment strategies. In the past decade, thousands of SNPs have been

identified to have a strong statistical association with many common diseases (for instance,

type 2 diabetes and AD) through single SNP analysis. Single SNP analysis tests each SNP

individually for the association of phenotype using statistical significance test (e.g., χ2 test,

Fisher’s exact test).

A case-control GWAS measures a sample of n individuals and p genotyped SNPs, where

n� p. This type of data is also called high-dimensional data. We denote the binary indicator

for phenotype of individual i by yi. Typically, yi is coded as 0 for controls and 1 for cases.

SNPs have three categories, 0, 1, and 2, which correspond to the number of minor alleles

of the genotype. We can fit a logistic regression model to test the statistical significance

of each SNP. Let x
(j)
i denote the row indicator vector to represent SNPj for individual i,

For example, we take the category of SNP which equals to 0 as reference category, then

x
(j)
i = (0, 0) for the SNPj for individual i equals 0, x

(j)
i = (1, 0) for 1 and x

(j)
i = (0, 1) for

2. Thus x(j) = (x
(j)
1 , x

(j)
2 , ..., x

(j)
n) is the vector of SNPj for all individuals. Let βj denote

the vector of regression coefficients associated with SNPj and β0 denote the intercept. The

5

logistic regression of SNPj can be written as:

Pr(yi = 1) =
eβ0+x

(j)
i βj

1 + eβ0+x
(j)
i βj

. (2.1)

We can estimate βj by minimizing the negative log likelihood:

l(β0, βj) = − 1

n

n∑
i=1

(yi(β0 + x
(j)
i βj)− log(1 + e(β0+x

(j)
i βj)). (2.2)

Since the APOE ε4 has been known to scientists to have an effect on Alzheimer’s disease

[23], we consider testing the significance of SNPj conditional on APOE ε4 to look for novel

genetic variants. Likelihood ratio test (LRT) is a statistical test used for comparing the

goodness of fit between a null model and an alternative model. Let x
(APOE)
i denote the

vector of APOE ε4 allele for individual i. We fit two logistic regression models to test the

statistical significance of SNPj, denoted by f . In LRT, the model assumptions are as follows:

H0 : yi ∼ f(yi|x(APOE)
i),

H1 : yi ∼ f(yi|x(APOE)
i , x

(j)
i),

(2.3)

Denote the maximized likelihoods of the null model and the alternative model by L
(j)
0 and

L
(j)
1 , respectively. Then the log likelihood ratio is defined as

Λ(j) = −2(logL
(j)
0 − logL

(j)
1). (2.4)

This statistic asymptotically follows a χ2 distribution with C − 1 degree of freedom [24],

where C is the number of variants in SNPj. P-values are assigned by measuring the area of

the χ2 distribution to the right the test statistic Λ(j).

2.1.2 False Discovery Rate

When testing a single hypothesis test, we choose a rejection threshold, α0, to control the

false positive (Type 1 error). If we have m multiple simultaneous tests, family-wise error

rate (FWER) is the probability of at least one Type 1 error in the m multiple tests, which is

given by

FWER = 1− (1− α0)
m. (2.5)

6

FWER will increase as m increases and will approach 1 if m approaches to infinite. For

instance, we have 10,000 single hypotheses, and each of them has a rejection threshold with

0.05. Then we will have FWER = 1−(1−0.05)10000 ≈ 1. Therefore, traditional approaches try

to set stricter cutoffs to avoid underestimating the chance of false discovery. The conventional

approach is the Bonferroni method. Bonferroni method corrects the probability of false

positives by setting the cutoff of each test to be α0/m to guarantee that FWER ≤ α0. This

method uses a very stringent criterion, which will increase the false negative (Type 2 error)

rate, that is, making the power of discovering true positives small.

Table 2.1: Possible outcomes from m hypothesis tests.

Accept null Reject null Total

Null true U V m0

Alternative true T S m1

Total W R m

Table 2.1 displays all the possible outcomes when testing m null hypotheses. Benjamini

and Hochberg [3] proposed the false discovery rate (FDR) as a measure of test error in

multiple hypotheses. FDR is defined as

FDR = E
[V
R

∣∣∣R > 0
]
Pr(R > 0). (2.6)

FDR offers a less strict control over false positive than FWER, but this FDR guarantees

that the right side of equation 2.6 is less than a desired significance level α0. Storey [25]

introduced the positive FDR (pFDR) based on the FDR, which is defined as

pFDR = E
[V
R

∣∣∣R > 0
]
. (2.7)

The difference between FDR and pFDR is that pFDR deals with the problem of R = 0,

which means there is no genetic variant related to a trait. pFDR is better defined than the

FDR because there are cases where Pr(R = 0) > 0. Storey [26] also presents a Bayesian

interpretation of pFDR. Both FDR and pFDR are tail-based FDR (Fdr), which is based on

the tail areas of test statistics, including p-values, correlations, z-scores or t-scores.

7

Consider the distribution function of a two-component mixture model of the observed

p-values,

F (p) = π0F0(p) + (1− π0)FA(p) = π0 + (1− π0)FA(p), (2.8)

where π0 is the prior probability of null hypothesis, F0 is the null cumulative density of

p-values, which is the uniform distribution U(0, 1) and corresponds to the “uninteresting”

p-values, whereas FA is an unspecified alternative cumulative density for the “interesting”

p-values. Suppose we have m p-values p1, p2, ..., pm from m hypothesis tests, the Fdr(pi) is

the Fdr of ith feature, which is defined as:

Fdr(pi) = Pr(′uninteresting′|p ≤ pi) = π0
F0(pi)

F (pi)
. (2.9)

Hence, estimating Fdr involves identifying the alternative model FA and finding suitable

estimates for the prior probability of null hypothesis π0. We used the R package fdrtool

to convert the p-values into Fdr. This package uses the “modified” Grenander estimator

obtained as estimator of F (p) and uses truncated maximum-likelihood approach to estimate

π0 [27].

2.2 Regularized Logistic Regression

In this section, we introduce three regularized logistic regression models and methods to

estimate the coefficients.

2.2.1 LASSO

We consider three regularized logistic regression methods to fit a selected subset of SNPs.

Suppose we have a selected subset of SNPs with size k, denoted by {s1, s2, ..., sk}. xi =

(x
(s1)
i , x

(s2)
i , ..., x

(sk)
i)T is the vector of selected SNPs for individual i, and β0 is the intercept

and β = {βTs1 , β
T
s2
, ..., βTsk}

T is the parameter vector. The simple logistic regression of the

selected SNPs is:

Pr(yi = 1) =
eβ0+xi

T β

1 + eβ0+xi
T β

(2.10)

8

We can estimate β by minimizing the negative log-likelihood:

l(β0, β) = − 1

n

n∑
i=1

(yi(β0 + xTi β)− log(1 + e(β0+xT
i β))). (2.11)

To obtain sparse solutions and enhance the predictive performance, we add L1 LASSO (Least

absolute shrinkage and selection operator) penalty. The LASSO estimator is obtained from

the penalized minus log-likelihood:

β̂LASSO(λ1) = argmin
β0,β

l(β0, β) + λ1||β||1, (2.12)

where ||β||1=
∑p

j=1|βj|, p is total number of dummy variables of selected SNPs, and λ1 is

tuning parameter. Note that intercept is not included in the penalty term. LASSO penalty

corresponds to a Laplace prior in Bayesian inference. Hence, it will get a subset of important

features with non-zero coefficients and shrink the rest to zero. Increasing λ1 will shrink

more coefficients to zero by adding heavier penalty. Because this optimization problem is

convex, it can be solved efficiently for large data. There are several algorithms for calculating

the LASSO estimator, among which coordinate descent performs the best [28]. Coordinate

descent optimizes each parameter separately while holding all others fixed. We will describe

the algorithm in detail in Section 2.2.2.

2.2.2 Elastic-net

Elastic-net [19], a combination of L1 and L2 penalties, solves the convex problem:

β̂EN(α, λ2) = argmin
β0,β

l(β0, β) + λ2[(1− α)||β||1+1/2α||β||2], (2.13)

where ||β||2=
∑p

j=1 β
2
j , α ∈ (0, 1) controls the weight between L1 penalty and L2 penalty.

λ2 is tuning parameter. When α = 0, elastic-net reduces to LASSO penalty, and when

α = 1, elastic net reduces to ridge penalty. Ridge penalty can shrink the coefficients of

correlated predictors towards each other. However, it will not shrink the coefficients to be

exactly 0. LASSO tends to select one feature and ignores the rest when there are several

features correlated. Elastic-net mixes the characteristics of LASSO and ridge regression.

It can effectively shrink the coefficients of non-informative feature to 0 and automatically

control the group of correlated features.

9

To obtain the estimation of β̂EN , let us first look at equation (2.11). Since equation

(2.11) is a non-linear function, it is not possible to find a closed-form expression for β̂EN .

The algorithm for estimating β̂EN is known as the iteratively reweighted least squares (IRLS)

algorithm, which implements a Taylor expansion to produce quadratic approximations to the

loss function. IRLS is equivalent to Newton’s method. For current estimates of parameters

(β̃
(t)
0 , β̃(t)), the quadratic approximation to the log-likelihood (Taylor expansion) can be ex-

pressed:

lQ(β0, β) = − 1

2n

n∑
i=1

wi(zi − β0 − xTi β)2 + C(β̃
(t)
0 , β̃(t)), (2.14)

where

zi = β̃
(t)
0 + xTi β̃

(t) − 1

wi
(p̃(t)(xi)− yi) (2.15)

wi = p̃(t)(xi)(1− p̃(t)(xi)) (2.16)

p̃(t)(xi) =
exp(β̃

(t)
0 + xTi β̃

(t))

1 + exp(β̃
(t)
0 + xTi β̃

(t))
, (2.17)

C(β̃
(t)
0 , β̃(t)) is a constant.

Similar to simple logistic regression, IRLS is used to estimate penalized logistic regression.

Friedman et al. [28] developed a fast algorithm to solve penalized weighted least-squares

problem

R(β0, β) = argmin
β0,β

{lQ(β0, β) + λ2[(1− α)||β||1+1/2α||β||2]}. (2.18)

using coordinate descent. For a fixed λ
(r)
2 as the value in rth step of looping λ2, we compute

the gradient at βj = β̃(t), which only exists if β̃j
(t) 6= 0. If β̃

(t)
j > 0, then

∂R

∂βj

∣∣∣
β=β̃(t)

= − 1

n

n∑
i=1

wi(zi − β̃(t)
0 − xTi β̃

(t)) + λ
(r)
2 (1− α)βj + λ

(r)
2 α. (2.19)

The coordinate-wise update has the form:

β̃
(t)
j ←

S(1
n

∑n
i=1wix

(j)
i (yi − ỹ(j)i), λ

(r)
2 α)

1 + λ
(r)
2 (1− α)

, (2.20)

where ỹ
(j)
i = β̃

(t)
0 +

∑
l 6=j xilβ̃

(t)
l is the fitted value excluding the contribution from xij, yi− ỹ(j)i

is the partial residual given β
(t)
j , and S(a, b) = sgn(a)(|a|−b)+ = sgn(a) max(|a|−b, 0) is the

soft-thresholding operator.

10

In brief, β̂EN(λ2) is estimated from the nested loop:

• An outer Newton loop of decreasing value of λ2.

• A middle loop for updating the quadratic approximation lQ using current parameters

(β̃
(t)
0 , β̃(t)) given the estimate for λ2 at the rth step, λ

(r)
2 .

• An inner loop for running the coordinate descent algorithm on the penalized weighted

least-squares problem (2.18).

LASSO is a special case of elastic-net with α = 0. The coordinate-wise update for LASSO

has the form:

β̃
(t)
j ←

S(1
n

∑n
i=1wix

(j)
i (yi − ỹ(j)i), λ

(r)
1)

1 + λ
(r)
1

, (2.21)

where λ
(r)
1 is the estimate for λ1 in the rth step of the outer loop.

We use the R package glmnet for fitting LASSO and elastic-net. This package provides

an option for choosing tuning parameters λ1 and λ2. We fit the regularization path with 500

values for both λ1 and λ2. They are selected by 10-fold cross-validation of training data with

the minimum mean cross-validated error. Instead of gridding every possible value of α in

elastic-net, we grid three values of α, 0.3, 0.5, and 0.7, to save the computation time.

LASSO and elastic-net are powerful methods for high-dimensional data learning problems.

However, both LASSO and elastic-net have some drawbacks. For instance, they over-shrink

the large coefficients while shrinking small coefficients, resulting in the bias in estimating the

large coefficients. Another drawback of LASSO is that it can only select at most n features

when p > n.

2.2.3 Fully Bayesian hyper-LASSO

It is important to get a very sparse model but also to preserve the large coefficients of

important SNPs for genome-wide data. Hyper-LASSO penalty, a non-convex penalty, which

is also known as global local penalty, has been widely recognized for its ability to shrink the

coefficients of unrelated features (noise) more aggressively to 0 than LASSO while retaining

the significantly large coefficients (signal). Hyper-LASSO can also automatically divide a

group of correlated features into different posterior local modes [20]. Consider hyper-LASSO

11

with t-prior with α degrees of freedom and scale
√
w. The hierarchical Bayesian logistic

regression model can be described as follows:

Pr(yi = 1|xi,1:p, β0, β1:p) =
eβ0+xT

i β

1 + eβ0+xT
i β
, (2.22)

βj|σ2
j ∼ N(0, σ2

j), for j = 0, 1, ..., p, (2.23)

σ2
j ∼ IG(a/2, wa/2), for j = 1, 2, ..., p, (2.24)

where σ2
j indicates the importance of the jth SNP dummy variable. With σ2

j marginalized

with respect to Inverse-Gamma prior, equations (2.23) and (2.24) assign βj a multivariate t

prior with a degrees of freedom and scale
√
w. The full posterior can be written as:

P (β0:p, σ
2
1:p|D) ∝ L(β0:p)× P (β0:p|σ2

0:p)× P (σ2
1:p|a/2, aw/2), (2.25)

where D represents the data yi,xi,1:p; α and σ2
0 are fixed values; L is the likelihood function:

L(β0:p) =
∏n

i=1 P (yi|xi,1:p, β0:p); the last two parts are the PDFs of the priors specified by

equations (2.23) and (2.24). The full posterior in equation (2.25) is sampled by sampling the

conditional distributions of σ2
1:p and β0:p given each other alternately for a number of itera-

tions. Gibbs sampling is used to sample the priors, which involves alternating the following

two steps:

Step1: Given σ2
1:p fixed, update β0:p jointly with an HMC transformation that leaves invariant

the following distribution:

P (β0:p|σ2
0:p,D) ∝ L(β0:p)× P (β0:p|σ2

0:p). (2.26)

Step2: Given the value of β1:p from Step1, update σ2
1:p by sampling from

σ2
j |βj ∼ IG(σ2

j |
a+ 1

2
,
aw + β2

j

2
), for j = 1, ..., p. (2.27)

In this thesis, we use a R package HTLR (https://math.usask.ca/~longhai/) to perform

hyper-LASSO with t-prior. In order to try different degrees of freedom for different datasets,

we choose the degree of freedom a to be 0.5, 1, and 1.5. The smaller value of a represents

the heavier tail. We set log(w) = −10 as recommended by Li and Yao [20].

12

https://math.usask.ca/~longhai/

2.3 Internal and External Cross-Validation

In this section, we introduce the general idea of cross-validation and two types of cross-

validation that are often used. Then we will explain why ECV can avoid feature selection

bias.

2.3.1 Cross-Validation

Cross-validation (CV) is a widely used method to assess machine learning models when we

have a small dataset. CV reserves part of a dataset for validation or testing and uses the

remaining part to train the model. This process iterates without overlapping of the reserved

samples. Two most frequently used CV methods are Leave-one-out CV (LOOCV) and K-fold

CV. LOOCV means reserving only one data point from the available dataset and training

the model by the rest of the data. This process iterates for each data point. K-fold CV

means that splitting the samples into k folds with approximately equal size, using the K − 1

folds as training data and the left 1 fold as test data.

2.3.2 Internal Cross-Validation

ICV means test samples are internal to feature selection when implementing CV. A typical

procedure of ICV is:

• Select a subset of feature based all samples;

• Split the samples into K non-overlapping folds with roughly equal size at random;

• For each k = 1, 2, ..., K, implement cross-validation to choose tuning parameters and

build models based on the samples except those in fold k and estimate the predictivity

in fold k.

The problem of this procedure is that the features are chosen on the bias of all samples.

Leaving the test samples out after the features have been selected does not correctly mimic

the application of the model to a completely independent test set, since the features “have

already seen” the left out samples.

13

2.3.3 External Cross-Validation

To correct for the feature selection bias in ICV, test samples must be external to feature

selection process. The procedure to carry out ECV is described as follows:

• Split the samples into K non-overlapping folds with roughly equal size at random;

• For each k = 1, 2, ..., K, choose tuning parameters, and train the model using selected

subsets of features based on the samples except those in fold k.

• Use the model to predict for samples in fold k.

The difference in procedure between ICV and ECV is using different samples to select

features. While CV is implemented to choose tuning parameters and train the models equally

for ICV and ECV.

Figure 2.1: A figure of ICV and ECV. Blue shadow represents the selected features.
Orange shadow represents the test set.

…

Fold 1

Fold 2

Fold 3

Fold

Fold

…

Fold 2

Fold 3

Fold 4

Fold

Fold 1

Features

Features

⋮

⋮

⋮

𝑝 − 4 𝑝 − 3 𝑝 −2 𝑝 −1 𝑝1

𝑘 − 1

𝑘

𝑝 − 4 𝑝 − 3 𝑝 −2 𝑝 −1 𝑝

𝑘

2 3 4 5

1 2 3 4 5

(a) Internal Cross-validation

…

Fold 1

Fold 2

Fold 3

Fold

Fold

…

Fold 2

Fold 3

Fold 4

Fold

Fold 1

Features

Features

⋮

⋮

⋮

𝑝 − 4 𝑝 − 3 𝑝 −2 𝑝 −1 𝑝1

𝑘 − 1

𝑘

𝑝 − 4 𝑝 − 3 𝑝 −2 𝑝 −1 𝑝

𝑘

2 3 4 5

1 2 3 4 5

(b) External Cross-validation

Figure 2.1 shows the difference between ICV and ECV. ICV uses all samples to select

features, thus resulting in the same subset of features being used in training dataset of CV.

Because we look at the test samples before training the model, the selected features will have

correlations with test samples. It is not surprising that the test error rate will underestimate

the true error rate. When we have a set of independent samples, the predictive performance

of the best model will be worse in the independent dataset than in the test set. ECV, on

14

the other hand, will select different subsets of features in training dataset in each fold of CV.

The test set is held out and only used when testing the predictivity of the selected subset of

features.

2.4 Predictive Metrics

In this section, we describe three metrics to rate the predictive performance of the models.

2.4.1 Error Rate and AMLP

Let P̂i(yi|xi) be the predictive probability function for yi. The point prediction for yi is

ŷi = argmax P̂i(yi|xi), where xi = (x
(s1)
i , x

(s2)
i , ..., x

(sk)
i)T is the vector of selected SNPs for

individual i. We assess the goodness of P̂i(yi|xi) with the observed yi. The first metric is

error rate. The error rate is defined as the proportion of misclassification:

ER =
1

n

n∑
i=1

I(ŷi 6= yi). (2.28)

The second metric is the average of minus log predictive probabilities (AMLP) at the

observed yi:

AMLP = − 1

n

n∑
i=1

log(P̂i(yi|xi)). (2.29)

AMLP is more sensitive than ER because AMLP measures not only the correctness of a point

estimate ŷi but also the degree of correctness expressed by P̂i(yi|xi). Both error rate and

AMLP should be interpreted relative to the baseline, which is solely based on the frequency

of yi without using any predictor. Denote the frequency of yi = 1 by f1 = 1
n

∑n
i=1 yi and

the frequency of yi = 0 by f0 = 1− f1. ER(0) = min{f1, f0} is the baseline error rate. And

AMLP (0) = −[f1 log(f1) + f0 log(f0)] is the baseline AMLP. Suppose we have unbalanced

data with 80% controls and 20% cases, the baseline error rate is 20% and the baseline AMLP

is −[0.8 log(0.8) + 0.2 log(0.2)] = 0.217. Therefore, a model with 20% error rate or 0.217

AMLP is not a good model compared to the baseline. To assess the predictive performance

of the model, we should compare the result to the baseline error rate and baseline AMLP.

Therefore, we define R2
ER by

R2
ER =

ER(0) − ER
ER(0)

. (2.30)

15

Similarly, we define R2
AMLP by

R2
AMLP =

AMLP (0) − AMLP

AMLP (0)
(2.31)

2.4.2 AUC

The third metric is AUC (Area Under the Curve), which measures the area under the ROC

curve. AUC represents a trade-off between sensitivity (true positive rate) and specificity

(false positive rate). They are defined as:

sensitivity =
of true positives

of true positives + # of false negatives
, (2.32)

specificity =
of true negatives

of true negatives + # of false positives
. (2.33)

Unlike error rate or AMLP that requires a decision threshold (usually take 0.5) to discrimi-

nate, AUC is independent of the decision threshold. It measures each possible performance

as the decision threshold is varied. For every cutoff point c ∈ [0, 1], yi is predicted by

ŷi = I(P̂i(yi|xi) ≥ c), where I(·) is the indicator function which is equal to 1 if the condition

in bracket is true, 0 otherwise. Sensitivity and specificity are determined by comparing ŷi

and the true label yi. The ROC curve is plotted based on the sensitivity and specificity of

each cutoff point. AUC is the area under the ROC curve. The baseline AUC is 0.5, which is

the AUC of the random guess (or the random outcome of a coin toss). An AUC equal to 1

represents that the prediction is perfect.

For the three predictive metrics mentioned above, the averaged error rate, AMLP and

AUC among 10 folds of test data are reported as a final classification performance for each

model.

16

3. Data

3.1 Alzheimer’s Disease (AD)

Alzheimer’s disease (AD) is a chronic neurodegenerative disease associated with age. AD is

the most common cause of dementia and it affects more than 50 million people worldwide.

There are two types of AD, early-onset AD and late-onset AD (LOAD). Early-onset AD

occurs before a person’s age reaches the mid-60s and it represents less than 10 percent of

all the people with AD. It is well known that three mutations: amyloid β protein precursor,

presenilin 1, and presenilin 2 cause the early-onset familial form of AD with autosomal

dominant inheritance. These three genes together account for 60% to 70% of early-onset AD

but only 1% for all Alzheimer’s. LOAD is the most common type of AD, with symptoms

becoming apparent after the mid-60s. So far, the cause of LOAD has not been completely

understood. There is still no effective treatment or preventive measure for LOAD. The only

well-established susceptibility allele for LOAD is the APOE gene on chromosome 19. There

are three kinds of APOE genes. APOE ε2 is rare and may be protected against the disease.

APOE ε3 is believed to play a neutral role in the disease. APOE ε4 increases the risk for

developing AD and is also related to the early-onset form of AD.

In the past 15 years, many GWASs have been conducted to identify novel genetic loci for

LOAD [1, 2, 29, 30]. APOE shows strong evidence for association in those studies. However,

the associations of all other new risk alleles are much less strong than APOE. The GWAS

Catalog lists around 140 genetic variants and risk alleles obtained from many AD GWAS.

The AlzGene database also lists over ten “Top Results” that satisfy all the criteria obtained

from different Meta-Analysis GWAS. Some of the genetic variants are replicated in different

GWAS.

17

https://www.ebi.ac.uk/gwas/efotraits/EFO_1001870
https://www.ebi.ac.uk/gwas/efotraits/EFO_1001870
http://www.alzgene.org/default.asp

3.2 An Whole-Genome Sequence Data Related to AD

The LOAD GWAS data that we used was collected and originally analyzed by Carrasquillo

et al. [1]. This dataset was downloaded from the link: https://www.synapse.org/#!

Synapse:syn5591675. Genotypes were collected from Mayo Clinic LOAD GWAS using

Illumina Human-Hap 3000 BeadChips, which includes a file in PLINK format with 313504

SNPs from 22 autosomes, chromosome X, and an independent file containing the dosages

of APOE ε4 alleles. The data consists of 2099 subjects with an age at diagnosis of 60-80

years, of which 844 cases had LOAD and 1255 controls had no LOAD. For quality control,

we used PLINK to eliminate SNPs with as missing rate greater than 5%, SNPs with minor

allele frequency less than 0.01, and SNPs and samples with a call rate less than 90%. Missing

data were imputed with the mode of the SNP. After pre-processing, 309549 SNPs and 2099

participants were included in the analysis.

SNPs from 22 autosomes were coded as 0, 1, and 2 representing the number of minor

allele copies. For SNPs from chromosome X, females have three categories, while males only

have two categories, 0 and 1. To make use of SNPs from chromosome X, we included sex

as a covariate to generate a five-category variable. Hence, all of the SNPs were included as

vectors of dummy variables in the logistic regression models.

3.3 Synthetic Datasets

We examined the feature selection bias of ICV and the performance of various models in

two different datasets. We generated two synthetic datasets based on real data. We chose

10 SNPs in chromosome 19 and APOE ε4 from the real data as truly related genetic factors

(true signals). We assigned them two different sets of synthetic coefficients. One set of

coefficients with large values represents the scenario in which there are strong signals in a

dataset while the other set with small values represents the scenario with only weak signals

in a dataset. The intercept and coefficients of APOE ε4 in the two datasets mimicked the

coefficients calculated from the real data analysis. The coefficients of the ten SNPs were

generated from a normal distribution with mean zero and different standard deviations. The

18

https://www.synapse.org/#!Synapse:syn5591675
https://www.synapse.org/#!Synapse:syn5591675

values of synthetic coefficients are displayed in Table 3.1. The coefficients of the remaining

SNPs were set to 0, which were treated as noise. The phenotype yi was generated from a

logistic regression model given the set of coefficients.

Table 3.1: Synthetic parameters of selected SNPs.

genetic loci β in dataset1 β in dataset2 genetic loci β in dataset1 β in dataset2

apoe-1 1.00 1.00 rs8106922-2 -0.18 1.84

apoe-2 2.00 2.00 rs405509-1 -0.05 3.44

rs2075650-1 -0.05 -2.45 rs405509-2 0.08 1.65

rs2075650-2 -0.04 0.35 rs8039031-1 -0.06 0.77

rs157580-1 0.05 -1.18 rs8039031-2 -0.03 -3.29

rs157580-2 -0.14 -3.53 rs7318037-1 0.03 1.31

rs439401-1 -0.13 2.19 rs7318037-2 0.09 -0.02

rs439401-2 -0.00 -1.35 rs1420566-1 -0.07 0.73

rs6859-1 -0.03 -1.77 rs1420566-2 0.11 -0.67

rs6859-2 -0.12 -1.80 rs10402271-1 -0.25 -2.98

rs8106922-1 -0.02 2.43 rs10402271-2 -0.04 -3.34

The process for generating each dataset can be described as follows:

• Select APOE ε4 and 10 SNPs, denoted by x
(f)
i , for f = 0, 1, ..., 10, which are used as

covariates for generating yi.

• Fix the value of intercept β0 = −1 and coefficient of APOE ε4 β(0) = (1, 2). Generate

two coefficient vectors β for x
(f)
i , for f = 1, ..., 10, from normal distribution N(0, σ2),

where σ = 0.1 for dataset1 and σ = 2 for dataset2.

• For i = 1, 2, ..., 2099, the phenotype is generated from a Bernoulli distribution:

yi ∼ Bernoulli(pi), (3.1)

where

pi = Pr(yi = 1|x(0)i , x
(1)
i , ...x

(10)
i) =

1

1 + exp(−(β0 +
∑10

f=0 x
(f)
i β(f)))

, (3.2)

19

The synthetic datasets consist of the same number of SNPs and samples as the real data.

Dataset1 has 869 cases with yi = 1 and 1230 controls with yi = 0. Dataset2 has 1052 cases

with yi = 1 and 1047 controls with yi = 0.

20

4. Results and Discussions

4.1 Results on the AD SNP Data

In this section, we demonstrated the feature selection bias of ICV in GWAS data using the

real Alzheimer’s disease dataset described in Section 3.2. We applied predictive analysis to

this real dataset to measure the predictive estimates of selected subsets of SNPs. The sample

size n of this dataset is 2099, in which 844 participants have LOAD and 1255 participants

have no LOAD. We applied 10-fold CV by splitting the dataset into 10 folds of approximately

equal size. When using ECV method, we re-selected subsets of SNPs based on the training

samples in each fold of CV. When using ICV, we pre-selected subsets of SNPs based on all

samples and then applied CV to train the model.

We first implemented GWAS by conducting LRT for each SNP conditional on APOE ε4

to compute a p-value for each SNP. Then we converted the p-values into the tail-based false

discovery rate using the R package fdrtool [27] in order to calculate the chance of false

discovery. We then ordered SNPs by − log10(Fdr) values to generate an ordered list of SNPs.

To compare the ordered list of SNPs based on all samples with the ordered list of SNPs based

on the training samples in one fold in ECV, we show the ordered Fdrs based on all samples

and the Fdrs of fold 1 in ECV given the SNP ranking based on all samples in Figure 4.1.

Figure 4.1a shows the values of − log(Fdr) of ordered SNPs based on all samples. Figure

4.1b shows the values of − log(Fdr) of SNPs calculated based on the training samples of fold

1 in ECV corresponding to the ordered SNPs by using all samples. It can be seen that the

largest − log10(Fdr) in Figure 4.1a is around 1, whereas the largest − log10(Fdr) in Figure

4.1b is around 0.52, corresponding to SNP rs1279795. The Fdr values are very large; hence

the chance that all the SNPs are not associated with the phenotype is high.

Figure 4.1b shows that the ordering of SNPs based on all samples is different from the

ordering of SNPs based on training samples in fold 1 of ECV. This indicates that the subsets

of SNPs selected based on all samples are different from the subsets of SNPs re-selected based

21

Figure 4.1: The Fdrs based on all samples (left) and the Fdrs based on the training
samples in fold 1 of ECV given the SNP ranking based on all samples (right).

(a) All samples (b) Fold 1 in ECV, re-ordered

on the training samples of each fold in ECV. Table 4.1 shows the top 10 SNPs selected based

on all samples and selected based on the training samples in fold 1. It can be seen that 6

of the top 10 SNPs were selected commonly by the two methods. However, SNPs rs6648176

and rs6671507 have ranks of 3rd and 8th respectively based on all samples whereas they

have ranks of 378th and 375th based on the training samples of fold 1. These two SNPs

rank high when using all samples because these SNPs are highly correlated to the phenotype

in test data in fold 1. On the other hand, SNPs rs17103033 and rs13237949 have ranks of

6th and 9th based on the training samples of fold 1 whereas they have ranks of 95th and

84th respectively based on all samples, but the correlations between these two SNPs and the

phenotype in the training data in fold 1 are low. SNPs rs17103033 and rs13237949 may have

high correlations with phenotype in the training data in fold 1 but have low correlations with

the phenotype in the test data in fold 1.

Given a list of ordered SNPs, we selected a sequence of subsets that contains the top l

SNPs and fitted the three regularized logistic regression models using training data. We set

l = 2s, for s = 0, 1, ..., 12. We only report the best model for elastic-net and hyper-LASSO.

22

Table 4.1: Top 10 SNPs selected based on all samples and based on the training
samples in fold 1 of ECV. The number in the bracket indicates the rank of SNP ordered
using the other method to select SNPs.

SNP rank Based on all samples Based on fold 1 in ECV

1 rs1279795 (2) rs8039031 (2)

2 rs8039031 (1) rs1279795 (1)

3 rs6649176 (378) rs7318037 (5)

4 rs1552820 (4) rs1552820 (4)

5 rs7318037 (3) rs17103033 (10)

6 rs9788079 (11) rs10753514 (95)

7 rs5915434 (7) rs5915434 (7)

8 rs6671507 (375) rs10519111 (13)

9 rs4435421 (21) rs13237949 (84)

10 rs17103033 (5) rs1552828 (11)

The best α in elastic-net are 0.3 and 0.7 for ICV and ECV, respectively. The best degrees of

freedom a in hyper-LASSO are 1.5 and 1 for ICV and ECV, respectively. These models can

be used to quantify the predictivity of the top l SNPs selected subsets together with APOE

ε4 dosages predicting Alzheimer’s disease status. We also fitted a simple logistic regression

model with APOE ε4 dosages as the only predictor. We fitted a logistic regression model

with only APOE ε4 dosages as the predictor. The baseline error rate of this dataset is 0.4,

which is by randomly predicting that yi = 0 for i = 1, 2, ..., 2099. Figure 4.2 shows the

predictivity of the selected subsets of SNPs based on all samples versus the predictivity of

the selected subsets of SNPs based the training samples in each fold of ECV. We can see that

the model with only APOE ε4 dosages can decrease the baseline error rate from 0.4 to 0.31,

achieving an R2
ER of 23%. When conducting ECV, the optimal predictivity of SNPs selected

using the training samples is very close to the model with APOE ε4 dosages as the only

predictor; adding more SNPs into our model does not improve the predictive performance

based on APOE ε4 only. On the other hand, when training the model based on the subsets

of SNPs pre-selected using all samples, the optimal model can reach an error rate of 0.07,

attained by using a subset of 210 SNPs. It can be seen that the error rate, AMLP, and AUC

23

in ICV and ECV are nearly identical when the size of the subset is smaller than 8 SNPs.

This is because of overlapping SNPs between ICV and ECV as shown in Table 4.1 for the

top 10 SNPs. However, the ICV’s estimates of the predictivity of SNPs pre-selected based

on all samples start to become significantly stronger than the predictivity of selected SNPs

measured with ECV when the size of the subset is larger than 2 SNPs.

Figure 4.2: The plots of predictivity of selected SNPs averaged over 10-fold CV for
the real dataset.

(a) Error rate

● ●
●

●
●

●
●

●

● ●
●

●

●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

● ●
●

●

●

●

● ●

●

●

●

●

●

1
0.

9
0.

8
0.

7
0.

6
0.

5
0.

4
0.

3
0.

2
0.

1
0

R
2

log2(Number of SNPs)

E
rr

or
 R

at
e

● Hyper−LASSO
LASSO
Elastic Net
Null
APOE
External CV
Internal CV

(b) AMLP

● ● ● ● ● ●
● ●

● ●
●

●
●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
00

0.
15

0.
30

0.
45

0.
60

0.
75

0.
90

1.
05

1.
20

1.
35

1.
50

1.
65

● ● ● ●
●

●
●

●

●

●

●
●

●

1
0.

8
0.

6
0.

4
0.

2
0

−
0.

2
−

0.
5

−
0.

8
−

1
−

1.
2

−
1.

5

R
2

log2(Number of SNPs)

A
M

LP

● Hyper−LASSO
LASSO
Elastic Net
Null
APOE
External CV
Internal CV

(c) AUC

● ● ● ●
● ● ● ●

● ●
●

●

●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

● ●
●

●
●

●
●

●

●

●

●

●

●

log2(Number of SNPs)
A

U
C

● Hyper−LASSO
LASSO
Elastic Net
Null
APOE
External CV
Internal CV

From Figure 4.2, it can also be seen that the predictive performance of hyper-LASSO is

better than both LASSO and elastic-net in this dataset. When more SNPs are added into the

model, hyper-LASSO is more stable in maintaining the performance. While the error rates

of those three methods are similar, the AMLP of hyper-LASSO is much smaller than those

of LASSO and elastic-net when the subset size of SNPs is large. The high AMLP of LASSO

and elastic-net when the size of the subset is large results from a few very small P̂i(yi|xi).

Overall, LASSO performs a little better than elastic-net for this dataset.

4.2 Results on the Synthetic Datasets

We have repeated the predictive analysis method used for Alzheimer’s disease on the two

synthetic datasets described in Section 3.3. The purpose of these simulation studies is to

understand the cause of feature selection bias of ICV with datasets in which we know the

24

true relationship between the response and the SNPs. The simulation studies also serve to

demonstrate the effectiveness of the predictive analysis method that we used for analyzing

Alzheimer’s disease data.

The synthetic datasets were generated by choosing ten SNPs from the real dataset and

generating the coefficients for the chosen SNPs from normal distributions. The phenotype

was generated with logistic regression models. Dataset1 has weak signals with coefficients

generated from N(0, 0.12). Dataset2 has strong signals with coefficients generated from

N(0, 22). The coefficients of the rest SNPs were set to be 0. The way to split the synthetic

datasets into ten folds was the same as the real dataset, which means for any SNPs data of a

participant in fold k in the real dataset, the SNPs data of the participant is in fold k in the

synthetic dataset.

We replicated the method that was used for the real data. We first tested the statistical

significance of each SNP conditional on APOE ε4 by applying the LRT to compute a p-value.

Then we converted the p-values into the tail-based false discovery rate. Figure 4.3 shows the

ordered Fdrs using all samples and using the training samples in fold 1 of ECV for the two

synthetic datasets. Figures 4.3a and 4.3b show the ordered − log10(Fdr) calculated based on

all samples for dataset1 and dataset2, respectively. Figures 4.3c and 4.3d show the ordered

− log10(Fdr) calculated based on the training samples in fold 1 of ECV for dataset1 and

dataset2. It can be seen that when the signals in the dataset are weak (dataset1), the Fdrs

are very large. The rankings of the true signals (SNPs truly related to the response) are

very low based on all samples or the training samples in fold 1 of ECV. In contrast, when

the signals in the dataset are strong (dataset2), the Fdrs are very small, as shown in Figures

4.3b and 4.3d. The true signals are ranked very highly.

To highlight the difference in the feature selection based on all samples and based only

on the training samples in fold 1 of ECV, we re-ordered SNPs by the ordering of SNPs based

on all samples. Figure 4.3e and 4.3f show the Fdrs of these re-ordered SNPs given the SNP

ranking based on all samples. Clearly, the ordering of SNPs based on all samples is different

from the ordering of SNPs selected with the training samples in fold 1 of ECV, especially

for weak signals. In dataset1, we can see that SNPs selected using the two methods have

5 overlapping SNPs among the top 10 SNPs from Table 4.2. However, the ranks of these

25

Figure 4.3: The Fdrs based on all samples and the Fdrs of fold 1 in ECV given the
SNP ranking based on all samples for dataset1 (left) and dataset2 (right). The red dots
indicate true signals.

(a) Dataset1, all samples (b) Dataset2, all samples

(c) Dataset1, fold 1 in ECV (d) Dataset2, fold 1 in ECV

(e) Dataset1, fold 1 in ECV, re-ordered (f) Dataset2, fold 1 in ECV, re-ordered

26

Table 4.2: Top 10 SNPs selected based on all samples and based on the training
samples in fold 1 of ECV for dataset1 and dataset2. SNPs with * represent the true
signals. The number in the bracket indicates the rank of the SNP ordered using the
other method to select SNPs.

SNP rank Dataset1 Dataset2

Based on all samples Based on fold 1 Based on all samples Based on fold 1

1 rs1808380 (7) rs13190617 (4) rs405509* (1) rs405509* (1)

2 rs2280201 (10) rs1321981 (3) rs8106922* (2) rs8106922* (2)

3 rs1321981 (2) rs1010196 (27) rs157580* (3) rs157580* (3)

4 rs13190617 (1) rs10519980 (85) rs439401* (4) rs439401* (4)

5 rs11664142 (31) rs10008892 (38) rs2075650* (5) rs2075650* (5)

6 rs2425483 (12) rs2255994 (9) rs10402271* (6) rs10402271* (6)

7 rs2894111 (36) rs1808380 (1) rs460527 (7) rs460527 (7)

8 rs2868574 (20) rs11084445 (70) rs8039031* (8) rs8039031* (8)

9 rs2255994 (6) rs1432679 (10) rs2597504 (11) rs7318037* (11)

10 rs1432679 (9) rs2280201 (2) rs1420566* (10) rs1420566* (10)

overlapped SNPs differ. For example, rs1808380 ranks first based on all samples but it ranks

7th based on the training samples in fold 1. Moreover, SNPs rs11664142 ranks 5th based on

all samples but ranks 31st based on the training samples in fold 1 and rs2894111 ranks 7th

based on all samples but ranks 36th based on the training samples in fold 1. Those two SNPs

have high ranks when selecting SNPs using all samples but low rank when re-selecting SNPs

using the training samples of each fold in ECV because they are only weakly associated with

the test data. In dataset2, it is noteworthy that the ordered lists of the top 10 SNPs based on

all samples and training samples in fold 1 are very similar. The overlapping is at 90% , with

the exception of the SNP ranked 9th for both two methods (rs2597504 and rs7318037). The

ranks of the true signals are very close to the top SNPs selected by using the two methods

in dataset2. On the other hand, we can still see from Figure 4.3f that as the ordered list

gets longer, the ranking of SNPs based on all samples becomes less similar to the ranking of

SNPs based on the training samples in fold 1. This is because more SNPs correlated to the

phenotype in test data will be included in the ordered list by ICV. The models built using

27

those SNPs will then underestimate the true error rate in test data.

Given a list of ordered SNPs, we selected a sequence of subsets containing the top l

SNPs and fitted the three regularized logistic regression models using training data, which

is similar to the procedure of the real data analysis. The training data was used to train

the three penalized logistic regression models and test data was used to assess the predictive

performance of each model. In ICV, we pre-selected a list of SNPs using all samples and

then applied 10-fold CV to this list of SNPs to measure their predictivity. In ECV, the list

of selected SNPs was produced using only the training samples in each fold of CV. Hence,

different lists of SNPs were used in each training process. The α with the best performance

is that of elastic-net which was 0.7 for both dataset1 and dataset2. The degree of freedom

a with the best performance was that of hyper-LASSO which was 1 and 1.5 for dataset1

and dataset2, respectively. In order to better interpret the predictive performance, we also

measured the predictive performance of two special prediction cases. One is called the null

case, in which no SNP is used as a predictor in the model. The other is called the oracle

case, in which we fitted a logistic regression using the ten truly related SNPs and APOE ε4

dosages.

The predictivity against k SNPs on the top list is showed in Figure 4.4. We first examined

dataset1, in which the signals are very small. From Figure 4.3, we can see that there are

only two true signals among the top 212 SNPs selected based on all samples or only the

training samples in fold 1 and their rankings are very low. All the rest of the top 212 SNPs

are not related to the response. In this scenario, we expect that selecting more SNPs and

adding them into models does not improve the performance of predicting the response. The

error rate of the oracle case is 0.357, corresponding to an R2
ER of 13%. Using the ECV

method, the predictive performances of the three models are all worse than the oracle case.

The smallest error rate is 0.357, which is the same as the oracle case, and this was achieved

by hyper-LASSO with a subset of 1 SNP. What’s more, the predictivity of SNPs selected

based on all samples is too high. The error rate and AMLP shown in Figures 4.4a and 4.4c

are below the line corresponding to the oracle case even when a small number of top SNPs

were used to make prediction. The best R2
ER was attained by pre-selected SNPs based on

all samples is 0.80 using the LASSO with 211 SNPs. The AUC in Figure 4.4e even reached

28

Figure 4.4: The plots of predictivity of selected SNPs averaged over 10-fold CV for
synthetic datasets.

(a) Error Rate for Dataset1

● ●
● ●

● ●

●

● ● ●

●
●

●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

●

●
●

●

●

●

●

●

●

●

●

●

●

1
0.

9
0.

8
0.

7
0.

6
0.

5
0.

4
0.

3
0.

2
0.

1
0

R
2

log2(Number of SNPs)

E
rr

or
 R

at
e

● Hyper−LASSO
LASSO
Elastic Net
Oracle
Null
External CV
Internal CV

(b) Error Rate for Dataset2

● ●

●

●

● ● ● ●
● ●

● ●
●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

● ●

●

●

●
● ●

● ●

●

●
●

●

1
0.

9
0.

8
0.

7
0.

6
0.

5
0.

4
0.

3
0.

2
0.

1
0

R
2

log2(Number of SNPs)

E
rr

or
 R

at
e

● Hyper−LASSO
LASSO
Elastic Net
Oracle
Null
External CV
Internal CV

(c) AMLP for Dataset1

● ● ● ● ●
●

●

● ● ●

●
● ●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
00

0.
15

0.
30

0.
45

0.
60

0.
75

0.
90

1.
05

1.
20

1.
35

1.
50

1.
65

● ● ● ●
●

●

●

●

●

●

●
●

●

1
0.

8
0.

6
0.

4
0.

2
0

−
0.

2
−

0.
6

−
1

R
2

log2(Number of SNPs)

A
M

LP

● Hyper−LASSO
LASSO
Elastic Net
Oracle
Null
External CV
Internal CV

(d) AMLP for Dataset2

●
●

●

●

● ● ● ● ●
● ●

●
●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

●
●

●

●

●

● ●

●

●

●

● ●

●

1
0.

9
0.

8
0.

7
0.

6
0.

5
0.

4
0.

3
0.

2
0.

1
0

R
2

log2(Number of SNPs)

A
M

LP

● Hyper−LASSO
LASSO
Elastic Net
Oracle
Null
External CV
Internal CV

(e) AUC for Dataset1

● ● ● ●
●

●

●
● ● ●

●
● ●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

●
●

●
●

●

●

●

●

●

●

●

●

●

log2(Number of SNPs)

A
U

C

● Hyper−LASSO
LASSO
Elastic Net
Oracle
Null
External CV
Internal CV

(f) AUC for Dataset2

●

●

●

●
● ● ● ● ● ● ● ● ●

0 1 2 3 4 5 6 7 8 9 10 11 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

●
●

●

●
● ● ●

● ● ●
● ● ●

log2(Number of SNPs)

A
U

C

● Hyper−LASSO
LASSO
Elastic Net
Oracle
Null
External CV
Internal CV

29

0.98 for hyper-LASSO with 212 SNPs. These results show that the bias is severe in the ICV

predictivity estimates in dataset1. The results of dataset1 are very similar to the result of

the real data.

Now we turn to look at the comparison of ICV and ECV in dataset 2, in which strong

signals exist. The error rate of the oracle case is 0.137. It can be seen from Figures 4.4b,

4.4d and 4.4f that the true signals can improve the predictive performance of models. As

the subset size increases, more true signals are included in the models, the error rates are

decreasing for both SNPs selected using ICV method and ECV method. When using ECV

method, the lowest error rate of 0.15 is achieved by the hyper-LASSO with a subset of 27

SNPs, in which almost all ten true signals are selected using the training data of each fold.

The predictive performance of 10-fold cross validation may still have some bias. All the three

models achieved an R2
ER of approximately 70% and an R2

AMLP of 52% based on 24 SNPs. The

largest AUC among the three models was 0.93, attained when the subset contained 25 SNPs,

which is very close to the oracle case AUC of 0.94. When using ICV method, the predictivity

of SNPs selected based on all samples becomes even stronger than the predictivity of the

truly related SNPs (the oracle case). The smallest error rate is 0.05 when using a subset of

210 SNPs. Although the biases in ICV’s predictivity estimates are less severe than those in

dataset1, the highest R2
ER is 90%, which is significantly higher than the R2

ER of the oracle

prediction. Because the ordered lists of first 24 SNPs using ICV and ECV are almost the

same, it is not surprising that the predictivity estimates given by ICV and ECV are similar

when the subset size l ≤ 24.

Comparing the performance of the three penalized logistic regression methods, hyper-

LASSO outperforms LASSO and elastic-net for both dataset1 and dataset2. It can be seen

that hyper-LASSO is more stable than LASSO and elastic-net when the size of the subset of

SNPs increases. The predictive performances of the three models are similar when the subset

of predictors is small. However, when the size of the subset increases, hyper-LASSO tends

to select fewer features and retain the large coefficients of important features. On the other

hand, LASSO and elastic-net tend to select many non-zero coefficients. Figure 4.4d also

shows that the AMLP of hyper-LASSO is lower than both LASSO and elastic-net at every

number of l. When the error rate is the same, the predictive probability of hyper-LASSO

30

at the true label is higher than LASSO and elastic-net. The performances of LASSO and

elastic-net do not differ by much.

31

5. Conclusion and Future Work

In this thesis, we conducted empirical studies using a real dataset and two synthetic

datasets to investigate the feature selection bias caused by using ICV and the predictivity

of selected SNPs from GWAS of Alzheimer’s disease using three penalized logistic regression

methods. This thesis reinforces that there might be huge bias in the predictivity estimate

given by ICV, especially when there is no strong signal in the dataset. For the real dataset,

identified SNPs by GWAS using ECV do not help with predicting the Alzheimer’s disease

status except APOE ε4, which has been known by scientist to increase the risk of Alzheimer’s

disease. When using ICV, the predictivity estimate of pre-selected SNPs based on all samples

can reach an R2 of 80%. For the synthetic datasets, the result in the dataset where only

weak signals exist is similar to the real data application. Moreover, the predictivity estimate

of pre-selected SNPs is even better than the predictivity of the chosen ten SNPs that used

to generate the phenotype. On the other hand, when there are strong signals in the dataset,

the selected top SNPs using ECV can improve the predictive performance of the models. We

found that hyper-LASSO has better performance than LASSO and elastic net. As more noises

added to the model, hyper-LASSO is more stable to maintain the good performance than

LASSO and elastic net. In a nutshell, ICV should not be used to measure the predictivity of

selected SNPs and should be stated clearly.

Although single-SNP analysis works well in identifying large signals, it fails to detect

a group of correlated SNPs. Different SNPs may interact with other SNPs that form a

complex network. Single-SNP analysis is not able to distinguish SNPs interactions. Some

Bayesian methods using MCMC algorithm have been developed to select a group of correlated

SNPs [31]. In the future we can apply those methods to select a group of correlated SNPs.

Another future work is to apply survival analysis with penalty to build the predictive model

of Alzheimer’s disease. Fail to detect Alzheimer’s disease at a specific time does not mean we

will not get Alzheimer’s disease in the future. The dataset with specific event time should

be used to construct the survival analysis.

32

References

[1] Minerva M. Carrasquillo, Fanggeng Zou, V. Shane Pankratz, Samantha L. Wilcox,
Li Ma, Louise P. Walker, Samuel G. Younkin, Curtis S. Younkin, Linda H. Younkin,
Gina D. Bisceglio, et al. Genetic variation in pcdh11x is associated with susceptibility
to late-onset alzheimer’s disease. Nature genetics, 41(2):192–198, 2009.

[2] Allen D. Roses, Michael William Lutz, Heather Amrine-Madsen, Ann M. Saunders,
Donna Crenshaw, Scott S. Sundseth, Matt Huentelman, Kathleen Anne Welsh-Bohmer,
and Eric Reiman. A tomm40 variable-length polymorphism predicts the age of late-onset
alzheimer’s disease. The pharmacogenomics journal, 10(5):375, 2010.

[3] Yoav Benjamini and Yosef Hochberg. Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society.
Series B (Methodological), 57(1):289–300, 1995.

[4] Lynn M. Bekris, Franziska Lutz, and Chang-En Yu. Functional analysis of apoe locus
genetic variation implicates regional enhancers in the regulation of both tomm40 and
apoe. Journal of human genetics, 57(1):18, 2012.

[5] Adeline Lo, Herman Chernoff, Tian Zheng, and Shaw-Hwa Lo. Why significant variables
arent automatically good predictors. Proceedings of the National Academy of Sciences
of the United States of America, 112(45):13892–13897, November 2015.

[6] Klas Gränsbo, Peter Almgren, Marketa Sjögren, JG Smith, Gunnar Engström, Bo Hed-
blad, and Olle Melander. Chromosome 9p21 genetic variation explains 13% of cardio-
vascular disease incidence but does not improve risk prediction. Journal of internal
medicine, 274(3):233–240, 2013.

[7] David G. Clayton. Prediction and Interaction in Complex Disease Genetics: Experience
in Type 1 Diabetes. PLoS Genetics, 5(7):e1000540, July 2009.

[8] Johanna Jakobsdottir, Michael B. Gorin, Yvette P. Conley, Robert E. Ferrell, and
Daniel E. Weeks. Interpretation of genetic association studies: markers with replicated
highly significant odds ratios may be poor classifiers. PLoS genetics, 5(2):e1000337,
2009.

[9] A. Cecile J.W. Janssens and Cornelia M. van Duijn. Genome-based prediction of com-
mon diseases: advances and prospects. Human molecular genetics, 17(R2):R166–R173,
2008.

[10] Sanghee Kang, Bo Ram Kim, Myoung-Hee Kang, Dae-Young Kim, Dae-Hee Lee,
Sang Cheul Oh, Byung Wook Min, and Jun Won Um. Anti-metastatic effect of met-
formin via repression of interleukin 6-induced epithelial–mesenchymal transition in hu-
man colon cancer cells. PloS one, 13(10):e0205449, 2018.

33

[11] Michael Lecocke and Kenneth Hess. An Empirical Study of Univariate and Genetic
Algorithm-Based Feature Selection in Binary Classification with Microarray Data. Can-
cer Informatics, 2:313–327, February 2007.

[12] Charles Kooperberg, Michael LeBlanc, and Valerie Obenchain. Risk prediction using
genome-wide association studies. Genetic Epidemiology, 34(7):643–652, 2010.

[13] Christophe Ambroise and Geoffrey J. McLachlan. Selection bias in gene extraction on
the basis of microarray gene-expression data. Proceedings of the national academy of
sciences, 99(10):6562–6566, 2002.

[14] Jerzy Krawczuk and Tomasz ukaszuk. The feature selection bias problem in relation to
high-dimensional gene data. Artificial Intelligence in Medicine, 66:63–71, January 2016.

[15] Surendra K. Singhi and Huan Liu. Feature subset selection bias for classification learning.
In Proceedings of the 23rd international conference on Machine learning, pages 849–856.
ACM, 2006.

[16] Jaime Derringer, Robert F. Krueger, Danielle M. Dick, Scott Saccone, Richard A.
Grucza, Arpana Agrawal, Peng Lin, Laura Almasy, Howard J. Edenberg, Tatiana
Foroud, John I. Nurnberger, Victor M. Hesselbrock, John R. Kramer, Samuel Kuper-
man, Bernice Porjesz, Marc A. Schuckit, Laura J. Bierut, and Gene Environment Asso-
ciation Studies (GENEVA) Consortium. Predicting Sensation Seeking From Dopamine
Genes: A Candidate-System Approach. Psychological Science, 21(9):1282–1290, Septem-
ber 2010.

[17] Natalia Briones and Valentin Dinu. Data mining of high density genomic variant data
for prediction of Alzheimer’s disease risk. BMC Medical Genetics, 13:7, January 2012.

[18] Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996.

[19] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–
320, April 2005.

[20] Longhai Li and Weixin Yao. Fully Bayesian Logistic Regression with Hyper-Lasso Priors
for High-dimensional Feature Selection. Journal of Statistical Computation and Simu-
lation, 88(14):2827–2851, September 2018.

[21] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics New York, 2001.

[22] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874,
2006.

[23] Jungsu Kim, Jacob M. Basak, and David M. Holtzman. The Role of Apolipoprotein E
in Alzheimers Disease. Neuron, 63(3):287–303, August 2009.

34

[24] Samuel S. Wilks. The large-sample distribution of the likelihood ratio for testing com-
posite hypotheses. The Annals of Mathematical Statistics, 9(1):60–62, 1938.

[25] John D. Storey. A direct approach to false discovery rates. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 64(3):479–498, August 2002.

[26] John D. Storey. The positive false discovery rate: a bayesian interpretation and the
q-value. The Annals of Statistics, 31(6):2013–2035, 2003.

[27] Korbinian Strimmer. fdrtool: a versatile r package for estimating local and tail area-
based false discovery rates. Bioinformatics, 24(12):1461–1462, 2008.

[28] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization Paths for Gener-
alized Linear Models via Coordinate Descent. Journal of statistical software, 33(1):1–22,
2010.

[29] Sudha Seshadri, Annette L. Fitzpatrick, M. Arfan Ikram, Anita L. DeStefano, Vil-
mundur Gudnason, Merce Boada, Joshua C. Bis, Albert V. Smith, Minerva M. Car-
rasquillo, Jean Charles Lambert, et al. Genome-wide analysis of genetic loci associated
with alzheimer disease. Jama, 303(18):1832–1840, 2010.

[30] Denise Harold, Richard Abraham, Paul Hollingworth, Rebecca Sims, Amy Gerrish, Mar-
ian L. Hamshere, Jaspreet Singh Pahwa, Valentina Moskvina, Kimberley Dowzell, Amy
Williams, et al. Genome-wide association study identifies variants at clu and picalm
associated with alzheimer’s disease. Nature genetics, 41(10):1088–1093, 2009.

[31] Yongtao Guan and Matthew Stephens. Bayesian variable selection regression for genome-
wide association studies and other large-scale problems. The Annals of Applied Statistics,
5(3):1780–1815, September 2011.

35

Appendix

R Code

A.1 Utility Functions

General functions

log_sum_exp <- function (lx) {mlx <- max (lx); log(sum(exp(lx - mlx))) + mlx}

log_sum_exp_row <- function (mlx) {apply (mlx, 1, log_sum_exp)}

log_sum_exp_col <- function (mlx) {apply (mlx, 2, log_sum_exp)}

find mode

Mode <- function(x,na.rm) {

xtab <- table(x)

xmode <- names(which(xtab == max(xtab)))

return(xmode[1])

}

likelihood ratio test

LRtest <- function(model_null,model_full) {

loglike_null <- logLik(model_null)

loglike_full <- logLik(model_full)

df0 <- attr(loglike_null, "df")

df1 <- attr(loglike_full, "df")

df <- df1 - df0

SS <- as.numeric(2*(loglike_full - loglike_null))

list (SS = SS, df=df, pvalue = pchisq (SS, df, lower.tail = FALSE, log.p = F),

log.pvalue=pchisq (SS, df, lower.tail = FALSE, log.p = T))

}

checkna_col <- function (x) sum(is.na(x) | x=="-9")

check na

checkna <- function(imputedata2) {

num.na <- apply(imputedata2,2, checkna_col)

na.names <- colnames (imputedata2)[which (num.na >0)]

if (length (na.names)>0){

cat ("Some Variables Contain NA\n")

} else {

cat("Your Data Has NO NA\n")

}

na.names

}

library(glmnet)

glmnet_fit <- function(X_tr, Y_tr, X_ts, Y_ts, a){

read information about data

n <- nrow (X_tr) ## numbers of obs

36

find number of observations in each group

nos_g <- as.vector(tapply(rep(1,n), INDEX = Y_tr, sum))

if (any(nos_g < 2)) stop ("Less than 2 cases in some group")

choosing the best lambda

cvfit <- cv.glmnet(x = X_tr, y = Y_tr, alpha = a, nlambda = 500, family = "binomial",

type.measure = "class")

lambda <- cvfit$lambda[which.min(cvfit$cvm)]

cat("The best lambda chosen by CV:", lambda, "\n")

fit model with the best lambda

fit <- glmnet (x = X_tr, y= Y_tr, alpha = a, nlambda = 500, family = "binomial")

betas <- coef(fit, s = lambda)

predicting for new cases

if (is.null (X_ts)) {

return (betas)

}

else {

probs_pred_1 <- predict(fit, newx = X_ts, s =lambda, type="response")

probs_pred_0 <- 1- probs_pred_1

pred_matrix <- cbind(probs_pred_0, probs_pred_1)

eval <- evaluate_pred(pred_matrix, Y_ts+1, showplot = F)

list(eval = eval, predictor = class_pred, betas = betas)

}

}

A.2 R Code for Feature Selection and Model Fitting

using ICV with real Dataset

############### calculating P-value conditional on APOE for chromosome 1 to 22 ###############

source("/home/med826/Mayo/utility.r")

if (!exists("irep")) irep <- 1

file path

SNP_single_rawfile <- sprintf("/home/med826/Mayo/SNPdata/singleSNP/snp%d.raw", irep)

cov_file <- "/home/med826/Mayo/covariatedata/covariate_processed.rds"

pvalue_file <- "/home/med826/Mayo/ICV/pvalue/"

get the single SNP

SNP_single_rawdata <- read.table(SNP_single_rawfile, header = T)

SNPname <- substr(colnames(SNP_single_rawdata)[7], 1, nchar(colnames(SNP_single_rawdata)[7])-2)

SNP_single <- SNP_single_rawdata[order(SNP_single_rawdata$IID),]

phenotype

covdata <- readRDS(cov_file)

imputation with mode

n <- ncol(SNP_single)

SNP_single_imputeddata <- SNP_single[, n]

37

SNP_single_imputeddata[is.na(SNP_single[, n])] = Mode(SNP_single[, n], na.rm = T)

ssnpdata <- cbind.data.frame(pheno=covdata$Dx, apoe=covdata$APOE4_dosage..0.1.2.,

SNP = SNP_single_imputeddata)

Y_name <- "pheno"

X_cov <- "apoe"

X_name <- "SNP"

calculate p value for Internal CV

if (nlevels(ssnpdata$SNP) < 2) {

saveRDS(c(SNPname = SNPname, pvalue = 0), file = paste0(pvalue_file, sprintf("pvalue%d.rds", irep)))

} else {

glm_null <- glm(formula = paste0(Y_name, "~", X_cov), data = ssnpdata, family = "binomial")

glm_full <- glm(formula = paste0(Y_name, "~", X_cov, "+", X_name), data = ssnpdata,

family = "binomial")

lrtest <- LRtest(glm_null, glm_full)

pvalue <- lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = pvalue), file = paste0(pvalue_file,

sprintf("pvalue%d.rds", irep)))

}

############### calculate p-value conditional on APOE for X chromosome ###############

source("/home/med826/Mayo/utility.r")

if (!exists("irep")) irep <- 1

irep <- irep+300768

file path

SNP_single_rawfile <- sprintf("/home/med826/Mayo/SNPdata/singleSNP/snp%d.raw", irep)

cov_file <- "/home/med826/Mayo/covariatedata/covariate_processed.rds"

pvalue_file <- "/home/med826/Mayo/ICV/pvalue/"

get the single SNP

SNP_single_rawdata <- read.table(SNP_single_rawfile, header = T)

SNPname <- substr(colnames(SNP_single_rawdata)[7], 1, nchar(colnames(SNP_single_rawdata)[7])-2)

SNP_single <- SNP_single_rawdata[order(SNP_single_rawdata$IID),]

phenotype

covdata <- readRDS(cov_file)

covaritedata <- covdata[order(covdata$IID),]

imputation with mode

n <- ncol(SNP_single_rawdata)

snp_male <- SNP_single[which(SNP_single$SEX==1),7]

snp_male_imputed <- snp_male

snp_male_imputed[is.na(snp_male)] <- Mode(snp_male,na.rm = T)

snp_male_imputed[snp_male_imputed==0] <- 11

snp_male_imputed[snp_male_imputed==2] <- 12

snp_female <- SNP_single[which(SNP_single$SEX==2),7]

snp_female_imputed <- snp_female

38

snp_female_imputed[is.na(snp_female)] <- Mode(snp_female,na.rm = T)

snp_female_imputed[snp_female_imputed==0] <- 21

snp_female_imputed[snp_female_imputed==1] <- 22

snp_female_imputed[snp_female_imputed==2] <- 23

SNP_single[SNP_single$SEX==1,7] <- snp_male_imputed

SNP_single[SNP_single$SEX==2,7] <- snp_female_imputed

ssnpdata <- cbind.data.frame(pheno=covdata$Dx, sex=covdata$Sex, apoe=covdata$APOE4_dosage..0.1.2.,

SNP = factor(SNP_single[,7]))

Y_name <- "pheno"

X_cov <- "apoe"

X_name <- "SNP"

calculate p value for Internal CV

if (nlevels(ssnpdata$SNP) < 2) {

saveRDS(c(SNPname = SNPname, pvalue = 0), file = paste0(pvalue_file,

sprintf("pvalue%d.rds", irep)))

} else {

glm_null <- glm(formula = paste0(Y_name, "~", X_cov), data = ssnpdata, family = "binomial")

glm_full <- glm(formula = paste0(Y_name, "~", X_cov, "+", X_name), data = ssnpdata,

family = "binomial")

lrtest <- LRtest(glm_null, glm_full)

pvalue <- lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = pvalue), file = paste0(pvalue_file,

sprintf("pvalue%d.rds", irep)))

}

############### convert p-values into Fdr and select top features ###############

library("fdrtool")

Pvalue_path <- "/home/med826/Mayo/ICV/pvalue"

datapath <- "/home/med826/Mayo/ICV/dataset/"

evalpath <- "/home/med826/Mayo/ICV/evaluation/"

Pvalue_list <- list.files(path = Pvalue_path, full.names = T)

Pvalue_all <- do.call(’rbind’, lapply(Pvalue_list, readRDS))

pvalue <- as.numeric(Pvalue_all[,2])

ordered.name <- Pvalue_all[order(pvalue, decreasing = F),1]

plot of all qvalues

fdr <- fdrtool(pvalue, statistic = "pvalue", plot = F, cutoff.method = "fndr")

#lfdr in fdrtool is the local fdr

#qval in fdrtool is the tail area-based fdr

qvalue <- fdr$qval

mlog.qvalue <- -log (qvalue, base = 10)

mll.sorted <- sort(mlog.qvalue, decreasing = T)

xaxis <- log2(1:309549)

jpeg(paste0(evalpath, "fdr_ICV.jpg"), width = 480, height = 480)

par(mar = c(4,4,0.5,0.5))

plot(xaxis, mll.sorted, type = "h", xlab="", ylab="", xaxp=c(0,19,19))

39

#plot(mlog.qvalue, type = "h", xlab="", ylab="")

title(xlab = "log2(rank of SNPs)", ylab = "-log(Fdr)", cex.lab = 1.5, line = 2.5)

dev.off()

top5000 <- cbind(snpname = ordered.name[1:5000], qvalue = sort(qvalue, decreasing = F)[1:5000])

saveRDS(top5000, file = paste0(datapath, "top5000SNPs_ICV.rds"))

############### Select top 5000 features ###############

source("/home/med826/Mayo/utility.r")

datapath <- "/home/med826/Mayo/ICV/dataset/"

top5000_file <- paste0(datapath, "top5000SNPs_ICV.rds")

covdata_file <- "/home/med826/Mayo/covariatedata/covariate_processed.rds"

allsnplist <- "/home/med826/Mayo/SNPdata/alldata_snplist.rds"

top5000SNP <- readRDS(top5000_file)

infodata contain fold, phenotype, apoe

covdata <- readRDS(covdata_file)

extract the snp names

names_snp <- top5000SNP[,1]

snpname_list <- as.character(readRDS(allsnplist))

NULL matrix

SNP <- matrix(0, 2099, 5000)

colnames(SNP) <- names_snp

for (i in 1:5000){

index_snp <- which(snpname_list %in% names_snp[i])

SNP_single_rawfile <- sprintf("/home/med826/Mayo/SNPdata/singleSNP/snp%d.raw", index_snp)

SNP_single_rawdata <- read.table(SNP_single_rawfile, header = T)

SNP_single <- SNP_single_rawdata[order(SNP_single_rawdata$IID),]

n <- ncol(SNP_single_rawdata)

if (index_snp > 300767){

snp_male <- SNP_single[which(SNP_single$SEX==1),n]

snp_male_imputed <- snp_male

snp_male_imputed[is.na(snp_male)] <- Mode(snp_male,na.rm = T)

snp_male_imputed[snp_male_imputed==0] <- 11

snp_male_imputed[snp_male_imputed==2] <- 12

snp_female <- SNP_single[which(SNP_single$SEX==2),7]

snp_female_imputed <- snp_female

snp_female_imputed[is.na(snp_female)] <- Mode(snp_female,na.rm = T)

snp_female_imputed[snp_female_imputed==0] <- 21

snp_female_imputed[snp_female_imputed==1] <- 22

snp_female_imputed[snp_female_imputed==2] <- 23

SNP_single[SNP_single$SEX==1,n] <- snp_male_imputed

SNP_single[SNP_single$SEX==2,n] <- snp_female_imputed

SNP[,i] <- SNP_single[,n]

} else{

SNP_single_imputeddata <- SNP_single[, n]

SNP_single_imputeddata[is.na(SNP_single[, n])] = Mode(SNP_single[, n], na.rm = T)

SNP[,i] <- SNP_single_imputeddata

}

40

}

SNPdata <- cbind.data.frame(SNP, apoe=covdata$APOE4_dosage..0.1.2., phenotype=covdata$Dx, fold=covdata$tenfolds)

saveRDS(SNPdata, file = paste0(datapath, "SNPdata5000_ICV.rds"))

############### Model fitting ###############

if (!exists("irep")) irep <- 1

if (!exists("iloc")) iloc <- 1

source("/home/med826/Mayo/utility.r")

library (HTLR, lib.loc = "/home/longhai/Rdev/HTLR_3.1-1")

datapath <- "/home/med826/Mayo/ICV/dataset/"

errorpath <- "/home/med826/Mayo/ICV/errorrate/"

evalpath <- "/home/med826/Mayo/ICV/evaluation/"

predpath <- "/home/med826/Mayo/ICV/prediction/"

amlppath <- "/home/med826/Mayo/ICV/amlp/"

predmatpath <- "/home/med826/Mayo/ICV/predmat/"

top5000_file <- paste0(datapath, "top5000SNPs_ICV.rds")

SNPdata_file <- paste0(datapath, "SNPdata5000_ICV.rds")

top5000SNP <- readRDS(top5000_file)

extract the snp names

names_snp <- top5000SNP[,1]

get the SNP file

SNPdata <- readRDS(SNPdata_file)

training <- SNPdata[SNPdata$fold != iloc,]

testing <- SNPdata[SNPdata$fold == iloc,]

nsnp_set <- c(1, 2, 4, 8, ..., 1024, 2048, 4096)

nsnp_set <- c(0, 13)

for (i in 1:13){

nsnp_set[i] <- 2^(i-1)

}

Y_name <- "phenotype"

X_cov <- "apoe"

X_chosen <- names_snp[1:nsnp_set[irep]]

fit_formula <- as.formula(paste0(Y_name, "~", paste(c(X_cov, X_chosen), collapse = "+")))

X_tr <- model.matrix(fit_formula, data = training)[, -1]

Y_tr <- as.numeric(training[, Y_name])-1

X_ts <- model.matrix(fit_formula, data = testing)[, -1]

Y_ts <- as.numeric(testing[, Y_name])-1

htlr

htlr.pred <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.htlr <- matrix(0, nrow=length(Y_ts),ncol=3)

er.htlr <- vector()

amlp.htlr <- vector()

alpha1 <- c(0.5, 1, 1.5)

41

for (j in 1:3){

htlr.fit <- htlr_fit (

y_tr = Y_tr, X_tr = X_tr, X_ts = X_ts, stdzx = F, ## data

pty = "t", alpha = alpha1[j], s = -10, ## alpha = df and s= log (w)

iters_h = 1000, iters_rmc = 1000, thin = 10, ## mcmc iteration settings,

leap_L_h = 5, leap_L = 50, leap_step = 0.3, hmc_sgmcut = 0.3, ## hmc settings

initial_state = "lasso", silence = !interactive()) ## initial state settings

htlr.pred[,2*j-1] <- htlr.fit$probs_pred[,1]

htlr.pred[,2*j] <- htlr.fit$probs_pred[,2]

htlr.predeval <- evaluate_pred(htlr.fit$probs_pred, Y_ts+1, showplot=F)

er.htlr[j] <- htlr.predeval$er

pred.htlr[,j] <- ifelse(htlr.pred[,1] > 0.5, 0, 1)

amlp.htlr[j] <- htlr.predeval$amlp

}

lasso prediction

lasso.fit <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, 1)

las.pred <- lasso.fit$eval[["table_eval"]]

predmat.las <- las.pred[, 3:4]

er.las <- lasso.fit$eval[["er"]]

pred.las <- as.numeric(lasso.fit$predictor)

amlp.las <- lasso.fit$eval[["amlp"]]

elastic net

alpha2 <- c(0.3,0.5,0.7)

predmat.ela <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.ela <- matrix(0, nrow=length(Y_ts),ncol=3)

er.ela <- vector()

amlp.ela <- vector()

for (i in 1:3){

elastic.net <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, alpha2[i])

ela.pred <- elastic.net$eval[["table_eval"]]

predmat.ela[,2*i-1] <- unlist(ela.pred[, 3])

predmat.ela[,2*i] <- unlist(ela.pred[, 4])

er.ela[i] <- elastic.net$eval[["er"]]

pred.ela[,i] <- as.numeric(elastic.net$predictor)

amlp.ela[i] <- elastic.net$eval[["amlp"]]

}

saveRDS(cbind(pred.htlr, pred.las, pred.ela),

file = paste0(predpath, sprintf("predictor_ICV_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(er.htlr), er.las, t(er.ela)),

file = paste0(errorpath, sprintf("errorrate_ICV_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(amlp.htlr), amlp.las, t(amlp.ela)),

file = paste0(amlppath, sprintf("amlp_ICV_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(htlr.pred, predmat.las, predmat.ela),

file = paste0(predmatpath, sprintf("predmat_ICV_fold%d_nsnp%d.rds",iloc, nsnp_set[irep])))

A.3 R Code for Feature Selection and Model Fitting

using ECV with Real Dataset

############### calculating P-value conditional on APOE for chromosome 1 to 22 ###############

42

source("/home/med826/Mayo/utility.r")

if (!exists("irep")) irep <- 1

file path

SNP_single_rawfile <- sprintf("/home/med826/Mayo/SNPdata/singleSNP/snp%d.raw", irep)

covariate_file <- "/home/med826/Mayo/covariatedata/covariate_processed.rds"

get the single SNP

SNP_single_rawdata <- read.table(SNP_single_rawfile, header = T)

SNPname <- substr(colnames(SNP_single_rawdata)[7], 1, nchar(colnames(SNP_single_rawdata)[7])-2)

SNP_single <- SNP_single_rawdata[order(SNP_single_rawdata$IID),]

imputation with mode

n <- ncol(SNP_single)

SNP_single_imputeddata <- SNP_single[, n]

SNP_single_imputeddata[is.na(SNP_single[, n])] = Mode(SNP_single[, n], na.rm = T)

load covariate file

covariate <- readRDS(covariate_file)

SNPdata <- cbind.data.frame(fold = covariate$tenfolds, pheno = covariate$Dx,

apoe = covariate$APOE4_dosage..0.1.2., SNP = SNP_single_imputeddata)

Y_name <- "pheno"

X_cov <- "apoe"

X_name <- "SNP"

kfolds=10

for (ifold in 1:kfolds) {

pvalue_rds_10folds <- sprintf("/home/med826/Mayo/ECV/pvalue_apoe/pvalue_fold%d_SNP%d.rds",ifold,irep)

training <- SNPdata[SNPdata$fold != ifold,]

check mutation

if (nlevels(training$SNP) < 2) {

saveRDS(c(SNPname = SNPname, pvalue = 1), file = pvalue_rds_10folds)

}

else {

glm_null <- glm(formula = paste0(Y_name, "~", X_cov), data = training, family = "binomial")

glm_full <- glm(formula = paste0(Y_name, "~", X_cov, "+", X_name), data = training,

family = "binomial")

lrtest <- LRtest(glm_null, glm_full)

pvalue <- lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = pvalue), file = pvalue_rds_10folds)

}

}

############### calculate p-value conditional on APOE for X chromosome ###############

source("/home/med826/Mayo/utility.r")

if (!exists("irep")) irep <- 1

irep <- irep+300768

SNP_single_rawfile <- sprintf("/home/med826/Mayo/SNPdata/singleSNP/snp%d.raw", irep)

cov_file <- "/home/med826/Mayo/covariatedata/covariate_processed.rds"

pvalue_file <- "/home/med826/Mayo/ICV/pvalue/"

43

get the single SNP

SNP_single_rawdata <- read.table(SNP_single_rawfile, header = T)

SNPname <- substr(colnames(SNP_single_rawdata)[7], 1, nchar(colnames(SNP_single_rawdata)[7])-2)

SNP_single <- SNP_single_rawdata[order(SNP_single_rawdata$IID),]

phenotype

covdata <- readRDS(cov_file)

covaritedata <- covdata[order(covdata$IID),]

imputation with mode and add sex for covariate

snp_male <- SNP_single[which(SNP_single$SEX==1),7]

snp_male_imputed <- snp_male

snp_male_imputed[is.na(snp_male)] <- Mode(snp_male,na.rm = T)

snp_male_imputed[snp_male_imputed==0] <- 11

snp_male_imputed[snp_male_imputed==2] <- 12

snp_female <- SNP_single[which(SNP_single$SEX==2),7]

snp_female_imputed <- snp_female

snp_female_imputed[is.na(snp_female)] <- Mode(snp_female,na.rm = T)

snp_female_imputed[snp_female_imputed==0] <- 21

snp_female_imputed[snp_female_imputed==1] <- 22

snp_female_imputed[snp_female_imputed==2] <- 23

SNP_single[SNP_single$SEX==1,7] <- snp_male_imputed

SNP_single[SNP_single$SEX==2,7] <- snp_female_imputed

SNPdata <- cbind.data.frame(fold = covdata$tenfolds, pheno=covdata$Dx, sex=covdata$Sex,

apoe=covdata$APOE4_dosage..0.1.2., SNP = factor(SNP_single[,7]))

Y_name <- "pheno"

X_cov <- "apoe"

X_name <- "SNP"

kfolds=10

for (ifold in 1:kfolds) {

pvalue_rds_10folds <- sprintf("/home/med826/Mayo/ECV/pvalue_apoe/pvalue_fold%d_SNP%d.rds",ifold,irep)

training <- SNPdata[SNPdata$fold != ifold,]

if (nlevels(training$SNP) < 2) {

saveRDS(c(SNPname = SNPname, pvalue = 1), file = pvalue_rds_10folds)

}

else {

glm_null <- glm(formula = paste0(Y_name, "~", X_cov), data = training, family = "binomial")

glm_full <- glm(formula = paste0(Y_name, "~", X_cov, "+", X_name), data = training,

family = "binomial")

lrtest <- LRtest(glm_null, glm_full)

pvalue <- lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = pvalue), file = pvalue_rds_10folds)

}

}

############### convert p-values into Fdr ###############

if (!exists("irep")) irep <- 1

44

library("fdrtool")

Pvalue_path <- "/home/med826/Mayo/ECV/pvalue_apoe/"

evalpath <- "/home/med826/Mayo/ECV/evaluation/"

datapath <- "/home/med826/Mayo/ECV/dataset/"

Pvalue_list <- list.files(path = Pvalue_path, pattern = sprintf("^pvalue_fold%d_.*\\.rds$", irep),

full.names = T)

Pvalue_all <- do.call(’rbind’, lapply(Pvalue_list, readRDS))

pvalue <- as.numeric(Pvalue_all[,2])

ordered.name <- Pvalue_all[order(pvalue, decreasing = F),1]

fdr <- fdrtool(pvalue,statistic = "pvalue", plot = F, cutoff.method = "fndr")

#lfdr in fdrtool is the local fdr

#qval in fdrtool is the tail area-based fdr

qvalue <- fdr$qval

mlog.qvalue <- -log (qvalue, base = 10)

mll.sorted <- sort(mlog.qvalue, decreasing = T)

xaxis <- log2(1:309549)

jpeg(paste0(evalpath, sprintf("qvalue_fold%d.jpg", irep)), width = 480, height = 480)

par (mar = c(4,4,0.5,0.5))

plot(xaxis, mll.sorted, type = "h", xlab="", ylab="", xaxp=c(0,19,19))

title(xlab = "log2(rank of SNPs)", ylab = sprintf("-log(q-values) in fold%d", irep),

cex.lab = 1.5, line = 2.5)

dev.off()

top5000 <- cbind(snpname = ordered.name[1:5000], qvalue = sort(qvalue, decreasing = F)[1:5000])

saveRDS(top5000, file = paste0(datapath, sprintf("top5000SNPs_fold%d.rds",irep)))

############### Re-order SNP given the the rank of SNPs based on all samples###############

if (!exists("irep")) irep <- 1

library("fdrtool")

Pvalue_ICV <- "/home/med826/Mayo/ICV/pvalue"

Pvalue_ECV <- "/home/med826/Mayo/ECV/pvalue_apoe"

evalpath <- "/home/med826/Mayo/ECV/evaluation/"

Pvalue_ICV_list <- list.files(path = Pvalue_ICV, full.names = T)

Pvalue_ECV_list <- list.files(path = Pvalue_ECV, pattern = sprintf("^pvalue_fold%d_.*\\.rds$", irep),

full.names = T)

ICVlist <- do.call(’rbind’, lapply(Pvalue_ICV_list, readRDS))

ECVlist <- do.call(’rbind’, lapply(Pvalue_ECV_list, readRDS))

pvalue_icv <- as.numeric(ICVlist[,2])

ordered.name <- ICVlist[order(pvalue_icv, decreasing = F),1]

ordered.ICVlist <- as.numeric(ICVlist[order(pvalue_icv, decreasing = F),2])

fdr_icv <- fdrtool(ordered.ICVlist, statistic = "pvalue", plot = F, cutoff.method = "fndr")

qvalue_icv <- fdr_icv$qval

Qvalue_ICV_list <- cbind.data.frame(name=ordered.name, qvalue_icv=qvalue_icv)

fdr_ecv <- fdrtool(as.numeric(ECVlist[,2]), statistic = "pvalue", plot = F, cutoff.method = "fndr")

qvalue_ecv <-fdr_ecv$qval

45

Qvalue_ECV_list <- cbind.data.frame(name=ECVlist[,1], qvalue_ecv=qvalue_ecv)

qvalue_merged <- join(Qvalue_ICV_list, Qvalue_ECV_list)

xaxis <- log2(1:309549)

jpeg(paste0(evalpath, sprintf("fdr_compare_fold%d.jpg",irep)), width = 480, height = 480)

par (mar = c(4,4,0.5,0.5))

plot(xaxis, -log(qvalue_merged$qvalue_ecv,base = 10), type = "h", xlab = "",

ylab = "", xaxp=c(0,19,19))

title (xlab = "log2(SNP rank based on all samples)",

ylab = sprintf("-log(Fdr) in fold%d", irep), cex.lab=1.5, line =2.5)

dev.off()

############### model fitting ###############

if (!exists("irep")) irep <- 1

if (!exists("iloc")) iloc <- 1

source("/home/med826/Mayo/utility.r")

library (HTLR, lib.loc = "/home/longhai/Rdev/HTLR_3.1-1")

datapath <- "/home/med826/Mayo/ECV/dataset/"

errorpath <- "/home/med826/Mayo/ECV/errorrate/"

evalpath <- "/home/med826/Mayo/ECV/evaluation/"

predpath <- "/home/med826/Mayo/ECV/prediction/"

amlppath <- "/home/med826/Mayo/ECV/amlp/"

predmatpath <- "/home/med826/Mayo/ECV/predmat/"

top5000_file <- paste0(datapath, sprintf("top5000SNPs_fold%d.rds", iloc))

SNPdata_file <- paste0(datapath, sprintf("SNPdata5000_fold%d.rds", iloc))

top5000SNP <- readRDS(top5000_file)

extract the snp names

names_snp <- top5000SNP[,1]

get the SNP file

SNPdata <- readRDS(SNPdata_file)

training <- SNPdata[SNPdata$fold != iloc,]

testing <- SNPdata[SNPdata$fold == iloc,]

nsnp_set <- c(1, 2, 4, 8, ..., 1024, 2048, 4096)

nsnp_set <- c(0, 13)

for (i in 1:13){

nsnp_set[i] <- 2^(i-1)

}

nsnp_set

Y_name <- "phenotype"

X_cov <- "apoe"

X_chosen <- names_snp[1:nsnp_set[irep]]

fit_formula <- as.formula(paste0(Y_name, "~", paste(c(X_cov, X_chosen), collapse = "+")))

X_tr <- model.matrix(fit_formula, data = training, xlev = 3)[, -1]

Y_tr <- as.numeric(training[, Y_name])-1

46

X_ts <- model.matrix(fit_formula, data = testing, xlev = 3)[, -1]

Y_ts <- as.numeric(testing[, Y_name])-1

htlr

htlr.pred <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.htlr <- matrix(0, nrow=length(Y_ts),ncol=3)

er.htlr <- vector()

amlp.htlr <- vector()

alpha1 <- c(0.5, 1, 1.5)

for (j in 1:3){

htlr.fit <- htlr_fit (

y_tr = Y_tr, X_tr = X_tr, X_ts = X_ts, stdzx = F, ## data

pty = "t", alpha = alpha1[j], s = -10, ## alpha = df and s= log (w)

iters_h = 1000, iters_rmc = 1000, thin = 10, ## mcmc iteration settings,

leap_L_h = 5, leap_L = 50, leap_step = 0.3, hmc_sgmcut = 0.3, ## hmc settings

initial_state = "lasso", silence = !interactive()) ## initial state settings

htlr.pred[,2*j-1] <- htlr.fit$probs_pred[,1]

htlr.pred[,2*j] <- htlr.fit$probs_pred[,2]

htlr.predeval <- evaluate_pred(htlr.fit$probs_pred, Y_ts+1, showplot=F)

er.htlr[j] <- htlr.predeval$er

pred.htlr[,j] <- ifelse(htlr.pred[,1] > 0.5, 0, 1)

amlp.htlr[j] <- htlr.predeval$amlp

}

lasso prediction

lasso.fit <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, 1)

las.pred <- lasso.fit$eval[["table_eval"]]

predmat.las <- las.pred[, 3:4]

er.las <- lasso.fit$eval[["er"]]

pred.las <- as.numeric(lasso.fit$predictor)

amlp.las <- lasso.fit$eval[["amlp"]]

elastic net

alpha2 <- c(0.3,0.5,0.7)

predmat.ela <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.ela <- matrix(0, nrow=length(Y_ts),ncol=3)

er.ela <- vector()

amlp.ela <- vector()

for (i in 1:3){

elastic.net <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, alpha2[i])

ela.pred <- elastic.net$eval[["table_eval"]]

predmat.ela[,2*i-1] <- unlist(ela.pred[, 3])

predmat.ela[,2*i] <- unlist(ela.pred[, 4])

er.ela[i] <- elastic.net$eval[["er"]]

pred.ela[,i] <- as.numeric(elastic.net$predictor)

amlp.ela[i] <- elastic.net$eval[["amlp"]]

}

saveRDS(cbind(pred.htlr, pred.las, pred.ela),

file = paste0(predpath, sprintf("predictor_ECV_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(er.htlr), er.las, t(er.ela)),

file = paste0(errorpath, sprintf("errorrate_ECV_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(amlp.htlr), amlp.las, t(amlp.ela)),

47

file = paste0(amlppath, sprintf("amlp_ECV_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(htlr.pred, predmat.las, predmat.ela),

file = paste0(predmatpath, sprintf("predmat_ECV_fold%d_nsnp%d.rds",iloc, nsnp_set[irep])))

############### Model Evaluation ###############

cvtype <- c("ECV", "ICV")

erpath <- paste0("/home/med826/Mayo/", cvtype, "/errorrate/")

amlppath <- paste0("/home/med826/Mayo/",cvtype,"/amlp/")

evalpath <- "/home/med826/Mayo/ECV/evaluation/"

covpath <- "/home/med826/Mayo/covariatedata/covariate_processed.rds"

nsnp_set <- c(1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096)

nset <- length(nsnp_set)

locations <- paste0("fold",1:10)

calculate the frequency of large coefficient Phenotype and small coefficient Phenotype

phenodata <- readRDS(covpath)$Dx

prob_null <-prop.table(table(phenodata))

er_null <- min(prob_null)

amlp_null <- - sum(prob_null*log(prob_null))

generate the array of error rate, which contians error rates of hltr, lasso, elastic

then calculate the mean error rate of all folds

errates <- array(0, dim = c(nset, 14, 11))

er_apoe <- vector()

for (iloc in 1:length(locations)){

er_ecv_list <- paste0(erpath[1], "errorrate_ECV_", locations[iloc],

"_nsnp", nsnp_set, ".rds")

er_icv_list <- paste0(erpath[2], "errorrate_ICV_", locations[iloc],

"_nsnp", nsnp_set, ".rds")

errates[, 1:7, iloc] <- do.call(’rbind’, lapply(er_ecv_list, function(x) readRDS(x)[1:7]))

errates[, 8:14, iloc] <- do.call(’rbind’, lapply(er_icv_list, function(x) readRDS(x)[1:7]))

er_apoe[iloc] <- readRDS(sprintf("/home/med826/Mayo/ICV/errorrate/errorrate_apoe_fold%d.rds", iloc))

}

for (i in 1:14){

errates[,i,11] <- apply(errates[,i,1:10],1,mean)

}

errates_apoe <- mean(er_apoe)

pdf(paste0(evalpath, "errorrate_combine.pdf"), width = 7, height = 7)

par (mar = c(4,4,0.5,4))

matplot(0:12, errates[,c(3,4,7,9,11,12),11],

ylim = c(0, 0.5),

type = "b",

col = rep(c(2,4,3),2),

lwd = rep(3,6),

pch = rep(c(1:3),2),

cex = 1, lty = c(rep(1,3), rep(3,3)),

xaxp=c(0,13,13),

yaxp=c(0,0.5,10),

xlab = "",

48

ylab = "")

abline(h=er_null, lty=4, lwd=2, col="grey58")

abline(h=errates_apoe,lty=4, lwd=2, col="tan1")

axis(side = 4, at=seq(0,er_null,by=er_null/10), labels=seq(1,0,by=-0.1))

mtext(side=4, line=3, expression(R^2), cex=1.5)

title (xlab = "log2(Number of SNPs)",

ylab = "Error Rate",cex.lab=1.5, line =2.5)

legend("bottomleft", cex=0.8,

legend = c("Hyper-LASSO", "LASSO", "Elastic Net",

"Null", "APOE","External CV", "Internal CV"),

col = c(2,4,3, "grey58","tan1", 1,1),

pch = c(1:3,NA,NA, NA,NA),

lty = c(NA,NA,NA,4,4,1,3))

dev.off()

amlp <- array(0, dim = c(nset, 14, 11))

amlp_apoe <- vector()

for (iloc in 1:length(locations)){

amlp_ecv_list <- paste0(amlppath[1], "amlp_ECV_", locations[iloc],

"_nsnp", nsnp_set, ".rds")

amlp_icv_list <- paste0(amlppath[2], "amlp_ICV_", locations[iloc],

"_nsnp", nsnp_set, ".rds")

amlp[, 1:7, iloc] <- do.call(’rbind’, lapply(amlp_ecv_list, function(x) readRDS(x)[1:7]))

amlp[, 8:14, iloc] <- do.call(’rbind’, lapply(amlp_icv_list, function(x) readRDS(x)[1:7]))

amlp_apoe[iloc] <- readRDS(sprintf("/home/med826/Mayo/ICV/amlp/amlp_apoe_fold%d.rds", iloc))

}

for (i in 1:14){

amlp[,i,11] <- apply(amlp[,i,1:10],1,mean)

}

mamlp_apoe <- mean(amlp_apoe)

pdf(paste0(evalpath, "amlp_combine.pdf"), width = 7, height = 7)

par (mar = c(4,4,0.5,4))

matplot(0:12, amlp[,c(3,4,7,9,11,12),11],

ylim = c(0,1.7),

type = "b",

col = c(rep(c(2,4,3),2),1,7),

lwd = rep(3,6),

pch = rep(c(1:3),2),

cex = 1, lty = c(rep(1,3), rep(3,3)),

xaxp=c(0,13,13),

yaxp=c(0,1.7,34),

xlab = "",

ylab = "")

abline(h=amlp_null, lty=4, lwd=2, col = "grey58")

abline(h=mamlp_apoe,lty=4, lwd=2, col="tan1")

axis(side = 4, at=seq(0,amlp_null*2.5,by=amlp_null/10), labels=seq(1,-1.5,by=-0.1))

mtext(side=4, line=3, expression(R^2),cex=1.5)

title (xlab = "log2(Number of SNPs)",

ylab = "AMLP", cex.lab = 1.5, line =2.5)

legend("bottomleft", cex=0.8,

legend = c("Hyper-LASSO", "LASSO", "Elastic Net",

"Null","APOE", "External CV", "Internal CV"),

49

col = c(2,4,3, "grey58","tan1", 1,1),

pch = c(1:3,NA,NA, NA,NA),

lty = c(NA,NA,NA,4,4,1,3))

dev.off()

A.4 R Code for Generating Simulation Data

source("/home/med826/Mayo/utility.r")

datapath <- "/home/med826/Mayo_simulate/10Sign/dataset/"

allsnplist <- "/home/med826/Mayo/SNPdata/alldata_snplist.rds"

SNPs <- "/home/med826/Mayo-origin/10folds_cv/fold1/snp_step1_top2000.rds"

covariate_file <- "/home/med826/Mayo/covariatedata/covariate_processed.rds"

singleSNP_file <- "/home/med826/Mayo/SNPdata/singleSNP/"

extract 10 SNPs with largest variance

snpname_list <- as.character(readRDS(allsnplist))

SNPs_file <- readRDS(SNPs)

SNPnames <- colnames(SNPs_file)[14:23]

#saveRDS(SNPnames, file = paste0(filepath, "sign_snps.rds"))

snp_index <- which(snpname_list %in% SNPnames)

chosenSNP <- snpname_list[snp_index]

SNP <- matrix(0, 2099, 10)

colnames(SNP) <- SNPnames

for (i in 1:10){

index_snp <- which(snpname_list %in% SNPnames[i])

SNP_single_rawfile <- sprintf("/home/med826/Mayo/SNPdata/singleSNP/snp%d.raw", index_snp)

SNP_single_rawdata <- read.table(SNP_single_rawfile, header = T)

SNP_single <- SNP_single_rawdata[order(SNP_single_rawdata$IID),]

n <- ncol(SNP_single_rawdata)

SNP_single_imputeddata <- SNP_single[, n]

SNP_single_imputeddata[is.na(SNP_single[, n])] = Mode(SNP_single[, n], na.rm = T)

SNP[,i] <- SNP_single_imputeddata

}

covariate <- readRDS(covariate_file)

apoe <- covariate$APOE4_dosage..0.1.2.

apoesnp <- cbind.data.frame(apoe, SNP)

saveRDS(apoesnp, file = paste0(datapath,"sign_SNPdata.rds"))

generate categorical matrix

formula <- as.formula(paste0("~", paste(c("apoe", SNPnames), collapse = "+")))

mm <- model.matrix(formula, data = apoesnp); dim(mm)

intercept and coeficient of APOE dosage is based on real analysis

intercept <- -1

coef_apoe <- c(1, 2)

50

generate 10 folds

fold <- rep(1:10, length=2099)

generate small coefficient

coef_small <- c(intercept, coef_apoe, rnorm(20, mean = 0, sd = 0.1)); coef_small

names(coef_small) <- colnames(mm)

linear_small <-mm %*% coef_small

prob_small <- 1/(1+exp(-linear_small))

Phenotype_small <- rbinom(2099, 1, prob_small)

table(Phenotype_small,fold)

saveRDS(coef_small, file = paste0(datapath, "small_truecoef.rds"))

saveRDS(cbind.data.frame(fold, Phenotype_small,apoe), file = paste0(datapath, "sc_data.rds"))

generate large coefficient

assign first 5 SNPs as significant and the rest not

coef_large <- c(intercept, coef_apoe, rnorm(20, mean = 0, sd = 2)); coef_large

names(coef_large) <- colnames(mm)

linear_large <- mm %*% coef_large

prob_large <- 1/(1+exp(-linear_large))

Phenotype_large <- rbinom(2099, 1, prob_large)

table(Phenotype_large, fold)

saveRDS(coef_large, file = paste0(datapath, "large_truecoef.rds"))

saveRDS(cbind.data.frame(fold, Phenotype_large, apoe), file = paste0(datapath, "lc_data.rds"))

############### Oracle Case for dataset1 ###############

oracle case

if (!exists("irep")) irep <- 1

iloc <- irep

source("/home/med826/Mayo/utility.r")

library (HTLR, lib.loc = "/home/longhai/Rdev/HTLR_3.1-1")

phenopath <- "/home/med826/Mayo_simulate/10Sign/dataset/sc_data.rds"

trueSNPpath <- "/home/med826/Mayo_simulate/10Sign/dataset/sign_SNPdata.rds"

errorpath <- "/home/med826/Mayo_simulate/10Sign/errorrate/"

evalpath <- "/home/med826/Mayo_simulate/10Sign/evaluation/"

predpath <- "/home/med826/Mayo_simulate/10Sign/prediction/"

amlppath <- "/home/med826/Mayo_simulate/10Sign/amlp/"

coefpath <- "/home/med826/Mayo_simulate/10Sign/coef/"

predmatpath <- "/home/med826/Mayo_simulate/10Sign/predmat/"

phenodata <- readRDS(phenopath)

SNPdata <- readRDS(trueSNPpath)

alldata <- cbind.data.frame(phenodata, SNPdata)

training <- alldata[which(alldata$fold != iloc),]

testing <- alldata[which(alldata$fold == iloc),]

X_names <- colnames(SNPdata)

X_cov <- "apoe"

Y_name <- "Phenotype_small"

feature selection and model training

51

fit_formula <- as.formula(paste0(Y_name,"~", paste(c(X_cov, X_names), collapse = "+")))

X_tr <- model.matrix(fit_formula, data = training)[, -1]

Y_tr <- training[, Y_name]

X_ts <- model.matrix(fit_formula, data = testing)[, -1]

Y_ts <- testing[, Y_name]

simple logistic regression

glm.fit <- glm(fit_formula, data = training, family = "binomial")

coef.glm <- coef(glm.fit)

glm.prob <- predict(glm.fit, newdata = testing, type = "response")

pred.glm <- ifelse(glm.prob > 0.5, 1, 0)

eval.glm <- evaluate_pred(cbind(1-glm.prob, glm.prob), Y_ts+1, showplot = F)

er.glm <- eval.glm$er

amlp.glm <- eval.glm$amlp

predmat.glm <- cbind(1-glm.prob, glm.prob)

saveRDS(pred.glm, file = paste0(predpath, sprintf("predictor_oracle_sc_fold%d.rds", iloc)))

saveRDS(er.glm, file = paste0(errorpath, sprintf("errorrate_oracle_sc_fold%d.rds", iloc)))

saveRDS(amlp.glm, file = paste0(amlppath, sprintf("amlp_oracle_sc_fold%d.rds", iloc)))

saveRDS(predmat.glm, file = paste0(predmatpath, sprintf("predmat_oracle_sc_fold%d.rds",iloc)))

############### Oracle Case for dataset2 ###############

if (!exists("irep")) irep <- 1

iloc <- irep

source("/home/med826/Mayo/utility.r")

library (HTLR, lib.loc = "/home/longhai/Rdev/HTLR_3.1-1")

phenopath <- "/home/med826/Mayo_simulate/10Sign/dataset/lc_data.rds"

trueSNPpath <- "/home/med826/Mayo_simulate/10Sign/dataset/sign_SNPdata.rds"

errorpath <- "/home/med826/Mayo_simulate/10Sign/errorrate/"

evalpath <- "/home/med826/Mayo_simulate/10Sign/evaluation/"

predpath <- "/home/med826/Mayo_simulate/10Sign/prediction/"

amlppath <- "/home/med826/Mayo_simulate/10Sign/amlp/"

coefpath <- "/home/med826/Mayo_simulate/10Sign/coef/"

predmatpath <- "/home/med826/Mayo_simulate/10Sign/predmat/"

phenodata <- readRDS(phenopath)

SNPdata <- readRDS(trueSNPpath)

alldata <- cbind.data.frame(phenodata, SNPdata)

training <- alldata[which(alldata$fold != iloc),]

testing <- alldata[which(alldata$fold == iloc),]

X_names <- colnames(SNPdata)

X_cov <- "apoe"

Y_name <- "Phenotype_large"

feature selection and model training

fit_formula <- as.formula(paste0(Y_name,"~", paste(c(X_cov, X_names), collapse = "+")))

X_tr <- model.matrix(fit_formula, data = training)[, -1]

Y_tr <- training[, Y_name]

X_ts <- model.matrix(fit_formula, data = testing)[, -1]

Y_ts <- testing[, Y_name]

52

simple logistic regression

glm.fit <- glm(fit_formula, data = training, family = "binomial")

coef.glm <- coef(glm.fit)

glm.prob <- predict(glm.fit, newdata = testing, type = "response")

pred.glm <- ifelse(glm.prob > 0.5, 1, 0)

eval.glm <- evaluate_pred(cbind(1-glm.prob, glm.prob), Y_ts+1, showplot = F)

er.glm <- eval.glm$er

amlp.glm <- eval.glm$amlp

predmat.glm <- cbind(1-glm.prob, glm.prob)

saveRDS(pred.glm, file = paste0(predpath, sprintf("predictor_oracle_lc_fold%d.rds", iloc)))

saveRDS(er.glm, file = paste0(errorpath, sprintf("errorrate_oracle_lc_fold%d.rds", iloc)))

saveRDS(amlp.glm, file = paste0(amlppath, sprintf("amlp_oracle_lc_fold%d.rds", iloc)))

saveRDS(predmat.glm, file = paste0(predmatpath, sprintf("predmat_oracle_lc_fold%d.rds",iloc)))

A.5 R Code for Feature Selection and Model Fitting

with Real Dataset

############### Calculate p-value for chromosome 1- 22 for dataset1 and dataset2 ###############

source("/home/med826/Mayo/utility.r")

if (!exists("irep")) irep <- 1

SNP_single_rawfile <- sprintf("/home/med826/Mayo/SNPdata/singleSNP/snp%d.raw", irep)

lc_pheno_file <- "/home/med826/Mayo_simulate/10Sign/dataset/lc_data.rds"

sc_pheno_file <- "/home/med826/Mayo_simulate/10Sign/dataset/sc_data.rds"

pvalue_icv_file <- "/home/med826/Mayo_simulate/10Sign/ICV/pvalue/"

pvalue_ecv_file <- "/home/med826/Mayo_simulate/10Sign/ECV/pvalue/"

get the single SNP

SNP_single_rawdata <- read.table(SNP_single_rawfile, header = T)

SNPname <- substr(colnames(SNP_single_rawdata)[7], 1, nchar(colnames(SNP_single_rawdata)[7])-2)

SNP_single <- SNP_single_rawdata[order(SNP_single_rawdata$IID),]

get fold and phenotype

lc_pheno <- readRDS(lc_pheno_file)

sc_pheno <- readRDS(sc_pheno_file)

imputation with mode

n <- ncol(SNP_single)

SNP_single_imputeddata <- SNP_single[, n]

SNP_single_imputeddata[is.na(SNP_single[, n])] = Mode(SNP_single[, n], na.rm = T)

lcdata <- cbind.data.frame(lc_pheno, SNP = SNP_single_imputeddata)

scdata <- cbind.data.frame(sc_pheno, SNP = SNP_single_imputeddata)

Y_lc_name <- "Phenotype_large"

Y_sc_name <- "Phenotype_small"

X_cov <- "apoe"

X_name <- "SNP"

53

calculate p value for Internal CV

for both large and small coefficient

if (nlevels(lcdata$SNP) < 2) {

saveRDS(c(SNPname = SNPname, pvalue = 1),

file = paste0(pvalue_icv_file, sprintf("pvalue_lc%d.rds", irep)))

saveRDS(c(SNPname = SNPname, pvalue = 1),

file = paste0(pvalue_icv_file, sprintf("pvalue_sc%d.rds", irep)))

} else {

glm_null_lc_icv <- glm(formula = paste0(Y_lc_name, "~", X_cov), data = lcdata, family = "binomial")

glm_full_lc_icv <- glm(formula = paste0(Y_lc_name, "~", X_cov, "+", X_name), data = lcdata,

family = "binomial")

lc_lrtest <- LRtest(glm_null_lc_icv, glm_full_lc_icv)

lc_pvalue <- lc_lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = lc_pvalue),

file = paste0(pvalue_icv_file, sprintf("pvalue_lc%d.rds", irep)))

glm_null_sc_icv <- glm(formula = paste0(Y_sc_name, "~", X_cov), data = scdata, family = "binomial")

glm_full_sc_icv <- glm(formula = paste0(Y_sc_name, "~", X_cov, "+", X_name), data = scdata,

family = "binomial")

sc_lrtest <- LRtest(glm_null_sc_icv, glm_full_sc_icv)

sc_pvalue <- sc_lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = sc_pvalue),

file = paste0(pvalue_icv_file, sprintf("pvalue_sc%d.rds", irep)))

}

pvalue for External CV

kfolds=10

for (ifold in 1:kfolds) {

pvalue_lc <- sprintf("/home/med826/Mayo_simulate/10Sign/ECV/fold%d/pvalue/pvalue_lc%d.rds",

ifold,irep)

pvalue_sc <- sprintf("/home/med826/Mayo_simulate/10Sign/ECV/fold%d/pvalue/pvalue_sc%d.rds",

ifold,irep)

training_lc <- lcdata[lcdata$fold != ifold,]

training_sc <- scdata[scdata$fold != ifold,]

if (nlevels(training_lc$SNP) < 2) {

saveRDS(c(SNPname = SNPname, pvalue = 1), file = pvalue_lc)

saveRDS(c(SNPname = SNPname, pvalue = 1), file = pvalue_sc)

}

else {

glm_null_lc_ecv <- glm(formula = paste0(Y_lc_name, "~", X_cov), data = training_lc,

family = "binomial")

glm_full_lc_ecv <- glm(formula = paste0(Y_lc_name, "~", X_cov, "+", X_name), data = training_lc,

family = "binomial")

lc.lrtest <- LRtest(glm_null_lc_ecv, glm_full_lc_ecv)

lc.pvalue <- lc.lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = lc.pvalue), file = pvalue_lc)

glm_null_sc_ecv <- glm(formula = paste0(Y_sc_name, "~", X_cov), data = training_sc,

54

family = "binomial")

glm_full_sc_ecv <- glm(formula = paste0(Y_sc_name, "~", X_cov, "+", X_name), data = training_sc,

family = "binomial")

sc.lrtest <- LRtest(glm_null_sc_ecv, glm_full_sc_ecv)

sc.pvalue <- sc.lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = sc.pvalue), file = pvalue_sc)

}

}

############### Calculate p-value for chromosome X for dataset1 and dataset2 ###############

source("/home/med826/Mayo/utility.r")

for (irep in 300769:309550){

SNP_single_rawfile <- sprintf("/home/med826/Mayo/SNPdata/singleSNP/snp%d.raw", irep)

lc_pheno_file <- "/home/med826/Mayo_simulate/10Sign/dataset/lc_data.rds"

sc_pheno_file <- "/home/med826/Mayo_simulate/10Sign/dataset/sc_data.rds"

pvalue_icv_file <- "/home/med826/Mayo_simulate/10Sign/ICV/pvalue/"

pvalue_ecv_file <- "/home/med826/Mayo_simulate/10Sign/ECV/pvalue/"

get the single SNP

SNP_single_rawdata <- read.table(SNP_single_rawfile, header = T)

SNPname <- substr(colnames(SNP_single_rawdata)[7], 1, nchar(colnames(SNP_single_rawdata)[7])-2)

SNP_single <- SNP_single_rawdata[order(SNP_single_rawdata$IID),]

get fold and phenotype

lc_pheno <- readRDS(lc_pheno_file)

sc_pheno <- readRDS(sc_pheno_file)

imputation with mode

n <- ncol(SNP_single)

snp_male <- SNP_single[which(SNP_single$SEX==1),n]

snp_male_imputed <- snp_male

snp_male_imputed[is.na(snp_male)] <- Mode(snp_male,na.rm = T)

snp_male_imputed[snp_male_imputed==0] <- 11

snp_male_imputed[snp_male_imputed==2] <- 12

snp_female <- SNP_single[which(SNP_single$SEX==2),n]

snp_female_imputed <- snp_female

snp_female_imputed[is.na(snp_female)] <- Mode(snp_female,na.rm = T)

snp_female_imputed[snp_female_imputed==0] <- 21

snp_female_imputed[snp_female_imputed==1] <- 22

snp_female_imputed[snp_female_imputed==2] <- 23

SNP_single[SNP_single$SEX==1,n] <- snp_male_imputed

SNP_single[SNP_single$SEX==2,n] <- snp_female_imputed

lcdata <- cbind.data.frame(lc_pheno, SNP = SNP_single[,n])

scdata <- cbind.data.frame(sc_pheno, SNP = SNP_single[,n])

Y_lc_name <- "Phenotype_large"

Y_sc_name <- "Phenotype_small"

55

X_cov <- "apoe"

X_name <- "SNP"

calculate p value for Internal CV

for both large and small coefficient

if (nlevels(lcdata$SNP) < 2) {

saveRDS(c(SNPname = SNPname, pvalue = 1),

file = paste0(pvalue_icv_file, sprintf("pvalue_lc%d.rds", irep)))

saveRDS(c(SNPname = SNPname, pvalue = 1),

file = paste0(pvalue_icv_file, sprintf("pvalue_sc%d.rds", irep)))

} else {

glm_null_lc_icv <- glm(formula = paste0(Y_lc_name, "~", X_cov), data = lcdata, family = "binomial")

glm_full_lc_icv <- glm(formula = paste0(Y_lc_name, "~", X_cov, "+", X_name), data = lcdata,

family = "binomial")

lc_lrtest <- LRtest(glm_null_lc_icv, glm_full_lc_icv)

lc_pvalue <- lc_lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = lc_pvalue),

file = paste0(pvalue_icv_file, sprintf("pvalue_lc%d.rds", irep)))

glm_null_sc_icv <- glm(formula = paste0(Y_sc_name, "~", X_cov), data = scdata, family = "binomial")

glm_full_sc_icv <- glm(formula = paste0(Y_sc_name, "~", X_cov, "+", X_name), data = scdata,

family = "binomial")

sc_lrtest <- LRtest(glm_null_sc_icv, glm_full_sc_icv)

sc_pvalue <- sc_lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = sc_pvalue),

file = paste0(pvalue_icv_file, sprintf("pvalue_sc%d.rds", irep)))

}

pvalue for External CV

kfolds=10

for (ifold in 1:kfolds) {

pvalue_lc <- sprintf("/home/med826/Mayo_simulate/10Sign/ECV/fold%d/pvalue/pvalue_lc%d.rds",

ifold,irep)

pvalue_sc <- sprintf("/home/med826/Mayo_simulate/10Sign/ECV/fold%d/pvalue/pvalue_sc%d.rds",

ifold,irep)

training_lc <- lcdata[lcdata$fold != ifold,]

training_sc <- scdata[scdata$fold != ifold,]

if (nlevels(training_lc$SNP) < 2) {

saveRDS(c(SNPname = SNPname, pvalue = 1), file = pvalue_lc)

saveRDS(c(SNPname = SNPname, pvalue = 1), file = pvalue_sc)

}

else {

glm_null_lc_ecv <- glm(formula = paste0(Y_lc_name, "~", X_cov), data = training_lc,

family = "binomial")

glm_full_lc_ecv <- glm(formula = paste0(Y_lc_name, "~", X_cov, "+", X_name), data = training_lc,

family = "binomial")

lc.lrtest <- LRtest(glm_null_lc_ecv, glm_full_lc_ecv)

lc.pvalue <- lc.lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = lc.pvalue), file = pvalue_lc)

56

glm_null_sc_ecv <- glm(formula = paste0(Y_sc_name, "~", X_cov), data = training_sc,

family = "binomial")

glm_full_sc_ecv <- glm(formula = paste0(Y_sc_name, "~", X_cov, "+", X_name), data = training_sc,

family = "binomial")

sc.lrtest <- LRtest(glm_null_sc_ecv, glm_full_sc_ecv)

sc.pvalue <- sc.lrtest$pvalue

saveRDS(c(SNPname = SNPname, pvalue = sc.pvalue), file = pvalue_sc)

}

}

}

############### Fdr for ICV ###############

if (!exists("irep")) irep <- 1

library("fdrtool")

Pvalue_path <- "/home/med826/Mayo_simulate/10Sign/ICV/pvalue"

SignifSNP <- "/home/med826/Mayo_simulate/10Sign/dataset/sign_snps.rds"

datapath <- "/home/med826/Mayo_simulate/10Sign/dataset/"

evalpath <- "/home/med826/Mayo_simulate/10Sign/evaluation/"

datatype <- c("lc", "sc")

datatype2 <<- c("large coefficient", "small coefficient")

Pvalue_list <- list.files(path = Pvalue_path,

pattern = sprintf("^pvalue_%s.*\\.rds$", datatype[irep]), full.names = T)

sign_snps <- readRDS(SignifSNP)

Pvalue_all <- do.call(’rbind’, lapply(Pvalue_list, readRDS))

pvalue <- as.numeric(Pvalue_all[,2])

ordered.name <- Pvalue_all[order(pvalue, decreasing = F),1]

index.sign <- which(ordered.name %in% sign_snps)

fdr <- fdrtool(pvalue,statistic = "pvalue", plot = F, cutoff.method = "fndr")

#lfdr in fdrtool is the local fdr

#qval in fdrtool is the tail area-based fdr

qvalue <- fdr$qval

mlog.qvalue <- -log (qvalue, base = 10)

mll.sorted <- sort(mlog.qvalue, decreasing = T)

jpeg(paste0(evalpath, sprintf("fdr_%s_ICV_2.jpg", datatype[irep])), width = 450, height = 350)

par (mar = c(4,4,0.5,0.5))

xaxis <- log2(1:309549)

plot(xaxis, mll.sorted, type = "h", xlab = "", ylab = "", xaxp=c(0,19,19))

points(log2(index.sign), mll.sorted[index.sign], col = "red", pch = 19, cex = 1)

title (xlab = "log2(rank of SNPs)",

ylab = "-log(Fdr)", cex.lab=1.5, line =2.5)

dev.off()

top5000 <- cbind(snpname = ordered.name[1:5000], qvalue = sort(qvalue, decreasing = F)[1:5000])

saveRDS(top5000, file = paste0(datapath, sprintf("top5000SNPs_%s_ICV.rds", datatype[irep])))

############### Select 5000 for ICV ###############

if (!exists("irep")) irep <- 1

57

source("/home/med826/Mayo/utility.r")

datapath <- "/home/med826/Mayo_simulate/10Sign/dataset/"

datatype <- c("lc", "sc")

top5000_file <- paste0(datapath, sprintf("top5000SNPs_%s_ICV.rds", datatype[irep]))

infodata_file <- paste0(datapath, sprintf("%s_data.rds", datatype[irep]))

allsnplist <- "/home/med826/Mayo/SNPdata/alldata_snplist.rds"

top5000SNP <- readRDS(top5000_file)

infodata contain fold, phenotype, apoe

infodata <- readRDS(infodata_file)

extract the snp names

names_snp <- top5000SNP[,1]

snpname_list <- as.character(readRDS(allsnplist))

NULL matrix

SNP <- matrix(0, 2099, 5000)

colnames(SNP) <- names_snp

for (i in 1:5000){

index_snp <- which(snpname_list %in% names_snp[i])

SNP_single_rawfile <- sprintf("/home/med826/Mayo/SNPdata/singleSNP/snp%d.raw", index_snp)

SNP_single_rawdata <- read.table(SNP_single_rawfile, header = T)

SNP_single <- SNP_single_rawdata[order(SNP_single_rawdata$IID),]

n <- ncol(SNP_single_rawdata)

if (index_snp > 300767){

snp_male <- SNP_single[which(SNP_single$SEX==1),n]

snp_male_imputed <- snp_male

snp_male_imputed[is.na(snp_male)] <- Mode(snp_male,na.rm = T)

snp_male_imputed[snp_male_imputed==0] <- 11

snp_male_imputed[snp_male_imputed==2] <- 12

snp_female <- SNP_single[which(SNP_single$SEX==2),7]

snp_female_imputed <- snp_female

snp_female_imputed[is.na(snp_female)] <- Mode(snp_female,na.rm = T)

snp_female_imputed[snp_female_imputed==0] <- 21

snp_female_imputed[snp_female_imputed==1] <- 22

snp_female_imputed[snp_female_imputed==2] <- 23

SNP_single[SNP_single$SEX==1,n] <- snp_male_imputed

SNP_single[SNP_single$SEX==2,n] <- snp_female_imputed

SNP[,i] <- SNP_single[,n]

} else{

SNP_single_imputeddata <- SNP_single[, n]

SNP_single_imputeddata[is.na(SNP_single[, n])] = Mode(SNP_single[, n], na.rm = T)

SNP[,i] <- SNP_single_imputeddata

}

}

SNPdata <- cbind(SNP, infodata)

saveRDS(SNPdata, file = paste0(datapath, sprintf("SNPdata5000_%s_ICV.rds", datatype[irep])))

58

############### Fdr for ECV ###############

if (!exists("irep")) irep <- 1

if (!exists("iloc")) iloc <- 1

library("fdrtool")

Pvalue_path <- sprintf("/home/med826/Mayo_simulate/10Sign/ECV/fold%d/pvalue",iloc)

SignifSNP <- "/home/med826/Mayo_simulate/10Sign/dataset/sign_snps.rds"

datapath <- "/home/med826/Mayo_simulate/10Sign/dataset/"

evalpath <- "/home/med826/Mayo_simulate/10Sign/evaluation/"

datatype <- c("lc", "sc")

datatype2 <<- c("large coefficient", "small coefficient")

Pvalue_list <- list.files(path = Pvalue_path,

pattern = sprintf("^pvalue_%s.*\\.rds$", datatype[irep]), full.names = T)

sign_snps <- readRDS(SignifSNP)

Pvalue_all <- do.call(’rbind’, lapply(Pvalue_list, readRDS))

pvalue <- as.numeric(Pvalue_all[,2])

ordered.name <- Pvalue_all[order(pvalue, decreasing = F),1]

index.sign <- which(ordered.name %in% sign_snps)

fdr <- fdrtool(pvalue,statistic = "pvalue", plot = F, cutoff.method = "fndr")

#lfdr in fdrtool is the local fdr

#qval in fdrtool is the tail area-based fdr

qvalue <- fdr$qval

mlog.qvalue <- -log (qvalue, base = 10)

mll.sorted <- sort(mlog.qvalue, decreasing = T)

xaxis <- log2(1:309549)

jpeg(paste0(evalpath, sprintf("fdr_%s_ECV_fold%d_2.jpg", datatype[irep], iloc)),

width = 450, height = 350)

par (mar = c(4,4,0.5,0.5))

plot(xaxis, mll.sorted, type = "h", xlab="", ylab="", xaxp=c(0,19,19))#, main = title)

points(log2(index.sign), mll.sorted[index.sign], col = "red", pch = 19, cex = 1)

title (xlab = "log2(rank of SNPs)",

ylab = sprintf("-log(Fdr) in fold%d", iloc), cex.lab=1.5, line =2.5)

dev.off()

top5000 <- cbind(snpname = ordered.name[1:5000], qvalue = sort(qvalue, decreasing = F)[1:5000])

saveRDS(top5000, file = paste0(datapath,

sprintf("top5000SNPs_%s_ECV_fold%d.rds", datatype[irep], iloc)))

############### Fdr comparisons ###############

if (!exists("irep")) irep <- 1

if (!exists("iloc")) iloc <- 1

library("fdrtool")

library("plyr")

Pvalue_ICV <- "/home/med826/Mayo_simulate/10Sign/ICV/pvalue"

Pvalue_ECV <- sprintf("/home/med826/Mayo_simulate/10Sign/ECV/fold%d/pvalue",iloc)

SignifSNP <- "/home/med826/Mayo_simulate/10Sign/dataset/sign_snps.rds"

evalpath <- "/home/med826/Mayo_simulate/10Sign/evaluation/"

59

datatype <- c("lc", "sc")

Pvalue_ICV_list <- list.files(path = Pvalue_ICV,

pattern = sprintf("^pvalue_%s.*\\.rds$", datatype[irep]), full.names = T)

Pvalue_ECV_list <- list.files(path = Pvalue_ECV,

pattern = sprintf("^pvalue_%s.*\\.rds$", datatype[irep]), full.names = T)

ICVlist <- do.call(’rbind’, lapply(Pvalue_ICV_list, readRDS))

ECVlist <- do.call(’rbind’, lapply(Pvalue_ECV_list, readRDS))

pvalue_icv <- as.numeric(ICVlist[,2])

ordered.name <- ICVlist[order(pvalue_icv, decreasing = F),1]

ordered.ICVlist <- as.numeric(ICVlist[order(pvalue_icv, decreasing = F),2])

sign_snps <- readRDS(SignifSNP)

index.sign <- which(ordered.name %in% sign_snps)

fdr_icv <- fdrtool(ordered.ICVlist, statistic = "pvalue", plot = F, cutoff.method = "fndr")

qvalue_icv <- fdr_icv$qval

Qvalue_ICV_list <- cbind.data.frame(name=ordered.name, qvalue_icv=qvalue_icv)

fdr_ecv <- fdrtool(as.numeric(ECVlist[,2]), statistic = "pvalue", plot = F, cutoff.method = "fndr")

qvalue_ecv <-fdr_ecv$qval

Qvalue_ECV_list <- cbind.data.frame(name=ECVlist[,1], qvalue_ecv=qvalue_ecv)

qvalue_merged <- join(Qvalue_ICV_list, Qvalue_ECV_list)

xaxis <- log2(1:309549)

jpeg(paste0(evalpath, sprintf("fdr_compare_%s_fold%d_2.jpg", datatype[irep], iloc)),

width = 450, height = 350)

par (mar = c(4,4,0.5,0.5))

plot(xaxis, -log(qvalue_merged$qvalue_ecv,base = 10), type = "h", xlab = "", ylab = "",

xaxp=c(0,19,19))

points(log2(index.sign), -log(qvalue_merged$qvalue_ecv, base = 10)[index.sign],

col="red", pch=19, cex=1)

title (xlab = "log2(SNP rank based on all samples)",

ylab = sprintf("-log(Fdr) in fold%d", iloc),

cex.lab=1.5, line =2.5)

dev.off()

############### Select 5000 for ECV ###############

if (!exists("irep")) irep <- 1

if (!exists("iloc")) iloc <- 1

source("/home/med826/Mayo/utility.r")

datapath <- "/home/med826/Mayo_simulate/10Sign/dataset/"

datatype <- c("lc", "sc")

top5000_file <- paste0(datapath, sprintf("top5000SNPs_%s_ECV_fold%d.rds", datatype[irep], iloc))

infodata_file <- paste0(datapath, sprintf("%s_data.rds", datatype[irep]))

allsnplist <- "/home/med826/Mayo/SNPdata/alldata_snplist.rds"

60

top5000SNP <- readRDS(top5000_file)

infodata contain fold, phenotype, apoe

infodata <- readRDS(infodata_file)

extract the snp names

names_snp <- top5000SNP[,1]

snpname_list <- as.character(readRDS(allsnplist))

generate NULL matrix

SNP <- matrix(0, 2099, 5000)

colnames(SNP) <- names_snp

for (i in 1:5000){

index_snp <- which(snpname_list %in% names_snp[i])

SNP_single_rawfile <- sprintf("/home/med826/Mayo/SNPdata/singleSNP/snp%d.raw", index_snp)

SNP_single_rawdata <- read.table(SNP_single_rawfile, header = T)

SNP_single <- SNP_single_rawdata[order(SNP_single_rawdata$IID),]

n <- ncol(SNP_single_rawdata)

if (index_snp > 300767){

snp_male <- SNP_single[which(SNP_single$SEX==1),n]

snp_male_imputed <- snp_male

snp_male_imputed[is.na(snp_male)] <- Mode(snp_male,na.rm = T)

snp_male_imputed[snp_male_imputed==0] <- 11

snp_male_imputed[snp_male_imputed==2] <- 12

snp_female <- SNP_single[which(SNP_single$SEX==2),7]

snp_female_imputed <- snp_female

snp_female_imputed[is.na(snp_female)] <- Mode(snp_female,na.rm = T)

snp_female_imputed[snp_female_imputed==0] <- 21

snp_female_imputed[snp_female_imputed==1] <- 22

snp_female_imputed[snp_female_imputed==2] <- 23

SNP_single[SNP_single$SEX==1,n] <- snp_male_imputed

SNP_single[SNP_single$SEX==2,n] <- snp_female_imputed

SNP[,i] <- SNP_single[,n]

} else{

SNP_single_imputeddata <- SNP_single[, n]

SNP_single_imputeddata[is.na(SNP_single[, n])] = Mode(SNP_single[, n], na.rm = T)

SNP[,i] <- SNP_single_imputeddata

}

}

SNPdata <- cbind(SNP, infodata)

saveRDS(SNPdata, file = paste0(datapath, sprintf("SNPdata5000_%s_ECV_fold%d.rds",

datatype[irep], iloc)))

############### Mdeol fit for ICV dataset1 ###############

if (!exists("irep")) irep <- 1

if (!exists("iloc")) iloc <- 1

source("/home/med826/Mayo/utility.r")

library (HTLR, lib.loc = "/home/longhai/Rdev/HTLR_3.1-1")

61

datapath <- "/home/med826/Mayo_simulate/10Sign/dataset/"

errorpath <- "/home/med826/Mayo_simulate/10Sign/errorrate/"

evalpath <- "/home/med826/Mayo_simulate/10Sign/evaluation/"

predpath <- "/home/med826/Mayo_simulate/10Sign/prediction/"

amlppath <- "/home/med826/Mayo_simulate/10Sign/amlp/"

coefpath <- "/home/med826/Mayo_simulate/10Sign/coef/"

predmatpath <- "/home/med826/Mayo_simulate/10Sign/predmat/"

top5000_file <- paste0(datapath, sprintf("top5000SNPs_sc_ICV.rds"))

SNPdata_file <- paste0(datapath, sprintf("SNPdata5000_sc_ICV.rds"))

top5000SNP <- readRDS(top5000_file)

extract the snp names

names_snp <- top5000SNP[,1]

get the SNP file

SNPdata <- readRDS(SNPdata_file)

training <- SNPdata[SNPdata$fold != iloc,]

testing <- SNPdata[SNPdata$fold == iloc,]

nsnp_set <- c(1, 2, 4, 8, ..., 1024, 2048, 4096)

nsnp_set <- c(0, 13)

for (i in 1:13){

nsnp_set[i] <- 2^(i-1)

}

nsnp_set

Y_name <- "Phenotype_small"

X_cov <- "apoe"

X_chosen <- names_snp[1:nsnp_set[irep]]

fit_formula <- as.formula(paste0(Y_name, "~", paste(c(X_cov, X_chosen), collapse = "+")))

X_tr <- model.matrix(fit_formula, data = training)[, -1]

Y_tr <- training[, Y_name]

X_ts <- model.matrix(fit_formula, data = testing)[, -1]

Y_ts <- testing[, Y_name]

htlr

htlr.pred <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.htlr <- matrix(0, nrow=length(Y_ts),ncol=3)

er.htlr <- vector()

amlp.htlr <- vector()

alpha1 <- c(0.5, 1, 1.5)

for (j in 1:3){

htlr.fit <- htlr_fit (

y_tr = Y_tr, X_tr = X_tr, X_ts = X_ts, stdzx = F, ## data

pty = "t", alpha = alpha1[j], s = -10, ## alpha = df and s= log (w)

iters_h = 1000, iters_rmc = 1000, thin = 10, ## mcmc iteration settings,

leap_L_h = 5, leap_L = 50, leap_step = 0.3, hmc_sgmcut = 0.3, ## hmc settings

initial_state = "lasso", silence = !interactive()) ## initial state settings

htlr.pred[,2*j-1] <- htlr.fit$probs_pred[,1]

62

htlr.pred[,2*j] <- htlr.fit$probs_pred[,2]

htlr.predeval <- evaluate_pred(htlr.fit$probs_pred, Y_ts+1, showplot=F)

er.htlr[j] <- htlr.predeval$er

pred.htlr[,j] <- ifelse(htlr.pred[,1] > 0.5, 0, 1)

amlp.htlr[j] <- htlr.predeval$amlp

}

lasso prediction

lasso.fit <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, 1)

las.pred <- lasso.fit$eval[["table_eval"]]

predmat.las <- las.pred[, 3:4]

er.las <- lasso.fit$eval[["er"]]

pred.las <- as.numeric(lasso.fit$predictor)

amlp.las <- lasso.fit$eval[["amlp"]]

elastic net

alpha2 <- c(0.3,0.5,0.7)

predmat.ela <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.ela <- matrix(0, nrow=length(Y_ts),ncol=3)

er.ela <- vector()

amlp.ela <- vector()

for (i in 1:3){

elastic.net <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, alpha2[i])

ela.pred <- elastic.net$eval[["table_eval"]]

predmat.ela[,2*i-1] <- unlist(ela.pred[, 3])

predmat.ela[,2*i] <- unlist(ela.pred[, 4])

er.ela[i] <- elastic.net$eval[["er"]]

pred.ela[,i] <- as.numeric(elastic.net$predictor)

amlp.ela[i] <- elastic.net$eval[["amlp"]]

}

saveRDS(cbind(pred.htlr, pred.las, ela = pred.ela),

file = paste0(predpath, sprintf("predictor_ICV_sc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(er.htlr), er.las, elastic = t(er.ela)),

file = paste0(errorpath, sprintf("errorrate_ICV_sc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(amlp.htlr), amlp.las, elastic = t(amlp.ela)),

file = paste0(amlppath, sprintf("amlp_ICV_sc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(htlr.pred, predmat.las, predmat.ela),

file = paste0(predmatpath, sprintf("predmat_ICV_sc_fold%d_nsnp%d.rds",iloc, nsnp_set[irep])))

############### Model fit for ICV dataset2 ###############

if (!exists("irep")) irep <- 1

if (!exists("iloc")) iloc <- 1

source("/home/med826/Mayo/utility.r")

library (HTLR, lib.loc = "/home/longhai/Rdev/HTLR_3.1-1")

phenopath <- "/home/med826/Mayo_simulate/10Sign/dataset/"

errorpath <- "/home/med826/Mayo_simulate/10Sign/errorrate/"

evalpath <- "/home/med826/Mayo_simulate/10Sign/evaluation/"

predpath <- "/home/med826/Mayo_simulate/10Sign/prediction/"

amlppath <- "/home/med826/Mayo_simulate/10Sign/amlp/"

coefpath <- "/home/med826/Mayo_simulate/10Sign/coef/"

predmatpath <- "/home/med826/Mayo_simulate/10Sign/predmat/"

63

top5000_file <- paste0(phenopath, sprintf("top5000SNPs_lc_ICV.rds"))

SNPdata_file <- paste0(phenopath, sprintf("SNPdata5000_lc_ICV.rds"))

top5000SNP <- readRDS(top5000_file)

extract the snp names

names_snp <- top5000SNP[,1]

get the SNP file

SNPdata <- readRDS(SNPdata_file)

training <- SNPdata[SNPdata$fold != iloc,]

testing <- SNPdata[SNPdata$fold == iloc,]

nsnp_set <- c(1, 2, 4, 8, ..., 1024, 2048, 4096)

nsnp_set <- c(0, 13)

for (i in 1:13){

nsnp_set[i] <- 2^(i-1)

}

nsnp_set

Y_name <- "Phenotype_large"

X_cov <- "apoe"

X_chosen <- names_snp[1:nsnp_set[irep]]

fit_formula <- as.formula(paste0(Y_name, "~", paste(c(X_cov, X_chosen), collapse = "+")))

X_tr <- model.matrix(fit_formula, data = training)[, -1]

Y_tr <- training[, Y_name]

X_ts <- model.matrix(fit_formula, data = testing)[, -1]

Y_ts <- testing[, Y_name]

htlr

htlr.pred <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.htlr <- matrix(0, nrow=length(Y_ts),ncol=3)

er.htlr <- vector()

amlp.htlr <- vector()

alpha1 <- c(0.5, 1, 1.5)

for (j in 1:3){

htlr.fit <- htlr_fit (

y_tr = Y_tr, X_tr = X_tr, X_ts = X_ts, stdzx = F, ## data

pty = "t", alpha = alpha1[j], s = -10, ## alpha = df and s= log (w)

iters_h = 1000, iters_rmc = 1000, thin = 10, ## mcmc iteration settings,

leap_L_h = 5, leap_L = 50, leap_step = 0.3, hmc_sgmcut = 0.3, ## hmc settings

initial_state = "lasso", silence = !interactive()) ## initial state settings

htlr.pred[,2*j-1] <- htlr.fit$probs_pred[,1]

htlr.pred[,2*j] <- htlr.fit$probs_pred[,2]

htlr.predeval <- evaluate_pred(htlr.fit$probs_pred, Y_ts+1, showplot=F)

er.htlr[j] <- htlr.predeval$er

pred.htlr[,j] <- ifelse(htlr.pred[,1] > 0.5, 0, 1)

amlp.htlr[j] <- htlr.predeval$amlp

}

lasso prediction

lasso.fit <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, 1)

64

las.pred <- lasso.fit$eval[["table_eval"]]

predmat.las <- las.pred[, 3:4]

er.las <- lasso.fit$eval[["er"]]

pred.las <- as.numeric(lasso.fit$predictor)

amlp.las <- lasso.fit$eval[["amlp"]]

elastic net

alpha2 <- c(0.3,0.5,0.7)

predmat.ela <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.ela <- matrix(0, nrow=length(Y_ts),ncol=3)

er.ela <- vector()

amlp.ela <- vector()

for (i in 1:3){

elastic.net <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, alpha2[i])

ela.pred <- elastic.net$eval[["table_eval"]]

predmat.ela[,2*i-1] <- unlist(ela.pred[, 3])

predmat.ela[,2*i] <- unlist(ela.pred[, 4])

er.ela[i] <- elastic.net$eval[["er"]]

pred.ela[,i] <- as.numeric(elastic.net$predictor)

amlp.ela[i] <- elastic.net$eval[["amlp"]]

}

saveRDS(cbind(pred.htlr, pred.las, pred.ela),

file = paste0(predpath, sprintf("predictor_ICV_lc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(er.htlr), er.las, t(er.ela)),

file = paste0(errorpath, sprintf("errorrate_ICV_lc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(amlp.htlr), amlp.las, t(amlp.ela)),

file = paste0(amlppath, sprintf("amlp_ICV_lc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(htlr.pred, predmat.las, predmat.ela),

file = paste0(predmatpath, sprintf("predmat_ICV_lc_fold%d_nsnp%d.rds",iloc, nsnp_set[irep])))

############### Model fit ECV for dataset1 ###############

if (!exists("irep")) irep <- 1

if (!exists("iloc")) iloc <- 1

source("/home/med826/Mayo/utility.r")

library (HTLR, lib.loc = "/home/longhai/Rdev/HTLR_3.1-1")

datapath <- "/home/med826/Mayo_simulate/10Sign/dataset/"

errorpath <- "/home/med826/Mayo_simulate/10Sign/errorrate/"

evalpath <- "/home/med826/Mayo_simulate/10Sign/evaluation/"

predpath <- "/home/med826/Mayo_simulate/10Sign/prediction/"

amlppath <- "/home/med826/Mayo_simulate/10Sign/amlp/"

coefpath <- "/home/med826/Mayo_simulate/10Sign/coef/"

predmatpath <- "/home/med826/Mayo_simulate/10Sign/predmat/"

top5000_file <- paste0(datapath, sprintf("top5000SNPs_sc_ECV_fold%d.rds", iloc))

SNPdata_file <- paste0(datapath, sprintf("SNPdata5000_sc_ECV_fold%d.rds", iloc))

top5000SNP <- readRDS(top5000_file)

extract the snp names

names_snp <- top5000SNP[,1]

65

get the SNP file

SNPdata <- readRDS(SNPdata_file)

training <- SNPdata[SNPdata$fold != iloc,]

testing <- SNPdata[SNPdata$fold == iloc,]

nsnp_set <- c(1, 2, 4, 8, ..., 1024, 2048, 4096)

nsnp_set <- c(0, 13)

for (i in 1:13){

nsnp_set[i] <- 2^(i-1)

}

nsnp_set

Y_name <- "Phenotype_small"

X_cov <- "apoe"

X_chosen <- names_snp[1:nsnp_set[irep]]

fit_formula <- as.formula(paste0(Y_name, "~", paste(c(X_cov, X_chosen), collapse = "+")))

X_tr <- model.matrix(fit_formula, data = training, xlev = 3)[, -1]

Y_tr <- training[, Y_name]

X_ts <- model.matrix(fit_formula, data = testing, xlev = 3)[, -1]

Y_ts <- testing[, Y_name]

htlr

htlr.pred <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.htlr <- matrix(0, nrow=length(Y_ts),ncol=3)

er.htlr <- vector()

amlp.htlr <- vector()

alpha1 <- c(0.5, 1, 1.5)

for (j in 1:3){

htlr.fit <- htlr_fit (

y_tr = Y_tr, X_tr = X_tr, X_ts = X_ts, stdzx = F, ## data

pty = "t", alpha = alpha1[j], s = -10, ## alpha = df and s= log (w)

iters_h = 1000, iters_rmc = 1000, thin = 10, ## mcmc iteration settings,

leap_L_h = 5, leap_L = 50, leap_step = 0.3, hmc_sgmcut = 0.3, ## hmc settings

initial_state = "lasso", silence = !interactive()) ## initial state settings

htlr.pred[,2*j-1] <- htlr.fit$probs_pred[,1]

htlr.pred[,2*j] <- htlr.fit$probs_pred[,2]

htlr.predeval <- evaluate_pred(htlr.fit$probs_pred, Y_ts+1, showplot=F)

er.htlr[j] <- htlr.predeval$er

pred.htlr[,j] <- ifelse(htlr.pred[,1] > 0.5, 0, 1)

amlp.htlr[j] <- htlr.predeval$amlp

}

lasso prediction

lasso.fit <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, 1)

las.pred <- lasso.fit$eval[["table_eval"]]

predmat.las <- las.pred[, 3:4]

er.las <- lasso.fit$eval[["er"]]

pred.las <- as.numeric(lasso.fit$predictor)

amlp.las <- lasso.fit$eval[["amlp"]]

elastic net

66

alpha2 <- c(0.3,0.5,0.7)

predmat.ela <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.ela <- matrix(0, nrow=length(Y_ts),ncol=3)

er.ela <- vector()

amlp.ela <- vector()

for (i in 1:3){

elastic.net <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, alpha2[i])

ela.pred <- elastic.net$eval[["table_eval"]]

predmat.ela[,2*i-1] <- unlist(ela.pred[, 3])

predmat.ela[,2*i] <- unlist(ela.pred[, 4])

er.ela[i] <- elastic.net$eval[["er"]]

pred.ela[,i] <- as.numeric(elastic.net$predictor)

amlp.ela[i] <- elastic.net$eval[["amlp"]]

}

saveRDS(cbind(pred.htlr, pred.las, pred.ela),

file = paste0(predpath, sprintf("predictor_ECV_sc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(er.htlr), er.las, t(er.ela)),

file = paste0(errorpath, sprintf("errorrate_ECV_sc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(amlp.htlr), amlp.las, t(amlp.ela)),

file = paste0(amlppath, sprintf("amlp_ECV_sc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(htlr.pred, predmat.las, predmat.ela),

file = paste0(predmatpath, sprintf("predmat_ECV_sc_fold%d_nsnp%d.rds",iloc, nsnp_set[irep])))

############### Model fit ECV for dataset2

if (!exists("irep")) irep <- 1

if (!exists("iloc")) iloc <- 1

source("/home/med826/Mayo/utility.r")

library (HTLR, lib.loc = "/home/longhai/Rdev/HTLR_3.1-1")

datapath <- "/home/med826/Mayo_simulate/10Sign/dataset/"

errorpath <- "/home/med826/Mayo_simulate/10Sign/errorrate/"

evalpath <- "/home/med826/Mayo_simulate/10Sign/evaluation/"

predpath <- "/home/med826/Mayo_simulate/10Sign/prediction/"

amlppath <- "/home/med826/Mayo_simulate/10Sign/amlp/"

coefpath <- "/home/med826/Mayo_simulate/10Sign/coef/"

predmatpath <- "/home/med826/Mayo_simulate/10Sign/predmat/"

top5000_file <- paste0(datapath, sprintf("top5000SNPs_lc_ECV_fold%d.rds", iloc))

SNPdata_file <- paste0(datapath, sprintf("SNPdata5000_lc_ECV_fold%d.rds", iloc))

top5000SNP <- readRDS(top5000_file)

extract the snp names

names_snp <- top5000SNP[,1]

get the SNP file

SNPdata <- readRDS(SNPdata_file)

training <- SNPdata[SNPdata$fold != iloc,]

testing <- SNPdata[SNPdata$fold == iloc,]

nsnp_set <- c(1, 2, 4, 8, ..., 1024, 2048, 4096)

67

nsnp_set <- c(0, 13)

for (i in 1:13){

nsnp_set[i] <- 2^(i-1)

}

nsnp_set

Y_name <- "Phenotype_large"

X_cov <- "apoe"

X_chosen <- names_snp[1:nsnp_set[irep]]

fit_formula <- as.formula(paste0(Y_name, "~", paste(c(X_cov, X_chosen), collapse = "+")))

X_tr <- model.matrix(fit_formula, data = training, xlev = 3)[, -1]

Y_tr <- training[, Y_name]

X_ts <- model.matrix(fit_formula, data = testing, xlev = 3)[, -1]

Y_ts <- testing[, Y_name]

htlr

htlr.pred <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.htlr <- matrix(0, nrow=length(Y_ts),ncol=3)

er.htlr <- vector()

amlp.htlr <- vector()

alpha1 <- c(0.5, 1, 1.5)

for (j in 1:3){

htlr.fit <- htlr_fit (

y_tr = Y_tr, X_tr = X_tr, X_ts = X_ts, stdzx = F, ## data

pty = "t", alpha = alpha1[j], s = -10, ## alpha = df and s= log (w)

iters_h = 1000, iters_rmc = 1000, thin = 10, ## mcmc iteration settings,

leap_L_h = 5, leap_L = 50, leap_step = 0.3, hmc_sgmcut = 0.3, ## hmc settings

initial_state = "lasso", silence = !interactive()) ## initial state settings

htlr.pred[,2*j-1] <- htlr.fit$probs_pred[,1]

htlr.pred[,2*j] <- htlr.fit$probs_pred[,2]

htlr.predeval <- evaluate_pred(htlr.fit$probs_pred, Y_ts+1, showplot=F)

er.htlr[j] <- htlr.predeval$er

pred.htlr[,j] <- ifelse(htlr.pred[,1] > 0.5, 0, 1)

amlp.htlr[j] <- htlr.predeval$amlp

}

lasso prediction

lasso.fit <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, 1)

las.pred <- lasso.fit$eval[["table_eval"]]

predmat.las <- las.pred[, 3:4]

er.las <- lasso.fit$eval[["er"]]

pred.las <- as.numeric(lasso.fit$predictor)

amlp.las <- lasso.fit$eval[["amlp"]]

elastic net

alpha2 <- c(0.3,0.5,0.7)

predmat.ela <- matrix(0, nrow=length(Y_ts), ncol=6)

pred.ela <- matrix(0, nrow=length(Y_ts),ncol=3)

er.ela <- vector()

amlp.ela <- vector()

for (i in 1:3){

elastic.net <- glmnet_fit(X_tr, Y_tr, X_ts, Y_ts, alpha2[i])

ela.pred <- elastic.net$eval[["table_eval"]]

68

predmat.ela[,2*i-1] <- unlist(ela.pred[, 3])

predmat.ela[,2*i] <- unlist(ela.pred[, 4])

er.ela[i] <- elastic.net$eval[["er"]]

pred.ela[,i] <- as.numeric(elastic.net$predictor)

amlp.ela[i] <- elastic.net$eval[["amlp"]]

}

saveRDS(cbind(pred.htlr, lasso = pred.las, pred.ela),

file = paste0(predpath, sprintf("predictor_ECV_lc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(er.htlr), lasso = er.las, t(er.ela)),

file = paste0(errorpath, sprintf("errorrate_ECV_lc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(t(amlp.htlr), lasso = amlp.las, t(amlp.ela)),

file = paste0(amlppath, sprintf("amlp_ECV_lc_fold%d_nsnp%d.rds", iloc, nsnp_set[irep])))

saveRDS(cbind(htlr.pred, predmat.las, predmat.ela),

file = paste0(predmatpath, sprintf("predmat_ECV_lc_fold%d_nsnp%d.rds",iloc, nsnp_set[irep])))

############### Evaluation ###############

if (!exists("irep")) irep <- 1

erpath <- "/home/med826/Mayo_simulate/10Sign/errorrate/"

amlppath <- "/home/med826/Mayo_simulate/10Sign/amlp/"

evalpath <- "/home/med826/Mayo_simulate/10Sign/evaluation/"

datapath <- "/home/med826/Mayo_simulate/10Sign/dataset/"

nsnp_set <- c(1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096)

nset <- length(nsnp_set)

locations <- paste0("fold",1:10)

model_set <- c("lc","sc")

modeltype <- model_set[irep]

calculate the frequency of large coefficient Phenotype and small coefficient Phenotype

phenodata <- readRDS(paste0(datapath, modeltype, "_data.rds"))

prob_null <-prop.table(table(phenodata[,2]))

er_null <- min(prob_null)

amlp_null <- - sum(prob_null*log(prob_null))

generate the array of error rate, which contians error rates of hltr, lasso, elastic, glm

then calculate the mean error rate of all folds

errates <- array(0, dim = c(nset, 14, 11))

error_oracle <- rep(0,11)

for (iloc in 1:length(locations)){

er_ecv_list <- paste0(erpath, "errorrate_ECV_", modeltype, "_", locations[iloc],

"_nsnp", nsnp_set, ".rds")

er_icv_list <- paste0(erpath, "errorrate_ICV_", modeltype, "_", locations[iloc],

"_nsnp", nsnp_set, ".rds")

errates[, 1:7, iloc] <- do.call(’rbind’, lapply(er_ecv_list, function(x) readRDS(x)[1:7]))

errates[, 8:14, iloc] <- do.call(’rbind’, lapply(er_icv_list, function(x) readRDS(x)[1:7]))

er_oracle <- paste0(erpath, "errorrate_oracle_", modeltype, "_", locations[iloc], ".rds")

error_oracle[iloc] <- readRDS(er_oracle)[1]

}

for (i in 1:14){

69

errates[,i,11] <- apply(errates[,i,1:10],1,mean)

}

error_oracle[11] <- mean(error_oracle[1:10])

pdf(paste0(evalpath, modeltype, "_er.pdf"), width = 9, height = 7)

par (mar = c(4,4,0.5,4))

matplot(0:12, errates[,c(2,4,7,9,11,12),11],

ylim = c(0, 0.5),

type = "b",

col = rep(c(2,4,3),2),

lwd = rep(3,6),

pch = rep(c(1:3),2),

cex = 1, lty = c(rep(1,3), rep(3,3)),

xaxp=c(0,13,13),

yaxp=c(0,0.5,10),

xlab = "",

ylab = "")

abline(h=error_oracle[11], lty=2, lwd=2)

abline(h=er_null, lty=4, lwd=2, col="grey58")

axis(side = 4, at=seq(0,er_null,by=er_null/10), labels=seq(1,0,by=-0.1))

mtext(side=4, line=3, expression(R^2),cex=1.5)

title (xlab = "log2(Number of SNPs)",

ylab = "Error Rate",cex.lab=1.5, line =2.5)

legend("bottomleft", cex=0.8,

legend = c("Hyper-LASSO", "LASSO", "Elastic Net",

"Oracle", "Null", "External CV", "Internal CV"),

col = c(2,4,3, 1, "grey58", 1,1),

pch = c(1:3,NA,NA, NA,NA),

lty = c(NA,NA,NA,2,4,1,3))

dev.off()

amlp <- array(0, dim = c(nset, 14, 11))

amlp_oracle <- rep(0, 11)

for (iloc in 1:length(locations)){

amlp_ecv_list <- paste0(amlppath, "amlp_ECV_", modeltype, "_", locations[iloc],

"_nsnp", nsnp_set, ".rds")

amlp_icv_list <- paste0(amlppath, "amlp_ICV_", modeltype, "_", locations[iloc],

"_nsnp", nsnp_set, ".rds")

amlp[, 1:7, iloc] <- do.call(’rbind’, lapply(amlp_ecv_list, function(x) readRDS(x)[1:7]))

amlp[, 8:14, iloc] <- do.call(’rbind’, lapply(amlp_icv_list, function(x) readRDS(x)[1:7]))

amlp_oracle_loc <- paste0(amlppath, "amlp_oracle_", modeltype, "_", locations[iloc], ".rds")

amlp_oracle[iloc] <- readRDS(amlp_oracle_loc)[1]

}

for (i in 1:14){

amlp[,i,11] <- apply(amlp[,i,1:10],1,mean)

}

amlp_oracle[11] <- mean(amlp_oracle[1:10])

pdf(paste0(evalpath, modeltype, "_amlp.pdf"), width = 9, height = 7)

par (mar = c(4,4,0.5,4))

matplot(0:12, amlp[,c(2,4,7,8,11,12),11],

ylim = cbind(c(0, 0.7), c(0,1.7))[,irep],

type = "b",

70

col = c(rep(c(2,4,3),2),1,7),

lwd = rep(3,6),

pch = rep(c(1:3),2),

cex = 1, lty = c(rep(1,3), rep(3,3)),

xaxp=c(0,13,13),

yaxp=rbind(c(0,0.7,14), c(0,1.7,34))[irep,],

xlab = "",

ylab = "")

abline(h=amlp_oracle[11],lty=2, lwd=2)

abline(h=amlp_null, lty=4, lwd=2, col = "grey58")

axis(side = 4, at=seq(0,amlp_null*2,by=amlp_null/5), labels=seq(1,-1,by=-0.2))

mtext(side=4, line=3, expression(R^2),cex=1.5)

title (xlab = "log2(Number of SNPs)",

ylab = "AMLP", cex.lab = 1.5, line =2.5)

legend("bottomleft", cex=0.8,

legend = c("Hyper-LASSO", "LASSO", "Elastic Net",

"Oracle", "Null", "External CV", "Internal CV"),

col = c(2,4,3, 1, "grey58", 1,1),

pch = c(1:3,NA,NA, NA,NA),

lty = c(NA,NA,NA,2,4,1,3))

dev.off()

############### AUC ###############

if (!exists("irep")) irep <- 1

library(’pROC’)

predmatpath <- "/home/med826/Mayo_simulate/10Sign/predmat/"

evalpath <- "/home/med826/Mayo_simulate/10Sign/evaluation/"

datapath <- "/home/med826/Mayo_simulate/10Sign/dataset/"

nsnp_set <- c(1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096)

nset <- length(nsnp_set)

locations <- paste0("fold",1:10)

get the information of training dataset

model_set <- c("lc","sc")

modeltype <- model_set[irep]

phenodata <- readRDS(paste0(datapath, modeltype, "_data.rds"))

prob_null <- prop.table(table(phenodata[,2]))

pred_null <- rep(max(prob_null),2099)

auc_null <- roc(phenodata[,2], pred_null)$auc

auc_mat <- array(0, dim = c(nset, 6, 11))

auc_oracle <- rep(0,11)

for (iset in 1:nset){

for (iloc in 1:length(locations)){

pheno <- as.integer(phenodata[which(phenodata$fold == iloc),2])

predictor_ECV <- paste0(predmatpath, "predmat_ECV_",modeltype, "_",

sprintf("fold%d_nsnp%d.rds",iloc, nsnp_set[iset]))

predictor_ICV <- paste0(predmatpath, "predmat_ICV_",modeltype, "_",

71

sprintf("fold%d_nsnp%d.rds",iloc, nsnp_set[iset]))

pred_mat_ECV <- do.call(’cbind’, lapply(predictor_ECV, readRDS))

pred_mat_ICV <- do.call(’cbind’, lapply(predictor_ICV, readRDS))

pred_frame <- cbind.data.frame(pred_mat_ECV[,c(4,8,14)], pred_mat_ICV[,c(4,8,10)], pheno)

colnames(pred_frame) <- c("htlr_ECV", "lasso_ECV", "elasticnet_ECV",

"htlr_ICV", "lasso_ICV", "elasticnet_ICV", "pheno")

auc_mat[iset, 1, iloc] <- roc(pred_frame$pheno, pred_frame$htlr_ECV)$auc

auc_mat[iset, 2, iloc] <- roc(pred_frame$pheno, pred_frame$lasso_ECV)$auc

auc_mat[iset, 3, iloc] <- roc(pred_frame$pheno, pred_frame$elasticnet_ECV)$auc

auc_mat[iset, 4, iloc] <- roc(pred_frame$pheno, pred_frame$htlr_ICV)$auc

auc_mat[iset, 5, iloc] <- roc(pred_frame$pheno, pred_frame$lasso_ICV)$auc

auc_mat[iset, 6, iloc] <- roc(pred_frame$pheno, pred_frame$elasticnet_ICV)$auc

predictor_oracle <- paste0(predmatpath, "predmat_oracle_", modeltype, "_", locations[iloc], ".rds")

pred_oracle <- readRDS(predictor_oracle)[,2]

auc_oracle[iloc] <- roc(pred_frame$pheno, pred_oracle)$auc

}

}

for (i in 1:6){

auc_mat[,i,11] <- apply(auc_mat[,i,1:10],1,mean)

}

auc_oracle[11] <- mean(auc_oracle[1:10])

pdf(paste0(evalpath, modeltype, "_auc.pdf"), width = 9, height = 7)

par (mar = c(4,4,0.5,4))

matplot(0:12, auc_mat[,1:6,11],

ylim = c(0, 1),

type = "b",

col = rep(c(2,4,3),2),

lwd = rep(3,6),

pch = rep(c(1:3),2),

cex = 1, lty = c(rep(1,3), rep(3,3)),

xaxp=c(0,13,13),

yaxp=c(0,1,10),

xlab = "",

ylab = "")

abline(h=auc_oracle[11], lty=2, lwd=2)

abline(h=auc_null, lty=4, lwd=2, col="grey58")

title (xlab = "log2(Number of SNPs)",

ylab = "AUC",cex.lab=1.5, line =2.5)

legend("bottomleft", cex=0.8,

legend = c("Hyper-LASSO", "LASSO", "Elastic Net",

"Oracle", "Null", "External CV", "Internal CV"),

col = c(2,4,3, 1, "grey58", 1,1),

pch = c(1:3,NA,NA, NA,NA),

lty = c(NA,NA,NA,2,4,1,3))

dev.off()

72

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Methodology
	GWAS and False Discovery Rate
	GWAS with Likelihood Ratio Test
	False Discovery Rate

	Regularized Logistic Regression
	LASSO
	Elastic-net
	Fully Bayesian hyper-LASSO

	Internal and External Cross-Validation
	Cross-Validation
	Internal Cross-Validation
	External Cross-Validation

	Predictive Metrics
	Error Rate and AMLP
	AUC

	Data
	Alzheimer's Disease (AD)
	An Whole-Genome Sequence Data Related to AD
	Synthetic Datasets

	Results and Discussions
	Results on the AD SNP Data
	Results on the Synthetic Datasets

	Conclusion and Future Work
	References
	Appendix R Code
	Utility Functions
	R Code for Feature Selection and Model Fitting using ICV with real Dataset
	R Code for Feature Selection and Model Fitting using ECV with Real Dataset
	R Code for Generating Simulation Data
	R Code for Feature Selection and Model Fitting with Real Dataset

