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Abstract

Spatial data (also called georeferenced data) arise in a wide range of scientific studies,

including geography, agriculture, criminology, geology, urban and regional economics. The

underlying spatial effects – the measurement error caused by any spatial pattern embedded

in data – may affect both the validity and robustness of traditional descriptive and inferential

techniques. Therefore, it is of paramount importance to take into account spatial effects when

analysing spatially dependent data. In particular, addressing the spatial association among

attribute values observed at different locations and the systematic variation of phenomena

by locations are the two major aspects of modelling spatial data.

The bent-cable is a parametric regression model to study data that exhibits a trend

change over time. It comprises two linear segments to describe the incoming and outgoing

phases, joined by a quadratic bend to model the transition period. For spatial longitudinal

data, measurements taken over time are nested within spatially dependent locations. In

this thesis, we extend the existing longitudinal bent-cable regression model to handle spatial

effects. We do so in a hierarchical Bayesian framework by allowing the error terms to be

correlated across space. We illustrate our methodology with an application to atmospheric

chlorofluorocarbon (CFC) data. We also present a simulation study to demonstrate the

performance of our proposed methodology.

Although we have tailored our work for the CFC data, our modelling framework may

be applicable to a wide variety of other situations across the range of the econometrics,

transportation, social, health and medical sciences. In addition, our methodology can be

further extended by taking into account interaction between temporal and spatial effects.

With the current model, this could be done with a spatial correlation structure that changes

as a function of time.
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Chapter 1

Introduction

Spatial or georeferenced data are tagged by locations, where the locations can be defined

using geographical information such as well defined borders, latitude and longitude, and so

on. This type of data can arise in a wide range of scientific areas, including agriculture, crim-

inology, demography, geology, geography, international relations, natural resources, regional

science, sociology, statistics, urban planning and urban and regional economics. Spatial data

are also common in longitudinal studies, where measurements taken over time are nested

within observational units drawn from some population of interests. For convenience pur-

pose, in this thesis we will use the term “individual” to refer to the observational unit in the

longitudinal study, including inanimate objects such as a measurement station.

Analysis of spatial data requires special attention, partly because of the underlying spa-

tial configuration, featuring (1) spatial pattern of locations, (2) spatial association between

attribute values observed at different locations (i.e. spatial dependency), and (3) systematic

variation of phenomena by locations (i.e. spatial heterogeneity). Moreover, spatial effects

– the measurement error caused by any spatial pattern embedded in data – affect both the

validity and robustness of traditional descriptive and inferential techniques (Griffith & Layne,

1999). Therefore, it is of paramount importance to take into account spatial effects when

analysing spatially dependent data.

An example of spatial data is the atmospheric concentration of chlorofluorocarbons (CFCs)

monitored from different stations across the globe (see Chapter 3 for detailed description of

the data). Individual CFC molecules are labelled with a unique numbering system. For

example, the CFC number of 11 indicates the number of atoms of carbon, hydrogen, fluo-

rine, and chlorine (e.g. CCl3F as CFC-11). The most common CFCs are CFC-11, CFC-12,

CFC-113, CFC-114, and CFC-115. The ozone depletion potential (the ratio of the impact

1
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Atmospheric Concentration of CFC−11 in January, 1995
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Atmospheric Concentration of CFC−11 in January, 2002
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Atmospheric Concentration of CFC−11 in January, 2009
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Figure 1.1: Monthly mean concentrations of CFC-11 in parts-per-trillion (ppt) for
eight stations for January of 1988, 1995, 2002, and 2009.
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Atmospheric Concentration of CFC−12 in January, 1988
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Atmospheric Concentration of CFC−12 in January, 1995
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Atmospheric Concentration of CFC−12 in January, 2002
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Atmospheric Concentration of CFC−12 in January, 2009
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Figure 1.2: Monthly mean concentrations of CFC-12 in parts-per-trillion (ppt) for
eight stations for January of 1988, 1995, 2002, and 2009.
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on ozone of a chemical compared to the impact of a similar mass of CFC-11) for these CFCs

are 1, 1, 0.8, 1, and 0.6, respectively (http://www.epa.gov/ozone/defn.html). We focus

on CFC-11 and CFC-12 in this thesis, because they are considered two of the most danger-

ous CFCs to the atmosphere. Due to their extended lifetimes, CFCs persist long enough in

the atmosphere, and consequently are believed to have spread across the world. Therefore,

CFCs monitored from one station may depend on those from another station, giving rise to

a presumed spatially dependent longitudinal process. To illustrate the spatial dependency,

we plot the monthly mean concentrations of CFC-11 and CFC-12 in Figures 1.1 and 1.2,

respectively, for eight monitoring stations for January of 1988, 1995, 2002, and 2009 with

reference to the latitude and longitude of each station. The horizontal and vertical axes rep-

resent longitude and latitude of stations. The blue circle represents the relative concentration

of CFCs, with a bigger/smaller circle indicates higher/lower concentration level. In general,

the CFC measurements appeared to be closer for the nearer stations. For example, the level

of CFC-11 at Barrow (252.765 ppt) is closer to that of Mauna Loa (246.664 ppt) than Cape

Matatula (235 ppt). Such similarities roughly indicate spatial dependencies among the CFC

measurements around the world.

We are particularly interested about CFCs for their notorious effect on depleting ozone

layer. Stratospheric ozone, which accounts for around 90% of total atmospheric ozone, is vital

for human health and environments on Earth, as it prevents harmful ultraviolet (UV) radi-

ation from Earth’s surface. Note that increased UV radiation poses significant risk on living

organisms, including skin cancer, cataracts, irreversible damage to plants and decreases drift-

ing organisms (e.g. animals, plants, archaea, bacteria) in the ocean’s photic-zone (Struijs et

al., 2010; Khan et al., 2009). CFCs constitute about 90% of the Ozone Depleting Substances

(ODS) and 80% of which is accounted by CFC-11 and CFC-12, most abundant CFCs in the

atmosphere (Moulijn et al., 2000). These CFCs, being sources of chlorine in the atmosphere,

catalytically destroy stratospheric ozone (Malina & Rowland, 1974). Each chlorine atom has

potential of breaking down an average of 100, 000 ozone molecules during its one to two years

of atmospheric lifetime. Moreover, they are not only strong infrared absorbers but also very

potent greenhouse gas (referred in Zhang et al. (2010)). Recognizing the significant threat of

the CFCs to the ozone layer, the Montreal Protocol on Substances That Deplete Ozone Layer

4



(herein Montreal protocol) provided a mechanism to reduce and phase-out global production,

use, and consumption of CFCs with other ODSs.

For successful regulations of the Montreal protocol, the emission and production of CFCs

along with other ODSs have been decreased globally (Velders et al., 2007; WMO, 2010). As a

result, ozone science has entered into the second stage of recovery, where ozone is expected to

increase for continuing decrease in ODSs (WMO, 2010). This recovery had been attributed

mainly to the reductions in CFC-11 and CFC-12 productions (Velders et al., 2007). However,

the quantity of CFCs in existing products and equipments, usually referred as ‘banks’, has the

potential to make an important contribution to future emissions (Zhang et al., 2010). Hence,

the analysis of CFC data is necessary not only to assess the global and regional emissions of

CFC and to check their compliance with phase-out schedules (Zhang et al., 2010), but also to

identify the progress in ozone recovery from ODSs and evaluate the effectiveness of climate

and ozone protection policy options (WMO, 2010).
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Figure 1.3: Monthly mean profile of 8 stations for CFC-11 over the period
1988 to 2010.

Another important feature of CFCs, as explored by Khan et al. (2009), is that their

trends characterize a change due to the response of the Montreal protocol. Roughly, the

trend can be characterized by three phases: linear incoming and outgoing, which are joined

by a quadratic bend to characterize the transition (see Figure 1.3 for CFC-11 and Figure

1.4 for CFC-12 data). This type of characterization can be achieved using the single profile

bent-cable model of Chiu et al. (2006). Later, Khan et al. (2009) extended the bent-cable
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Figure 1.4: Monthly mean profile of 8 stations for CFC-12 over the period
1988 to 2010.

methodology for longitudinal data (i.e. for multiple profiles). Accounting for the spatial

feature, the objective of this thesis is to extend the longitudinal bent-cable model of Khan

et al. (2009) to accommodate spatial dependency embedded in data. Using our proposed

methodology, we will address the following questions statistically:

Q1 What was the time point at which the CFC concentration took a downward turn from

an increasing trend?

Q2 Has the concentration of CFC been decreasing significantly after the transition?

Q3 Are there any differences and/or similarities in the atmospheric concentration of CFCs

in different parts of the world?

Q4 What is the spatial distribution of the CFC concentration around the globe?

The bent-cable model (Figure 1.5) comprises of two linear segments to describe the in-

coming and outgoing phases, joined by a quadratic bend to model the transition period. The

model is appealing mainly for two reasons. First, it is parsimonious in the sense that it cap-

tures the change of direction of a single profile using only five regression coefficients: three

linear parameters to describe the rates of changes in the incoming and outgoing phases, and

two transition parameters to characterize the centre and the half-width of the bend (see Fig-

ure 1.5). Note that the critical time point (CTP), as defined by Chiu and Lockhart (2010),
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Figure 1.5: The schematic view of bent-cable regression model, modified from Khan
et al. (2009).

is the time at which the slope of the bent-cable changes signs, and can be defined using

the bent-cable parameters. Secondly, the parameters can be interpreted in the same way as

usually done in regression analysis. Khan et al. (2009) extended the bent-cable model for

longitudinal data, and developed a Bayesian modelling framework for statistical inference.

Our modelling approach will provide a straightforward methodology to model spatial

dependency embedded in data. We plot the observed curve and corresponding fitted curve

for our spatial-longitudinal bent-cable model for a representative monitoring station, Cape

Matatula, American Samoa of CFC-11 and CFC-12 in Figure 1.6 and 1.7, respectively, to

demonstrate the adequacy of our modelling methodology.
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Figure 1.6: Observed data (Red line) and corresponding station-specific fitted curve
of CFC-11 for Cape Matatula, American Samoa,
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Figure 1.7: Observed data (Red line) and corresponding station-specific fitted curve
of CFC-12 for Cape Matatula, American Samoa
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Chapter 2

The Spatial-Longitudinal Bent-Cable Model

In this chapter, we present the details of our spatial-longitudinal bent-cable model. In Sec-

tion 2.1, we describe the formulation of the model as an extension of longitudinal bent-cable

model of Khan et al. (2009). We describe the inference method of our spatial-longitudinal

bent-cable model in Section 2.2.

2.1 Hierarchical Formulation of the Model

Our spatial-longitudinal bent-cable model is based on Bayesian paradigm in the form of

hierarchical model for making inference about the parameters of interest. Bayesian analysis

provides a cohesive framework for combining complex data structure and external knowledge

through modelling the observed data and unknown parameters as random variables. It offers

sound foundation, unified approach to data analysis, and ability to formally incorporate prior

information or external empirical evidence into the results by means of prior distribution of

parameters (Banerjee et al., 2003). Uncertainty of a process is modelled by introducing latent

variables at different stages, where the stages might describe conceptual and unobserved

latent processes. Thus, Bayesian hierarchical modelling offers a flexible approach for complex

data (or response with complex forms) through defining latent, intermediate between the

observed data and the underlying parameters driving the process (Congdon, 2010), and

incorporating additional knowledge via prior specification for the parameters.

Wikle (2003) defined a hierarchical model in which the dependent variable characterizes

the data stage, latent effects quantify the process stage, and a set of hyper-parameters defines

the parameter stage to quantify prior information about the random quantities. In this three

stage hierarchical model, the first stage is defined as a conditional likelihood, given both
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the process and parameters; the second stage describes the latent process conditional on

higher stage parameters; and the third stage models the population parameters of interest

(Congdon, 2010). For longitudinal data, the latent process is characterized by modelling

each individual’s trajectory over time. This stage addresses the questions: (1) how does the

response change over time individually, and (2) do different individuals experience different

pattern of change? In the next few sections, we describe the hierarchical formulation of our

spatial-longitudinal bent-cable model through the three stages described above.

2.1.1 The Spatial-Longitudinal Bent-Cable Model

We index the individuals by i = 1, 2, . . . ,m and the times by j = 1, 2, . . . , n. We model the

response for the i
th individual at time tij, denoted by yij, by the bent-cable model

yij = f(tij,θi) + eij (2.1)

where the bent-cable function f(tij,θi) is defined by

f(tij,θi) = β0i + β1itij + β2iq(tij,αi) (2.2)

where

q(tij,αi) =
(tij − τi + γi)2

4γi
1{|tij − τi| ≤ γi}+ (tij − τi)1{tij − τi > γi} (2.3)

with θi = (β�
i,α

�
i)
�, βi = (β0i, β1i, β2i)� and αi = (γi, τi)�. As illustrated in Figure 1.5

of Chapter 1, β0i and β1i are, respectively, the intercept and slope of the incoming phase;

β1i + β2i is the slope of the outgoing phase; and γi and τi, the half-width and centre of the

bend, respectively, characterize the transition period. Note that the beginning and end of a

transition can be represented by τi − γi and τi + γi, respectively. Chiu and Lockhart (2010)

also defined the Critical Time Point (CTP), at which the bent cable changes direction (i.e.,

takes a downturn from an increasing trend, and vice versa) by τi−γi−2β1iγi/β2i. Henceforth,

we will denote f(tij,θi) and q(tij,αi) by fij and qij, respectively, for notational simplicity.

We take into account the spatial configuration through the error term, eij, by decomposing

it into two components: one describing the spatial configuration and other one for white noise.

That is, we model the error component as follows:
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eij = δ

m�

k=1
k �=i

wikekj + �ij (2.4)

where the parameter, δ is the spatial autocorrelation coefficient that measures the strength

of spatial association, W = (wik)m×m is the spatial weight matrix that describes the spatial

arrangement of the locations (stations), and �ij is the white noise. Here, wik is assumed known

representing the a priori assumption about the spatial relationship between stations i and k,

with all the diagonal elements wii conventionally set to zeros. The spatial weight matrix W

is typically normalized in an attempt to constrain δ in the interval (−1,+1) (Elhorst, 2010).

One such normalization technique is to divide the elements of spatial weight matrix, W by

its largest characteristic root. Note that if the off-diagonal elements of W are set to zeros,

the first term in the right hand side of (2.4)vanishes. This leads to the assumption of no

spatial effects, and constitutes the longitudinal bent-cable model of Khan et al. (2009).

Equations (2.1)-(2.4) constitute our spatial-longitudinal bent-cable model. Next, we de-

scribe the stages of the Bayesian hierarchical formulation of our model.

2.1.2 The Hierarchy

The pragmatic view of Bayesian hierarchical modelling is to formulate the model in terms of

three entities – data, process and parameters – all of which may have stochastic elements.

Stage 1: Data Modelling

The first stage (Stage 1 or within individual variation) of our hierarchical model deals with the

observational process, which describes the distribution of data given the process of interest

and parameters of the data model. This level characterizes an individual trajectory by

taking into account correlation and variation among the repeated measurements over time.

We accomplished this objective through (2.4), and assuming normality for �ij:

�
�ij|σ2

i

�
∼ N (0, σ2

i ) for all i, j (2.5)

where σ
2

i is the innovation variance.

Let yi = (yi1, yi2, . . . , yin), y = (y�
1
,y

�
2
, . . . ,y

�
m)

�, and Θ be the vector of all model param-

eters collectively. Then, combining equation (2.1), (2.4) and (2.5), the first level of hierarchy
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for our spatial-longitudinal bent-cable model can be expressed as:

π [y|Θ] = (2π)−
mn
2 | Im − δW |n

�
m�

i=1

�
σ
−2

i

�n
2

�

exp




−1

2

m�

i=1

n�

j=1

��
yij − δ

m�

k �=i

wikykj

�
−

�
fij − δ

m�

k �=i

wikfkj

��2



 (2.6)

where | Im− δW |n in (2.6) represents the Jacobian term taking into account the endogeneity

of
m�
k=1

wikykj (Anselin, 1988).

Stage 2: Process Modelling

The second stage models the underlying process given the parameters. At this stage, our

objective is to capture the variation observed between different individuals, known as between

individual variation in longitudinal studies. We achieve this goal by specifying models for

individual specific regression coefficients θ�
is. We assume multivariate normal distribution

for the linear parameters β�
is:

�
βi|µβ,Σβ

�
∼ N3(µβ,Σβ) (2.7)

where N3 represents a trivariate normal distribution. Here, µβ = (µ0, µ1, µ2)� and Σβ are,

respectively, the mean and covariance of βi, which characterize the global (population) trends

in the incoming and outgoing phases: µ0 and µ1 are, respectively, the population intercept

and slope for the incoming phase, µ1 + µ2 is the population slope for the outgoing phase,

and Σβ provides information about the variability of the linear parameters βi. Note that the

assumption of multivariate normal is appealing due to two reasons. First, it can represent the

dependence structure completely via its covariance matrix. Secondly, multivariate normal

distribution is preferred from theoretical and computational point of view.

Since both the transition parameter γi and τi are non-negative, we assume a bivariate

lognormal distribution for the transition parameter vector αi = (γi, τi)
� :

[αi|µα,Σα] ∼ LN 2 (µα,Σα) (2.8)
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where LN 2 stands for bivariate lognormal distribution, and µα = (µγ, µτ )
� characterizes

the global transition. Since our assumption for αi involves a lognormal distribution, the

medians exp {µγ} and exp {µτ} can be regarded as the half-width and the centre of the

bend, respectively, for the population. We can also use the standard deviations of γi and τi

to describe the between-station variability for the transition parameters.

Stage 3: Parameter Modelling

The Bayesian approach to statistical analysis provides a cohesive framework for combining

complex data models and external knowledge or expert opinion as prior information. Prior

information, supplied in the form of prior distribution, quantifies uncertainty about a pa-

rameter or a vector of parameters. We summarize our prior knowledge about the parameters

through assigning a particular distributional form:

�
µβ|hβ,Hβ

�
∼ N3(hβ,Hβ), [µα|hα,Hα] ∼ N2(hα,Hα)

�
Σ−1

β |νβ,Aβ

�
∼ W(νβ, (νβAβ)

−1),
�
Σ−1

α |να,Aα

�
∼ W(να, (ναAα)

−1)
�
σ
−2

i |a0, a1

�
∼ G

�
a0

2
,
a1

2

�
, [δ|b0,b1] ∼ U(b0,b1)






(2.9)

where W , G, and U denote Wishart, gamma, and uniform distribution, respectively. The

gamma parametrization is in terms of shape and rate parameters. The hyper-parameters hβ,

Hβ, hα, Hα, νβ, Aβ, να, Aα, a0, a1, b0, and b1 are all assumed to be known (see below).

2.1.3 Choice of Prior

Specification of the prior distribution for parameters in applied Bayesian analysis is still

central to model identifiability, and robustness in inference (Congdon, 2003). Typically, prior

can be chosen based on accumulated information from past studies or from the expert opinion

of subject related area. An alternative is to endow such distribution with little information

context, so that data from the present study will dominate the posterior. In practice, prior

distributions are chosen based on two considerations: conjugacy and informativeness.

Bayesian inference is computationally extensive and solely based on posterior distributions

of the relevant parameters. High dimensional integrals may involve in deriving a posterior
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distribution, and it may not be possible to evaluate such integrals analytically. Therefore,

such integrals are often numerically evaluated to approximate a posterior density. Monte

Carlo integration is a common, convenient, and straightforward technique to approximate a

posterior density for non-linear hierarchical models. Conjugacy often facilitates to implement

the Monte Carlo technique.

Conjugate prior refers to a prior distribution whose selection leads to posterior belonging

to the same distributional family as the prior. The prior is conditionally conjugate if the

conditional distribution (i.e. the distribution of a parameter given the data and all other

remaining parameters) is also from the same family (Gelman, 2006). The Monte Carlo

technique works through generating random sample from full conditional distributions. As

such, we prefer conditional conjugacy, because it leads to closed-form full conditional from

which drawing random sample is computationally easier, and this conjugacy can be preserved

when the model is expanded hierarchically (Gelman, 2006).

An informative prior expresses our specific, definite information about a parameter of

interest. Often, reliable prior information does not exist or solely data based inference is

desired. In such situations, we prefer non-informative prior in the sense that it does not

favour one particular value over remaining values and expresses vague or general information

about the parameter. Such prior leads to a posterior based on data only.

Our choices of prior for µβ and µα (see equation (2.9)) lead to conditional conjugacy.

Bayesian estimates do not vary much for different choice of the mean vectors (hβ and hα) as

long as the diagonal elements of Hβ and Hα are taken to be large. Usually, large variances

lead to a flat prior. Therefore, in practice, the mean vector is taken as zero and the covariance

matrix, say Hβ, is defined in such a way that H−1

β ≈ O, where O is a matrix with all its

elements zero (as referred in Khan (2010)). We choose gamma prior for σ−2

i for the sake of

conditional conjugacy (Gelman, 2006).

The choice of inverse Wishart distribution as prior for a covariance matrix, or equivalently,

Wishart distribution for the inverse of a covariance matrix leads to conjugate prior. So, we

choose inverse Wishart distribution as prior for Σβ and Σα and define the parameters of

Wishart distribution in terms of its degrees of freedom and expectation following Carlin

(1995); Wakefield et al. (1994). For example,
�
Σ

−1

β |νβ,Aβ

�
∼ W

�
νβ, (νβAβ)

−1
�
has degrees
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of freedom νβ and expectation A−1

β . We make the Wishart prior nearly flat through setting

its degrees of freedom equal to the order of the scale matrix (e.g. 3 for the prior of Σ−1

β )

and choose Aβ as an approximate prior estimate of Σβ. Finally, we consider the uniform

distribution as prior for δ, as the value of δ is restricted to lie within the range (0, 1).

2.1.4 Summary of the Hierarchy

In summary, we define the three stages of our spatial-longitudinal bent-cable model as follows:

π [y|Θ] = (2π)
−
mn

2 | Im − δW |n
�

m�

i=1

�
σ
−2

i

�n
2

�

exp




−1

2

m�

i=1

n�

j=1

��
yij − δ

m�

k �=i

wikykj

�
−

�
fij − δ

m�

k �=i

wikfkj

��2



 (2.10)

�
βi|µβ,Σβ

�
∼ N3(µβ,Σβ)

[αi|µα,Σα] ∼ LN 2 (µα,Σα)




 (2.11)

�
µβ|hβ,Hβ

�
∼ N3(hβ,Hβ), [µα|hα,Hα] ∼ N2(hα,Hα)

�
Σ−1

β |νβ,Aβ

�
∼ W(νβ, (νβAβ)

−1),
�
Σ−1

α |να,Aα

�
∼ W(να, (ναAα)

−1)
�
σ
−2

i |a0, a1

�
∼ G

�
a0

2
,
a1

2

�
, [δ|b0,b1] ∼ U(b0,b1)






(2.12)

Equations (2.10), (2.11) and (2.12) represent the data model (Stage 1), process model (Stage

2) and parameter model (Stage 3), respectively, with hyper-parameters hβ, Hβ, hα, Hα, νβ,

Aβ, να, Aα, a0, a1, b0, and b1, all assumed to be known.

2.2 Bayesian Inference

Statistical inference for our spatial-longitudinal bent-cable model (see Section 2.1.1 and 2.1.2)

is carried out via Bayesian technique. As mentioned above, the most difficult part of Bayesian

analysis is the evaluation of integrals required to draw inference from posterior density. We

preferred Makov Chain Monte Carlo (MCMC) method, because it is straightforward to im-

plement, and provides a unifying framework for approximating integrals. In this section, we

describe the method of drawing inference from our spatial-longitudinal bent-cable model.
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2.2.1 Posterior Density

Let β = (β�
1
,β�

2
, .........,β�

m)
�
, α = (α�

1
,α�

2
, .........,α�

m)
� and σ−2 = (σ−2

1
, σ

−2

2
, ........., σ

−2

m )�.

We denote all the model parameters collectively by Θ = (β,α,µβ,µα,Σ
−1

β ,Σ
−1

α ,σ−2
, δ).

The joint distribution of the model parameters and the data (see Section A.1 in Appendix

for detailed derivation) can be written as:

π (Θ,y) = π (y|Θ)π(Θ)

= π
�
y|β,α,µβ,µα,Σ

−1

β ,Σ
−1

α ,σ−2
, δ
�

× π
�
β|α,µβ,µα,Σ

−1

β ,Σ
−1

α ,σ−2
, δ
�

× π
�
α|µβ,µα,Σ

−1

β ,Σ
−1

α ,σ−2
, δ
�

× π
�
µβ,µα,Σ

−1

β ,Σ
−1

α ,σ−2
, δ
�






(2.13)

where the last term on the right-hand side of equation (2.13) represents the prior specification

at Stage 3 of our spatial-longitudinal bent-cable model. Now, using the Bayes’ theorem, we

can write the posterior density for our model parameters as:

π (Θ|y) = π(Θ,y)

π(y)
=

π(y|Θ)π(Θ)

π(y)
(2.14)

where π (y|Θ) is already defined in equation (2.13) and π (y) =
� �

.........
�
π (y|Θ) π (Θ) dΘ

is the usual normalizing factor. Since Θ denotes all model parameters collectively, π (y)

requires evaluation of multi-dimensional integrals.

In Bayesian analysis, inference about a particular parameter (a vector of parameters) is

drawn based on its marginal posterior distribution. For example, inference about µβ is based

on its marginal posterior distribution and worked out as:

π
�
µβ|y

�
=

� �
.........

�
π (y|Θ) π (Θ) dβ dα dµα dΣ

−1

β dΣ
−1

α dσ−2
dδ

� �
.........

�
π (y|Θ) π (Θ) dβ dα dµβ dµα dΣ

−1

β dΣ
−1

α dσ−2 dδ
(2.15)

The main obstacle in Bayesian inference is the evaluation of multi-dimensional integrals

as in equation (2.15). While it is occasionally possible to do such evaluations analytically in

simple cases, it is almost impossible for complex models. An alternative technique is to use

16



Markov Chain Monte Carlo (MCMC) sampling to generate samples from the posterior. We

discuss the MCMC methods in brief and the way of implementing it in next few sections.

2.2.2 Bayesian Inference and MCMC Methods

Determination of posterior distribution involves the evaluation of complex, multi-dimensional

integrals. Such typical integration problems arise in Bayesian inference to compute normal-

izing constant and marginal posterior distribution for a particular parameter or a vector of

parameters of interest from the posterior. In addition, we are interested about posterior sum-

mary, which involves computing moments or quantiles and leads to more integration. For

example, consider the population slope parameter µβ. Its marginal posterior density involves

the evaluation of normalizing constant (denominator of equation (2.15)) and the numerator.

We are interested to summarize the distribution of a function, say h
�
µβ

�
of µβ, based on its

posterior mean. Then we have to check out the integrals of the form:

E
�
h
�
µβ

�
|y
�
=

�
h
�
µβ

�
π
�
µβ|y

�
dµβ

where, for illustration, h
�
µβ

�
= µ1 (population incoming slope), or h

�
µβ

�
= µ1 + µ2 (out-

going slope), or h
�
µβ

�
= {µ1 − E [µ1|y]}2 (posterior variance of incoming slope).

Such typical, almost intractable, or even intractable integration problems in Bayesian

inference can be solved using the MCMC technique (Andrieu et al., 2003). Once we have

a Monte Carlo samples of the posterior, the statistical inference can be carried out in a

straightforward manner by averaging over MCMC iterations.

2.2.3 MCMC Methods

Monte Carlo integration provides a way of evaluating a function, which is usually multi-

dimensional and complex in nature, by drawing samples from its desired distribution, say π(.)

(see Gilks et al. (1995) for details). The mean of this function is then approximated by sample

mean, and the approximation can be made as accurate as desired by increasing the number of

draws due to the law of large number, provided drawing of samples are independent of each
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other. In practice, drawing samples independently from π(.) is not always straightforward,

specially if π(.) is a non-standard distribution.

Markov chain is a process of generating a sequence of random variables, where the value of

any variable at a given state depends only on the value of its previous state. This type of chain

is usually constructed in such a way that it can draw samples throughout the support of its

stationary distribution in the correct proportions. Here, stationary distribution indicates the

limiting distribution of a Markov chain. Now, we can override the independence assumption

of sample from π(.) using a Markov chain with π(.) as its stationary distribution. Then the

whole process is called Markov chain Monte Carlo (MCMC).

Let
�
Θ(s)

, s = 1, 2, . . . , T, . . .
�
denotes a realization from a Markov chain constructed in an

appropriate manner. We say the distribution of
�
Θ(s)

�
converges to a stationary distribution,

say π(.), if the chain satisfies three important properties (Gilks et al., 1995). First, the chain

should be irreducible. The irreducible property states that the Markov chain can reach a

non-empty set with positive probability from any starting point in some number of iterations.

Second, the chain should be aperiodic in the sense that it cannot oscillate between different

sets of states in a regular periodic movement. Finally, the chain must be positive recurrent.

The third property ensures that if the starting value Θ(0) is sampled from π(.), then all

subsequent iterations will be generated from π(.). If the regularity conditions hold, then

Θ(s) d−→ Θ ∼ π (Θ|y) and

1

T

T�

s=1

h
�
Θ(s)

� a.s.−−→ E [h (Θ) |y] as T −→ ∞

the later result is known as ergodic theorem (Roberts, 1995). Under these regularity condi-

tions, we burn-in a sufficient number of iterations, say S to make the chain independent of

initial state and the chain eventually converges to its stationary distribution. We can, then,

consider the sample mean or sample median from MCMC output as a point estimate of h (Θ)

based on this ergodic theorem. Although theoretically a Markov chain converges under these

conditions but, in practice, it is hard to verify the ergodicity conditions and usually we use

convergence diagnostics to identify non-convergence.

In summary, once we have constructed a Markov chain that necessarily converges to

its stationary distribution π(.), we can summarize the marginal posterior distribution of a
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parameter of interest through posterior mean, median, standard deviation and other summary

statistics based on their sample equivalence in the MCMC output. We can also construct the

100 (1− 2a)% credible interval (p1, p2) where p1 and p2 are the a
th and (1 − a)th quantiles

of the marginal posterior density, respectively. For example, assuming h (Θ) = µ1, h (Θ) =

µ1 + µ2 and h (Θ) = exp {µτ} − exp {µγ} − 2µ1

exp{µγ}
µ2

and discarding the burn-in samples,

we can approximate the population incoming and outgoing slopes and the CTP as:

µ̂1 =
1

T − S

T�

s=S+1

µ
(s)
1

�µ1 + µ2 =
1

T − S

T�

s=S+1

�
µ
(s)
1

+ µ
(s)
2

�

�CTP =
1

T − S

T�

s=S+1

�
exp

�
µ
(s)
τ

�
− exp

�
µ
(s)
γ

�
− 2µ(s)

1

exp

�
µ(s)
γ

�

µ(s)
2

�

2.2.4 Construction of Markov Chain

We describe how to form a Markov chain for our spatial-longitudinal bent-cable model here.

We prefer the Metropolis within Gibbs algorithm (Smith & Roberts, 1993), a convenient form

of Markov chain for nonlinear hierarchical regression model (Davidian & Giltinan, 1995;

Wakefield et al., 1994). We first describe the Metropolis-Hastings algorithm in a general

context, and then the Gibbs sampler in the context of our spatial-longitudinal bent-cable

model with the problems associated in its implementation and finally the Metropolis within

Gibbs algorithm. It is to be noted that both Gibbs and Metropolis within Gibbs sampler are

based on the full conditionals of each of the components of Θ. Here, a full conditional refers to

the distribution of a particular parameter, say βi, conditioned on all the remaining ones and

the data and is denoted by π
�
βi|β1, β2, . . . , βi−1, βi+1. . . . , βm,α,µβ,µα,Σ

−1

β ,Σ
−1

α ,σ−2
, δ,y

�
.

Metropolis-Hastings Algorithm

Let ξ ∼ κ(.), where κ(.) denotes a target distribution. The evaluation of κ(.) is possible but

sampling from κ(.) is not straightforward. This target distribution may be a full conditional

distribution in implementing the Gibbs algorithm, which may or may not have any closed

form expression. The Metropolis-Hastings algorithm is usually used to generate a draw from
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a distribution approximating κ(.). Readers are referred to Hastings (1970) and Metropolis

et al. (1953) for detailed description of this algorithm.

We choose a proposal distribution to sample a candidate point. Suppose, ξ(0) and g denote

an arbitrary starting point and a proposal distribution, respectively. Given ξ
(s) at the s

th

iteration, ξ(s+1) is generated according to this algorithm as:

1 We draw a candidate point ξ∗ from g(.|ξ(s)).

2 We compute the Metropolis-Hastings ratio

R
�
ξ
(s)
, ξ

∗� =
κ (ξ∗) g

�
ξ
(s)|ξ∗

�

κ (ξ(s)) g (ξ∗|ξ(s))

3 Let U denotes a random variable from U(0, 1). If U ≤ min
�
1, R

�
ξ
(s)
, ξ

∗��, we accept

ξ
∗ and set ξ(s+1) = ξ

(∗), otherwise ξ
(s+1) = ξ

(s).

4 We increment s and return to 1.

As ξ(s+1) depends on the history only through the previous state, ξ(s), the chain is certainly

Markov in nature. A proposal distribution may be of any form. However, the choice of the

distribution has large influence on the rate of convergence to the stationary distribution. The

target distribution is usually well approximated by a good proposal distribution because of

the followings:

• The candidate values can cover the full support of the stationary distribution through

a reasonable number of iterations.

• The acceptance or rejection rate of candidate values are not too frequent (Chib &

Greenberg, 1995). The acceptance rate in the range [0.15, 0.50] is suggested as reason-

able by Roberts (1995) for high dimensional target distribution. The acceptance rate

is kept restricted within this range to ensure that the chain can draw samples from full

support of target distribution.

Metropolis-Hastings algorithm can take different forms for different forms of proposal

distribution. Metropolis et al. (1953) considered only symmetric proposal distribution of the

form g
�
ξ
∗|ξ(s)

�
= g

�
ξ
(s)|ξ∗

�
. As a result, the Metropolis-Hastings ratio reduces to
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R
�
ξ
(s)
, ξ

∗� = κ (ξ∗)

κ (ξ(s))
.

In Random-walk Metropolis algorithm (Gilks et al., 1995; Givens & Hoeting, 2005), often

referred to as Metropolis algorithm, the candidate point is generated from ξ
∗ = ξ

(s) + u

where u denotes a point and is drawn from a symmetric proposal density g(.). In such case,

g
�
ξ
∗|ξ(s)

�
= g

�
| ξ∗ − ξ

(s) |
�
(Gilks et al., 1995).

Another version of Metropolis-Hastings algorithm is proposed by Tierney (1994) and

Gelman and Rubin (1992b). It has the benefit of sampling from approximate full condi-

tionals whilst maintaining exactly the required stationary distribution of the Markov chain.

According to this method, an approximate full conditional can be used as a proposal dis-

tribution g(.) in any independent Metropolis-Hastings, for which g
�
ξ
∗|ξ(s)

�
= g (ξ∗). The

metropolis-Hastings ratio becomes

R
�
ξ
(s)
, ξ

∗� =
κ (ξ∗) g

�
ξ
(s)
�

κ (ξ(s)) g (ξ∗)
.

Gibbs Sampler

The single-component Metropolis-Hastings algorithm was proposed by Metropolis et al.

(1953). According to this method, the model parameters are partitioned into different com-

ponents of possibly differing dimensions for computational efficiency and then each of those

components are updated one by one. The Gibbs sampler (Geman & Geman, 1984), a special

case of single-component Metropolis-Hastings algorithm, provides a method of obtaining the

marginals of interest from the set of full conditionals, where the probability of accepting a

candidate in a Metropolis step is one (Gilks et al., 1995).

As mentioned earlier, Θ denotes the parameters collectively for our spatial-longitudinal

bent-cable model. The breakdown of Θ into different components is problem specific and is

usually done based on practical considerations. It may be convenient to partition Θ into its

scalar components for some problems, while for others the breakdown of Θ into vectors or

matrices is straightforward and computationally efficient. This type of breakdown is usually
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done based on two considerations from practical point of view. First, the components are

chosen in such a way that we have full conditionals and closed form expressions. The reason

is that the MCMC method, in general, is computationally expensive, specially when samples

are generated from a distribution that can be expressed only upto a proportionality constant.

Second, the model parameters are partitioned based on correlation structure in the sequence

of Θ(s) at different iteration lags. For highly correlated components, the convergence of a

chain to its equilibrium distribution may be painfully slow as a result of very little movement

at each conditional random variate generation step, if the components are treated individually

(Smith & Roberts, 1993). Such problems may be avoided by blocking correlated components

together and performing the random draws from multivariate conditional distributions as

pointed out in Smith and Roberts (1993).

The implementation of Gibbs algorithm is straightforward. We choose an arbitrary start-

ing point, say Θ(0). We, then, generate an instance from the full conditional of each of the

components of Θ conditional on the current values of the remaining elements, which com-

pletes a transition from Θ(0) to Θ(1). We, thus, generate a sequence of data Θ(0), Θ(1), . . .,

Θ(T ) from the full conditionals, which is a Markov chain with stationary distribution π (Θ|y)

under regulatory conditions (Davidian & Giltinan, 1995). We can, then, apply the Monte

Carlo sampling to the converged Markov chain for Bayesian inference.

It is to be noted that Gibbs sampler is usually applied to full conditionals, which have

closed form expression. We worked out all the full conditionals in Appendices (see Section

A.3) for all model parameters and show that all of these conditionals have closed form except

for αi and δ. This is why the usual context of Gibbs sampler does not hold for our model.

Metropolis within Gibbs Algorithm

Metropolis within Gibbs sampler refers to an algorithm, where different Metropolis-Hastings

variants are applied at different steps of a Gibbs sampler. This is particularly useful when

all of the full conditionals do not have closed form expression. For our present model,

the full conditionals for αi and δ can only be expressed up to a proportionality constant.

We, therefore, employ Gibbs steps for all model parameters except for αi and δ, for which

Metropolis steps are considered.
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Now, we summarize the steps involved in the construction of the Markov chain for our

model. Since the full conditional π (. | .) for a particular parameter is considered as a function

of the terms depending on that parameter, we exclude other components of Θ from the

conditional expression π (. | .). For example, the full conditional of βi depends only on αi,

σ
−2

i , µβ, Σ
−1

β , δ and the data yi. Hence, we use the notation π
�
βi | αi, σ

−2

i ,µβ,Σ
−1

β , δ,yi

�

to denote the conditional expression. Let
�
Θ(0)

�
and

�
Θ(s)

�
denote an arbitrary starting

point and its update at iteration s, respectively. Given
�
Θ(s)

�
, we update the components

in the following order to achieve the new set
�
Θ(s+1)

�
in one iteration:

1 Generate β(s+1)

i ∼ Normal for i = 1 via a Gibbs step.

2 Generate α(s+1)

i ∼ π (αi | .) for i = 1 via a Metropolis step. Here, π (αi | .) can be

expressed only upto a proportionality constant.

3 Generate σ
−2(s+1)

i ∼ Gamma for i = 1 via a Gibbs step.

4 Repeat steps 1 − 3 for i = 1, 2, . . . ,m, which completes the updating of individual-

specific parameters. Now, we have β(s+1), α(s+1) and σ−2(s+1).

5 Generate Σ
−1(s+1)

β ∼ Wishart via a Gibbs step.

6 Generate Σ
−1(s+1)

α ∼ Wishart via a Gibbs step.

7 Generate µ(s+1)

β ∼ Normal via a Gibbs step.

8 Generate µ(s+1)

α ∼ Normal via a Gibbs step.

9 Generate δ
(s+1) ∼ π (δ | .) via a Metropolis step. Here, π (δ | .) can be expressed only

upto a proportionality constant.

We can, now, apply the Monte Carlo sampling for doing Bayesian inference.

2.2.5 Mixing and Convergence

The efficiency of an MCMC algorithm depends on its mixing ability. The mixing property of a

chain refers to two characteristics. First, how quickly a chain forgets its initial values. Second,
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how quickly a chain can explore the full support and shape of target distribution. Apart

from good mixing, another concern is the convergence of a chain. That is, how efficiently the

chain has approximated its stationary distribution. As the discussion in empirical literature

about the goals of diagnosing convergence to the stationary distribution and investigating

the mixing property of a chain is overlapping (referred in Khan (2010)), we summarize the

review in the context of our spatial-longitudinal bent-cable model from Khan (2010).

Number of Chains

The literature regarding the number of chains to be used in MCMC algorithm is conflicting.

Some scholars (Gelman & Rubin, 1992a, 1992b) suggest several long chains, while others

(Geyer, 1992) recommend one very long chain. Merits and demerits of each method are

discussed in Gilks et al. (1995) and Givens and Hoeting (2005). Even for a very long chain,

the chain can reach around the mode of target distribution and can stay there forever. In

such case, the convergence diagnostic may indicate the convergence of chain, although the

chain does not fully explore the support and shape of target distribution. On the other hand,

running multiple chain can ensure that at least one of them will explore the features of target

distribution and will wash out the influence of initial values. As a compromise for our present

case, we consider two very long independent chains (5, 000, 000 MCMC iteration for each) to

analyse both CFC-11 and CFC-12 data.

Burn-in and Stopping Time

The dependence of a Markov chain on its starting value may remain strong even after the

chain has been run for a sufficiently long period of time. As a consequence, if the chosen

initial values are far different from the posterior mode, this dependency may make the chain

converge slowly. In practice, an initial S iterations are discarded as a burn-in period to make

the chain independent of its starting values.

Typically, a chain should stopped at a certain time after running the chain sufficiently

long period to obtain good mixing. In practice, it is difficult to decide about the stopping

time, T , in advance. Gilks et al. (1995) suggested an informal way of deciding the stopping

time is to run several long chains and to compare the estimates (posterior means/medians)
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from each chain. If the estimates produced by different chains do not agree closely, then the

run length, L = T − S, should be increased.

Gelman-Rubin R statistic (Gelman & Rubin, 1992a) is a popular technique to determine

the convergence as well as burn-in and run length of an MCMC output, if at least two chains

are run. The statistic is based on a comparison of within-chain and between-chain variances.

Let W and B denote the within and between chain variances, respectively for an MCMC

sample consisting of u chains, each of v iterations. Then the empirical variance from all

chains combined is calculated as:

ˆσ2
mc =

(v − 1)W

v
+

B

v

Now, assuming that the target distribution is normal, we work out the convergence diagnostic,

R as:

R =

�
(d+ 3)V̂

(d+ 1)W

where V̂ = σ̂
2

mc +
B

uv
is the sample variance of all chains and d =

2 ∗ V̂ 2

var(V̂ )
is the degrees of

freedom. If the computed value of R is close to 1, convergence of the chain is assumed. In

any case, if the value of R is not acceptable, then S or L or both should be increased.

Geweke Z-score (Geweke, 1992) is another way of assessing convergence based on two

non-overlapping parts (usually first 0.1 and last 0.5 proportions) of a chain from an MCMC

output. It compares the means of both parts, using a difference of mean test to see if the

two parts come from the same distribution. The test statistic is defined as:

Z =
θ̄1 − θ̄2�
s1

n1

+
s2

n2

where θ̄l, sl, and nl, l = 1, 2 denote the estimated mean, standard error adjusted for

autocorrelation, and number of iterations for lth part of the chain. This is a two sided test,

and large absolute Z-scores indicate the failure of convergence.
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Thinning

Poor mixing of a chain is generally exhibited by slow decay of autocorrelation. It is, therefore,

good practice that the inference should be based on every h
th iteration of a chain, with h set

to some value high enough that successive draws are approximately independent (Gelman,

1995). This strategy is known as thinning in the literature. Thinning is also useful from

computational point of view, where the set of simulated MCMC values is so large that

reducing the number of simulations by a factor of h gives important savings in storage. We

choose h = 200 in analysing both of CFC-11 and CFC-12 data based on the examination of

the autocorrelation plot.

Graphical Diagnostics

Convergence and mixing property of a chain can also be examined through three widely used

graphical tools: trace plot, autocorrelation plot and density plot.

A trace plot plots the realization of the chain versus the iteration number. It shows how

rapidly the chain is mixing. Lack of trend in the trace plot indicates that stationarity has

been achieved. On the other hand, a clear trend suggests that a longer run is necessary.

A well behaved chain will move away from its starting values quickly, no matter where it

started, and the samples will wiggle about vigorously in the supported region by the posterior

density (Givens & Hoeting, 2005). Burn-in and stopping time can be determined through

visual inspection of a trace plot.

An autocorrelation plot shows the serial correlation in the chain at different lags of iter-

ation. The Gibbs sampler is slow to explore the entire support of the posterior density for a

highly autocorrelated chain. In general, the autocorrelation decreases as the lag increases. If

the situation is different, thinning should be explored.

In the absence of high autocorrelation, convergence is not guaranteed if the distribution is

multi-modal. This is true if the kernel density plot displays not only multiple modes but also

lumpiness rather than a smooth curve. It is to be noted that such behaviour in the density

plot may result for high autocorrelation within a converged chain. In such cases, severity can

be reduced through running the chain for a longer time and/or with heavier thinning.
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2.3 Software Implementation

Since our spatial-longitudinal bent-cable model is an extension of longitudinal bent-cable

model of Khan et al. (2009), we collect the code from the authors and modify them according

to our model. The codes are written using two languages: R (R Core Team, 2012) and C.

MCMC samples are generated by interfacing R and C. We call the standard functions for

random sample generation from univariate distributions such as uniform, normal, gamma

of R from C for generating MCMC samples. We also modified other functions required to

generate samples from the full conditionals such as calculation of residual sum of squares,

likelihood function, spatial weight matrix, data generation from multivariate normal and

Wishart distribution and so on based on C.

Once MCMC samples are generated, we use the package “CODA” (Plummer et al., 2006)

of R to perform standard statistical analysis. It is to be noted that there are several built-in

functions in “CODA” package to analyse MCMC sample i.e. calculation of posterior sum-

mary, credible interval, convergence diagnostic criteria (Gelman-Rubin R statistic (Gelman &

Rubin, 1992a), Geweke Z-score (Geweke, 1992)), and for drawing graphs (trace plot, density

plot, and autocorrelation plot).

2.4 Discussion

The formulation of spatial-longitudinal bent-cable model through decomposing the error com-

ponent has certain advantages. First, the introduction of spatial effects as a random element

enable us to provide surrogate measure for factors which are neither measured nor observed

(Gelfand et al., 2006). Although a number of variables are usually included in a statistical

model as predictors, there still might be some unmeasured variables containing spatial infor-

mation. Ignorance of those variables containing spatial data may result inaccurate parameter

estimation, poor prediction, and inadequate quantification of uncertainty (Hoef et al., 2001).

We overcome this situation by partitioning the error and introducing spatial effects as a ran-

dom effect. Secondly, individual specific regression coefficients (θi) give us the opportunity

of incorporating spatial heterogeneity rather than spatial dependence (Anselin et al., 2008).

27



Spatial heterogeneity is a special case of observed and unobserved heterogeneity. On the other

hand, spatial dependence is assumed to present whenever correlation across cross-sectional

units is non-zero, and the non-zero correlation follows a certain spatial order. Finally, mod-

elling spatial effects based on continuous longitudinal data and random coefficient model is

fairly straightforward (Anselin et al., 2008).
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Chapter 3

Data Analysis and Simulation Study

In this chapter, we present the simulation study and two applications of our methodology.

In Chapter 1, we presented the background of this study. We describe about data in details

in Section 3.1. The detailed application is presented in Section 3.2. We conclude this chapter

showing the efficacy of our methodology through simulation in Section 3.3.

Most of the materials in this chapter have taken from our journal article entitled “A

Statistical Investigation to Monitor and Understand Atmospheric CFC Decline with the

Spatial-longitudinal Bent-cable Model” appeared in the International Journal of Statistics

and Probability published by Canadian Center of Science and Education(Khan et al., 2012).

We repeat it here for the sake of completeness of this thesis.

3.1 Data

CFCs are monitored from different stations all over the globe by the Global Monitoring Di-

vision of the National Oceanic and Atmospheric Administration (NOAA/ESRL Halocarbons

Group, 2012), and Advanced Global Atmospheric Gases Experiment (AGAGE , 2012; Prinn

et al., 2000, 2001; Cunnold et al., 1997) program. Both these programs currently use gas

chromatographic (GC) technique (known as in situ program) to measure CFCs.

The in situ program of NOAA/ESRL started in 1987. The original program is called

Radiatively Important Trace Species (RITS) program. The RITS GCs were deployed at

five NOAA observatories: (1) Barrow, Alaska, (2) Cape Matatula, American Samoa, (3)

Mauna Loa, Hawaii, (4) South Pole, Antarctica, and (5) Niwot Ridge, Colorado. However,

widespread use of the replacement compounds to the CFCs prompted improvement of the

RITS program. A new generation of GC called Chromatograph for Atmospheric Trace Species
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(CATS) was developed in 1998. The CATS system replaced the RITS in situ instrumentation

in 1998, and has been used to measure CFCs ever since.

The ALE/GAGE/AGAGE program (Prinn et al., 2000, 2001; Cunnold et al., 1997) con-

sists of three phases corresponding to advances and upgrades in GC techniques: ALE (began

in 1978), GAGE (began between 1981 and 1985), and AGAGE (began between 1993 and

1996). Under this program, CFCs are measured from stations located in (6) Mace Head, Ire-

land, (7) Cape Grim, Tasmania, (8) Ragged Point, Barbados, (9) Cape Matatula, American

Samoa, and (10) Trinidad Head, California.

Table 3.1: Geographical locations (latitude, longitude, and elevation in metres above
sea level (masl)) of the stations and the instrumentations used to record data.

Latitude1 Longitude1 Elevation1(in masl) Instrumentation1

Barrow, Alaska 71.32 −156.60 11 RITS/CATS
Cape Matatula, American Samoa −14.24 −170.57 42 RITS/CATS
Mauna Loa, Hawaii 19.54 −155.58 3397 RITS/CATS
South Pole, Antarctica −89.98 −24.80 2, 810 RITS/CATS
Niwot Ridge, Colorado 40.04 −105.54 3, 018 RITS/CATS
Mace Head, Ireland 53.33 −9.90 5 GAGE/AGAGE
Cape Grim, Tasmania −40.68 144.68 94 GAGE/AGAGE
Ragged Point, Barbados 13.17 −59.43 45 GAGE/AGAGE
1 Source: NOAA/ESRL Halocarbons Group (2012) and AGAGE (2012)

We take into account monthly mean CFC data based upon two considerations: (a) the

availability of complete data, and (b) the necessity of a sufficiently long study period to

capture the trend change over time. For (a), we choose eight monitoring stations (stations

1-8) for which data are available until September of 2010. Although the CFC monitoring

process began in the late 1970’s for some stations, complete data for all stations are not

available until January of 1988. Therefore, we choose a study period beginning from January

of 1988 to September of 2010 (273 months), which is also long enough to observe the trend

change over time. Table 3.1 summarizes the geographical locations of the stations and the

instrumentations used to record data during the period of study.

We replotted Figure 1.3 and 1.4 in Figure 3.1 and 3.2, respectively for the convenience of

reader. In general, each station shows an individual curve consisting of an increasing trend,

a gradual transition and a decreasing trend after the transition. The differences among the

curves may be attributed to actual level of CFCs during measurement, exposure to wind as
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Figure 3.1: Monthly mean profile of 8 stations for CFC-11 over the period 1988 to
2010. We reproduced Figure 1.3 here.
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Figure 3.2: Monthly mean profile of 8 stations for CFC-12 over the period 1988 to
2010. We reproduced Figure 1.4 here.
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well as other environmental variables, sampling techniques and so on. We are interested to

assess the global and regional concentration of CFCs in the atmosphere.

We construct the tij following Khan (2010). For illustration, we assign t1,1 = 1 for

January, 1988 and t1,273 = 273 for September, 2010 for the first station: Barrow, Alaska. In

a similar way, we allocate t2,1 = 1 and t2,273 = 273 for second station for the first and last

month with recorded data, respectively. Due to failure of instrument and other unavoidable

reasons, some data are missing (only 3.94% for CFC-11 and 2.70% for CFC-12). Missing data

are replaced by observation from another data set (e.g. flask data or CATS or AGAGE), if

available, or by mean imputation based on 6 neighbouring time points: 3 from earlier and 3

from later time series. In any case, if 6 consecutive time points are not available, we impute

them by available observations. The deleterious effect of mean substitution is minimal if only

a few missing values are replaced by the mean (McKnight et al., 2007). Hence, our analysis

is expected to be minimally affected for missing value replacement.

3.2 Data Analysis

We apply our spatial-longitudinal bent-cable model to CFC-11 and CFC-12 data. There are

some similarities as well as dissimilarities between CFC-11 and CFC-12. The main dissim-

ilarity is in their atmospheric lifetime. This disparity leads to quite different estimates of

model parameters and other concerns. We report all parameter estimates based on their pos-

terior mean or median, depending on the extent of asymmetry of the corresponding marginal

posterior density in our application. We, then, produce a fitted curve as determined by the

instances of the regression coefficients in the Markov chain.

3.2.1 The Spatial Matrix and Model Building

For the CFC data, since wind can spread CFCs all over the world, there is no clearly defined

boundary by which the locations of the monitoring stations can be differentiated. Therefore,

we consider several models by defining the spatial configurations based on geodetic distances

among the stations. Specifically, letting dik the distance between stations i and k, we consider

the following spatial configurations:
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Model 1: W = I (i.e., no spatial effects),

Model 2: i ∼ k if dik ≤ 6, 000 km,

Model 3: i ∼ k if dik ≤ 10, 000 km,

Model 4: i ∼ k if dik ≤ 20, 000 km.

Then the elements of the spatial matrix W is defined by

wik =





1, if i �= k and i ∼ k

0, otherwise
(3.1)

where i ∼ k denotes the contiguity of station i with station k. The specification of the spatial

weights is often chosen on an ad hoc basis (Anselin et al., 2008). Under the specification of

Model 4, each station is a neighbour of the remaining one, which hypothesizes that CFCs

are distributed all around the globe. We normalize W by dividing all of its elements by its

largest characteristic root. Finally, we choose one model as best for which the estimate of

the Deviance Information Criteria (DIC) is minimum (Spiegelhalter et al., 2002).

Table 3.2: Model Comparison for the CFC Data Using DICs

Spatial DIC

Configuration CFC-11 CFC-12

Model 1 7, 899 10, 681

Model 2 7, 586 9, 428

Model 3 7, 546 8, 935

Model 4 7, 379 8, 291

We summarize the DICs for CFC data in Table 3.2. The smallest DIC results from Model

4 for both CFC-11 and CFC-12. Hence, according to the DIC values, Model 4 is estimated to

be the model that would best fit the data among the models under consideration. This also

supports the notion of the global distribution of the CFCs (i.e., each station is a neighbour

of the remaining ones). Now, we report the results for Model 4.
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3.2.2 CFC-11

Figure 3.3: Density, trace and autocorrelation plots for the posteriors of the spatial
autocorrelation parameters δ from two chains

The density, trace and autocorrelation plots of δ for CFC-11 are presented in Figure 3.3.

The density plots display no signs of multimodality. The lack of any trend in the trace plot

indicates good mixing. These plots show stationarity of the Markov chains. We also test the

stationarity of the chains for δ by the Gelman-Rubin R statistic (Gelman & Rubin, 1992a)

and the Geweke Z score (Geweke, 1992). Value of R is 1 and the |Z| score is 1.28, which is

less than the critical value 1.96 at 5% level of significance. So, these two diagnostic criteria

also provide no evidence against stationarity of the chains for δ for CFC-11.

The posterior mean for δ is 0.52 with 95% credible interval (0.48, 0.58). This indicates

significant spatial autocorrelation for CFC-11 as the credible interval does not include zero.

Table 3.3 quantifies the posterior characteristics of the global concentrations for CFC-11.

The global drop occurred between August, 1988 and September, 1995 approximately. The

posterior mean for global incoming and outgoing slopes are 0.64/month and -0.16/month,

respectively. Both of the slopes appeared as statistically significant as their 95% credible

intervals do not include zero. Thus, on average, CFC-11 was increasing at a rate of 0.64 ppt

per month during the incoming phase (January, 1988 to July, 1988) and decreasing at 0.16
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Table 3.3: Posterior summaries of the global regression parameters for CFC-11

Parameter Posterior Mean Convergence Diagnostic
95% Credible Interval Gelman-Rubin R Geweke |Z|

µ0 244.28 1.00 0.76
(Incoming Intercept) (233.28, 255.62)
µ1 0.64 1.00 0.62
(Incoming Slope) (0.45, 0.83)
µ1 + µ2 −0.16 1.00 0.64
(Outgoing Slope) (−0.313, −0.002)
exp{µτ} − exp{µγ}2µ1 exp{µγ}/µ2 May, 1994 1.00 0.48
(CTP) (Nov. 1992 to Oct. 1995 )
exp{µτ} ± exp{µγ} Aug. 1988 to 1.00, 1.00 0.91, 0.68
(Transition Period) Sep. 1995

ppt per month during the outgoing phase (October, 1995 to September, 2010). The posterior

mean for the global CTP is estimated as May, 1994 with 95% credible interval ranging from

November, 1992 to October, 1995. So, overall CFC-11 went from increasing to decreasing

state around May, 1994 across all stations. CFC-11 took about 85 months (August, 1988 to

September, 1995) to complete its transition.

Figure 3.4: Trace plots for the posteriors of the population parameters µ0, µ1, µ2, µγ

and µτ from two chains

Figures 3.4, 3.5 and 3.6 shows the trace, density and autocorrelation plots, respectively,

for each of the population coefficients µ0, µ1, µ2, µγ and µτ . The lack of trends in the trace
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Figure 3.5: Kernel density estimate plots for the posteriors of the population param-
eters µ0, µ1, µ2, µγ and µτ from two chains

plot and low autocorrelation in the two chains jointly indicate good mixing of Markov chain.

There is no sign of multi-modality in the density plot. These plots show the stationarity

of the chain. Furthermore, evidence of stationarity is also clear from the Gelman-Rubin R

statistics and Geweke |Z| scores reported in Table 3.3.

The global and station-specific fits are displayed in Figure 3.7 and 3.8, respectively. They

reveal that our model fits the data quite well, with the observed data and corresponding

fits agreeing closely. We summarize the station-specific numerical fits in Table 3.4 and the

posterior characteristics of the standard deviations associated with Σβ and Σα (prior for the

station-specific random regression coefficients) in Table 3.5. From Table 3.4, some variations

are observed in the estimates of the intercepts across the stations. The incoming and out-

going slopes appeared as statistically significant and agree closely for all stations. The large

variation in estimated intercepts and small variation in estimated slopes are also supported
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Figure 3.6: Autocorrelation Plots for the two Chains for Population Parameters µ0,
µ1, µ2, µγ and µτ
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Figure 3.8: Observed data (red curve)and corresponding station-specific fitted (black)
curve for CFC-11
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Table 3.4: Posterior Summaries of the Station-specific Regression Parameters

Station β0i β1i β1i + β2i Transition CTP

(95% Credible (95% Credible (95% Credible Period (95% Credible

Interval) Interval) Interval) (Duration) Interval)

Barrow, 254.03 0.64 −0.168 06/1988 to 04/1993
Alaska (253.23, 254.82) (0.58, 0.71) (−0.171,−0.165) 07/1994 (03/1993 to

σ̂1=1.17 (73 months) 06/1993)
Cape Grim, 229.29 0.74 −0.137 11/1988 to 01/1995
Tasmania (228.61, 230.01) (0.67, 0.82) (−0.139,−0.134) 02/1996 (11/1994 to

σ̂2=0.80 (87 months) 02/1995)
Mace Head, 255.99 0.43 −0.148 07/1988 to 03/1993
Ireland (254.44, 257.54) (0.34, 0.52) (−0.154,−0.142) 10/1994 (11/1992 to

σ̂3= 2.47 (75 months) 07/1993)
Mauna Loa, 256.26 0.41 −0.172 04/1988 to 05/1994
Hawaii (255.54, 257.01) (0.37, 0.45) (−0.176,−0.168) 12/1996 (04/1994 to

σ̂4=1.28 (104 months) 07/1994)
Niwot Ridge, 253.96 0.48 −0.178 08/1988 to 06/1994
Colorado (253.20, 254.76) (0.42, 0.53) (−0.181,−0.174) 09/1996 (05/1994 to

σ̂5= 1.24 (85 months) 08/1994)
Ragged Point, 242.19 0.67 −0.146 06/1988 to 02/1994
Barbados (241.45, 242.93) (0.61, 0.74) (−0.149,−0.143) 04/1995 (12/1993 to

σ̂6= 1.08 (82 months) 03/1994)
South Pole, 228.13 0.98 −0.155 08/1988 to 07/1994
Antarctica (227.17, 229.08) (0.90, 1.07) (−0.159,−0.151) 06/1995 (05/1994 to

σ̂7=1.38 (82 months) 08/1994)
Cape Matatula, 235.08 0.73 −0.161 02/1989 to 12/1994
American Samoa (234.03, 236.17) (0.64, 0.84) (−0.165,−0.158) 03/1996 (10/1994 to

σ̂8=1.18 (83 months) 01/1995)

by the estimated Σβ (Table 3.5). The estimate of standard deviations for β0i, β1i and β2i are

15.18, 0.25 and 0.25, respectively.

Our findings support the notion of constant rate of increase and decrease before and

after the enforcement of the Montreal protocol, respectively. The widespread adoption and

implementation of the protocol across the globe is evident from the findings also. However,

CFC-11 will remain in the atmosphere throughout the 22nd century, should current conditions

prevail - suggested by its global decreasing rate (0.16 ppt per month, globally).

Table 3.5: Posterior Summaries of the Standard Deviations of the Random Regression
Coefficients

Parameter Posterior Mean 95% Credible Interval

SD(β0i) 15.18 (8.29, 23.89)

SD(β1i) 0.25 (0.14, 0.40)

SD(β2i) 0.25 (0.13, 0.39)

SD(γi) 6.45 (3.42, 11.59)

SD(τi) 7.19 (3.83, 12.83)
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The transition period and critical time point varied somewhat across stations (Table 3.4).

Such variations is also reflected in the estimate of Σα given in Table 3.5. The standard

deviations for γi and τi are estimated as 6.45 and 7.19, respectively. This variation may be

attributed to different schedules of phase-out for different countries in the Montreal protocol

- 1996 for developed countries and 2010 for developing countries. Thus, while developed

countries had stopped CFC consumption, the developing countries continued to contribute

CFC in the atmosphere. The transition began between April, 1988 and February, 1989 -

a period of 11 months only. We observed almost same duration of transition period for all

stations except Mauna Loa, Hawaii. So, CFC-11 took almost same time to start dropping

linearly in different parts of the world.

We report the estimates of the innovation variances (σ2

i ’s) in the first column of Table

3.4. The profile plot (Figure 3.1) reveals that Mace Head measurements are more variable,

whereas Cape Grim show little variation over time. The estimated innovation variance (2.47

for Mace Head and 0.80 for Cape Grim) also support the fact.

In summary, CFC-11 started to decrease globally since the Montreal protocol came into

effect. The spatial autocorrelation among CFC-11 data observed at different stations world-

wide is of moderate level and statistically significant. This finding makes scientific sense due

to the fact that CFC-11 has an extended life time of 45 years and during this period it is

transported vertically and horizontally several times by wind and convection. The continuing

decreases in the global CFC-11 trend suggests that the Montreal protocol can be regarded

as successful to reduce the negative impact of CFC-11 on the ozone layer.

3.2.3 CFC-12

We plot the density, trace and autocorrelation plots of δ for CFC-12 in Figure 3.9. These

plots show stationarity of the Markov chain. The value of Gelman-Rubin R statistic (Gelman

& Rubin, 1992a) is again 1.00 and the Geweke Z score (Geweke, 1992) is 0.53, which is also

less than the critical value at 5% level of significance. Hence, both diagnostic criteria reveal

no evidence against stationarity of the chains for δ for CFC-12.

Like CFC-11, the posterior mean of δ for CFC-12 appeared as statistically significant

(95% credible interval 0.76-0.80) and estimated as 0.78. The estimate indicates that CFC-12

40



Figure 3.9: Density, trace and autocorrelation plots for the posteriors of the spatial
autocorrelation parameters δ from two chains

is highly spatially autocorrelated across the globe. We summarize the posterior characteristics

of the global concentration of CFC-12 in Table 3.6. The global drop took place between May,

1988 and April, 2001 approximately. CFC-12, on average, was increasing at a rate of 1.23

ppt per month (about double of CFC-11) during the incoming phase (January, 1988 to April,

1988) and decreasing at 0.08 ppt per month (about half of CFC-11) during the outgoing

phase (May, 2001 to September, 2010). Unlike CFC-11, the outgoing slope appeared as

insignificant. The higher incoming and lower outgoing slopes may be attributed to its super

extended atmospheric lifetime, about 100 years.

Table 3.6: Posterior Summaries of the Global Regression Parameters for CFC-12

Parameter Posterior Mean Convergence Diagnostic
95% Credible Interval Gelman-Rubin R Geweke |Z|

µ0 449.62 1.00 0.04
(Incoming Intercept) (435.98, 463.47)
µ1 1.23 1.00 0.98
(Incoming Slope) (1.04, 1.41)
µ1 + µ2 −0.08 1.00 0.44
(Outgoing Slope) (−0.18, 0.02)
exp{µτ} − exp{µγ}2µ1 exp{µγ}/µ2 Jun, 2000 1.00 1.41
(CTP) (Jun. 1999 to Jun. 2001 )
exp{µτ} ± exp{µγ} May 1988 to 1.00, 1.01 0.99, 0.93
(Transition Period) Apr. 2001
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The global CTP is estimated as June, 2000 with 95% credible interval ranging from June,

1999 to June, 2000. Thus, overall CFC-12 trend went from increasing to decreasing state

around June, 2000 across all stations. Moreover, it took about 155 months (May, 1988 to

April, 2001) to complete the transition.

Figure 3.10: Trace Plots for the Posteriors of the Population Parameters µ0, µ1, µ2,
µγ and µτ from two Chains
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Figure 3.11: Kernel Density Estimate Plots for the Posteriors of the Population
Parameters µ0, µ1, µ2, µγ and µτ from two Chains

We report the trace, density and autocorrelation plots for each of the population coeffi-

cients µ0, µ1, µ2, µγ and µτ in Figure 3.10, 3.11 and 3.12, respectively. Like former, the lack
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Figure 3.12: Autocorrelation Plots for the two Chains for Population Parameters µ0,
µ1, µ2, µγ and µτ
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of trends in trace plot and low autocorrelation in the two chains jointly indicate good mixing

of Markov chain. The density plot shows no sign of multi-modality. The plots as well as the

Gelman-Rubin R statistic and Geweke |Z| score (Table 3.6) indicate the stationarity of the

chains for CFC-12 data.
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Figure 3.13: Observed data and corresponding population (Global) fit (solid black)
for CFC-12

Figure 3.13 and 3.14 displayed the global and station-specific fits for CFC-12 data. Numer-

ical fits are summarized in Table 3.7 for all stations whereas Table 3.8 reports the posterior

characteristics of the standard deviations associated with Σβ and Σα. In Table 3.7, some

variations are observed in the estimates of the intercepts across all stations. The incoming

and outgoing slopes appeared as statistically significant and agreed closely for all stations.

Similar to CFC-11, large variation in the estimated intercepts and small variation in the

estimated slopes are again supported by the estimates of Σβ (Table 3.8). For CFC-12, the

standard deviations for β0i, β1i and β2i are estimated as 18.77, 0.24 and 0.22, respectively.
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Figure 3.14: Observed data (red curve)and corresponding station-specific fitted
(black) curve for CFC-12

Table 3.7: Posterior Summaries of the Station-specific Regression Parameters

Station β0i β1i β1i + β2i Transition CTP

(95% Credible (95% Credible (95% Credible Period (95% Credible

Interval) Interval) Interval) (Duration) Interval)

Barrow, 465.42 1.09 −0.089 11/1987 to 03/2000
Alaska (464.03, 466.87) (0.98, 1.23) (−0.100,−0.77) 03/2001 (12/1999 to

σ̂1=2.17 (160 months) 06/2000)
Cape Grim, 433.26 1.42 −0.049 11/1987 to 10/2000
Tasmania (432.33, 434.25) (1.30, 1.55) (−0.057,−0.041) 04/2001 (08/2000 to

σ̂2= 1.01 (161 months) 12/2000)
Mace Head, 464.57 1.16 −0.090 08/1987 to 04/2000
Ireland (463.44, 466.07) (1.06, 1.29) (−0.098,−0.082) 04/2001 (03/2000 to

σ̂3= 1.10 (165 months) 06/2000)
Mauna Loa, 451.37 1.35 −0.080 05/1986 to 01/2001
Hawaii (448.53, 456.24) (1.17, 1.54) (−0.090,−0.070) 12/2001 (11/2000 to

σ̂4= 1.43 (187 months) 03/2001)
Niwot Ridge, 464.23 0.87 −0.106 07/1991 to 03/2000
Colorado (463.04, 465.41) (0.83, 0.91) (−0.116,−0.096) 04/2001 (12/1999 to

σ̂5= 1.75 (117 months) 05/2000)
Ragged Point, 455.16 1.23 −0.085 01/1988 to 06/2000
Barbados (454.11, 456.28) (1.11, 1.37) (−0.093,−0.077) 04/2001 (04/2000 to

σ̂6= 1.20 (159 months) 08/2000)
South Pole, 428.75 1.49 −0.071 09/1987 to 10/2000
Antarctica (427.07, 430.83) (1.35, 1.66) (−0.085,−0.058) 06/2001 (08/2000 to

σ̂7= 2.17 (165 months) 01/2001)
Cape Matatula, 435.75 1.21 −0.063 12/1989 to 07/2000
American Samoa (434.76, 436.74) (1.16, 1.26) (−0.072,−0.054) 01/2001 (05/2000 to

σ̂8= 1.27 (133 months) 09/2000)
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Table 3.8: Posterior Summaries of the Standard Deviations of the Random Regression
Coefficients

Parameter Posterior Mean 95% Credible Interval

SD(β0i) 18.77 (10.50, 29.75)

SD(β1i) 0.24 (0.12, 0.38)

SD(β2i) 0.22 (0.11, 0.36)

SD(γi) 11.63 (5.40, 21.58)

SD(τi) 8.87 (4.36, 16.51)

3.2.4 Discussion and Conclusion

In summary, our analysis reveals the following points of interest:

• Strong spatial dependence among all stations suggests that both CFC-11 and CFC-12

have already been distributed globally.

• Both types of CFCs increased significantly before entering into a transition zone, though

CFC-12 increased at a faster rate compared to the increase of CFC-11.

• On average, CFC-11 completed the transition between August, 1988 and September,

1995 whereas CFC-12 between May, 1988 and April, 2001.

• CFC-11 has been decreasing significantly after completing the transition, but the rate

at which CFC-12 has been decreasing is not significant.

• Although the rates of increase and decrease are similar across stations for each type of

CFC, there are considerable variations in the times to transition zone. Though the two

types of CFCs may pose potentially differential health effects, the above findings also

indicate a much more severe global concern for CFC-12 with respect to its concentration

in the atmosphere.

3.3 Simulation Study

In this section, we present a simulation study to demonstrate the efficacy of our spatial-

longitudinal bent-cable methodology. In particular, we supplement the motivation of our
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methodology by illustrating the importance of properly taking into account the spatial com-

ponent. To this end, we present a scenario, where, in reality, spatial dependency exists among

the units. We then analyze the data using the true model, as well as models with misspecified

spatial configuration.

Model parameter values in the simulations are chosen to approximately mimic the CFC-

11 data. We take m = 8, n = 273 and tij = j − 1 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. We

generate data assuming Model 4 with δ = 0.52. We also take µβ = (244.28, 0.64,−0.79)�,

µα = (3.75, 3.91)�,

Σβ =





204.66 −2.46 2.35

−2.46 0.06 −0.04

2.35 −0.04 0.05




, Σα =



0.022 0.012

0.012 0.020



 ,

and σ
2

i ’s are 1.36, 0.63, 6.08, 1.63, 1.54, 1.16, 1.89, and 1.39. Given the parameters, we gen-

erate βi’s and αi’s from N3(µβ,Σβ) and LN2(µα,Σα), respectively. Then, yij’s are generated

using Metropolis-Hastings algorithm from the following model:

π (y|Θ) =

(2π)
−
mn

2 | Im − δW |n
�

m�

i=1

�
σ−2
i

�n
2

�
exp





−1

2

m�

i=1

n�

j=1







yij − δ
m�

k �=i

wikykj



−



fij − δ
m�

k �=i

wikfkj








2





We analyze the data using Model 1 (no spatial dependency), Model 2 (misspecified spatial

configuration), and Model 4 (true model) to evaluate the performance of our methodology

and the effects of misspecified spatial configuration.

For each simulation, 500 data sets are generated, and 10, 000 MCMC iterations are used

to approximate posterior distributions per set. DICs and posterior summaries for each pa-

rameter are then averaged over the 500 sets. In addition to the DICs, relative mean square

error (RMSE) of the posterior summaries is used to evaluate the performance of the analytic

procedures. RMSE takes into account both bias (measured by the relative bias, RB) and vari-

ability (gauged by the relative standard deviation, RSD), according to the formula RMSE =

RB2+RSD2, where RB = bias/true parameter value, RSD = SD/true parameter value, and

SD is the standard deviation of the posterior means/medians across the 500 simulated data

sets. Note that the smaller the RMSE, the more accurate an estimator is.
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Table 3.9: Absolute relative bias (RB), absolute relative standard deviation (RSD)
and relative mean square error (RMSE) of the population regression coefficients and
the spatial autocorrelation coefficient.

Analysis assuming
Model 1 Model 2 Model 4

True |RB| |RSD| RMSE |RB| |RSD| RMSE |RB| |RSD| RMSE

µ0 244.28 2.7× 10−4 0.001 4.9× 10−7 1.6× 10−4 0.001 4.7× 10−7 8.2× 10−5 0.001 5.4× 10−7

µ1 0.64 0.064 0.031 0.00508 0.047 0.034 0.00336 0.031 0.039 0.00253
µ2 −0.79 0.063 0.025 0.00461 0.051 0.027 0.00331 0.038 0.032 0.00245
µγ 3.75 0.018 0.006 0.00036 0.013 0.007 0.00023 0.011 0.008 0.00018
µτ 3.91 0.012 0.006 0.00018 0.010 0.007 0.00015 0.008 0.007 0.00011
δ 0.52 − − − 0.260 0.005 0.06760 9.4× 10−4 0.008 6.0× 10−5

Table 3.10: Absolute relative bias (RB), absolute relative standard deviation (RSD)
and relative mean square error (RMSE) of σ2

i ’s.

Analysis assuming
Model 1 Model 2 Model 4

True |RB| |RSD| RMSE |RB| |RSD| RMSE |RB| |RSD| RMSE

σ2
1 1.36 0.3281 0.0071 0.10770 0.1058 0.0060 0.01123 0.0063 0.0064 0.00008

σ2
2 0.63 0.6909 0.0091 0.47747 0.0427 0.0081 0.00189 0.0063 0.0073 0.00009

σ2
3 6.08 0.1234 0.0062 0.01528 0.0643 0.0064 0.00418 0.0031 0.0058 0.00004

σ2
4 1.63 0.3711 0.0074 0.13777 0.1239 0.0092 0.01543 0.0092 0.0097 0.00018

σ2
5 1.54 0.2809 0.0064 0.07896 0.0188 0.0059 0.00039 0.0003 0.0057 0.00003

σ2
6 1.16 0.3465 0.0071 0.12014 0.2317 0.0067 0.05374 0.0013 0.0062 0.00004

σ2
7 1.89 0.5129 0.0078 0.26313 0.2838 0.0074 0.08057 0.0054 0.0069 0.00008

σ2
8 1.39 0.2114 0.0068 0.04473 0.0996 0.0056 0.00995 0.0080 0.0068 0.00011

Table 3.11: Absolute relative bias (RB), absolute relative standard deviation (RSD)
and relative mean square error (RMSE) of the covariance matrices Σβ and Σα.

Analysis assuming
Model 1 Model 2 Model 4

True |RB| |RSD| RMSE |RB| |RSD| RMSE |RB| |RSD| RMSE

(Σβ)11 204.660 0.116 0.019 0.014 0.116 0.020 0.014 0.114 0.020 0.013
(Σβ)22 0.060 0.373 0.114 0.152 0.352 0.135 0.142 0.311 0.143 0.117
(Σβ)33 0.050 0.487 0.132 0.254 0.467 0.159 0.243 0.428 0.167 0.211
(Σβ)12 −2.460 0.099 0.086 0.017 0.095 0.099 0.019 0.050 0.115 0.016
(Σβ)13 2.350 0.099 0.089 0.018 0.095 0.103 0.020 0.049 0.121 0.017
(Σβ)23 −0.040 0.267 0.167 0.099 0.240 0.200 0.097 0.185 0.210 0.078
(Σα)11 0.022 0.621 0.359 0.515 0.378 0.342 0.260 0.255 0.306 0.159
(Σα)22 0.020 0.382 0.356 0.273 0.250 0.352 0.187 0.165 0.312 0.125
(Σα)12 0.012 0.647 0.277 0.495 0.165 0.289 0.111 0.252 0.312 0.161
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Numerical results for the population regression coefficients and spatial autocorrelation

parameter are summarized in Table 3.9. For µ0, both |RB| and RMSE are very close to

zero regardless of the assumption about the spatial configuration. Smallest |RB| and RMSE

for each of the other parameters are observed when we analyze using the true model (i.e.,

Model 4), whereas the largest |RB| and RMSE are observed if we completely ignore spatial

dependency (i.e., Model 1). Similar results are obtained for σ
2

i ’s (Table 3.10), and Σβ and

Σα (Table 3.11), that is, the smallest |RB| and RMSE occur when we analyze using the true

model, and the largest |RB| and RMSE if we ignore spatial dependency. The only exception

occurs for (Σα)12 (Table 3.11), for which the smallest |RB| and RMSE are observed for

Model 2. The average DICs are 7893, 7720, and 7379 for Model 1, Model 2 and Model 4,

respectively. This indicates that the best fit is achieved by Model 4 (smallest DIC), and a

comparatively poor fit if we completely ignore the spatial dependency (largest DIC).

The above simulation results demonstrate the importance of modelling the spatial compo-

nent when, in reality, spatial dependency exists among the units. Moreover, smaller bias and

highly accurate (smaller RMSE) estimates indicate that our proposed methodology performs

well to analyze data that resemble those from the CFC study.
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Chapter 4

Concluding Remarks and Future Work

Under a spatially dependent process, each unit is typically affected by those of the neigh-

bouring units. Therefore, the assumption of independence across the neighbouring units

might be unrealistic, especially when they represent geographical locations. Moreover, ad-

dressing the spatial effects provide important insights about such a process. In this thesis,

we propose an extension of the longitudinal bent-cable model (Khan et al., 2009) by taking

into account spatial effects. We have tailored our work especially for the scientific context of

the CFC data. CFCs persist long enough in the atmosphere due to their extended lifetimes:

45 and 100 years for CFC-11 and CFC-12, respectively. As a consequence, they are believed

to have spread across the world. Therefore, CFCs monitored from one station may depend

on those from another station, giving rise to a presumed spatially dependent longitudinal

process. Our methodology provides understanding not only of the spatial distribution, but

also of the global threat that CFCs may pose to all living organisms. It also reveals useful

information regarding the atmospheric CFC decline throughout the globe.

Since the Montreal Protocol came into effect, a global decrease in the CFCs is monitored

and confirmed by our analysis. Note that the Montreal Protocol contains an extended CFC

phase-out schedules: 1996 for developed countries and 2010 for developing countries. Thus,

many countries at various geographical locations continued to contribute CFCs to the at-

mosphere during the 273 months in our study over the period January, 1988 to September,

2010. In our analysis, this fact is reflected with a slow decrease in CFC concentrations from

the atmosphere. In fact, our analysis does not reveal a significant decrease for CFC-12. This

makes sense due to the extended lifetime for CFC-12 compared to CFC-11. Nevertheless,

the Montreal Protocol can be regarded as a successful international agreement to reduce the

use of the CFCs, in particular, thus far, for CFC-11.
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There are other modelling approaches that can be used to characterize non-linear trend

change over time. For example, a piecewise linear model with three knots could be fit, where

the transition period for the bent cable model would instead be approximated by two straight

lines with one internal knot. In case a piecewise linear model with three knots would not fit

the data well, another model could be fit with, say, five knots (three inside the transition,

instead of one). This process may lead to investigating many models, and, due to the smooth

transition phase, at least for the CFC data, may lead to too many parameters, which might

diminish interpretability as compared to the bent-cable model. Another modelling approach

for such data is the functional mixed effects model (e.g., (Baladandayuthapani et al., 2008)).

So, further investigation is necessary to compare our methodology with other available sta-

tistical techniques to model this type of longitudinal change-point data. Nevertheless, our

proposed methodology is appealing for its many attractive features (great interpretability,

flexibility and parsimony), and, it fits the CFC data well.

Although we have tailored our work for the CFC data, our modelling framework may be

applicable to a wide variety of other situations across the range of the econometrics, social,

health and medical sciences. We summarize some cautionary remarks and potential future

research topics in Sections 4.1 and 4.2, respectively.

4.1 Cautionary Remarks

Our methodology could serve as a powerful statistical tool in analysing spatial data, that

exhibits change of direction, for its flexibility and appealing features. Such data may arise

in many areas such as biology, medical and environmental applications. However, careful

attention is required for the following reasons:

1 The bent-cable methodology is defined for data exhibiting only one transition period

over time. It is possible to apply the methodology for multiple transition periods but

the data should be partitioned into several portions so that each part has only one

transition period. Moreover, the process of combining information from individual

portions for drawing inference is not clear.
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2 Poor starting values may result in slow-mixing for a Markov chain. Hence, starting

values should be chosen carefully to avoid lengthy runs.

4.2 Future Work

There is scope to extend spatial-longitudinal bent-cable model to different directions. Some

of such possible directions are pointed below:

1 One possibility is to extend our framework to take into consideration of an interaction

between temporal and spatial effects. With our current model, this could be done with

a spatial correlation structure that changes as a function of time.

2 The covariance structure can be modelled as a continuous function of distance, that

separates the stations from each other, instead of defining the spatial weight matrix.

3 The longitudinal bent-cable model can be extended through decomposing the mean

structure to take into account the spatial effects.

As mentioned earlier, our article based on the application of spatial-longitudinal bent-

cable model has been accepted in the International Journal of Statistics and Probability

(Khan et al., 2012) published by Canadian Center of Science and Education.
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Appendices

In this chapter, we present the detailed derivation of mathematical expressions related

to our spatial-longitudinal bent-cable model. We derive the joint distribution in detail in

section A.1. We work out the first stage of hierarchy in Section A.2 while the full conditional

distributions are derived in Section A.3.

A.1 Joint Distribution

Let yi = (yi1, yi2, . . . , yin), y = (y�
1
,y

�
2
, . . . ,y

�
m)

� and Θ denotes all the model parameters

collectively i.e. Θ =
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. Then the joint distribution of model

parameters and data can be expressed as:
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where Np, LN 2, W , G, and U denote p−variate normal distribution, bivariate lognormal

distribution, Wishart distribution, Gamma distribution, and Uniform distribution respec-
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tively. We derive the full conditional distribution for each parameter based on equation A.1

to implement the Metropolis within Gibbs algorithm for our spatial-longitudinal bent-cable

model.

A.2 First Stage of Hierarchy

Recalling from Section 2.2, we denote the CFC measurement observed at i
th station,

i = 1, 2, . . . ,m at j
th time period, j = 1, 2, . . . , n by yij. From equations (2.1), (2.4) and

(2.5), we have:

yij = fij + eij

eij = δ

m�

k=1

wikekj + �ij

�
�ij|σ2

i

�
∼ N

�
0, σ2

i

�

Now,
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= fij + δ

m�
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= δ

m�
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Since [�ij|σ2

i ] ∼ N (0, σ2

i ) for all j, we get the first stage of hierarchy as:
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where µi (θi, δ) ≡ µi = (µi1, µi2, . . . , µin)
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k �=i=1

wikfkj, Ii is an identity matrix of order n and Nn denotes a n−variate normal distri-

bution.

A.3 Full Conditionals

In general, Metropolis sampling is based on the full conditional distribution of a particular

parameter when it is being updated. These full conditional distributions also play central role

in Gibbs sampling. The full conditionals are usually obtained from the joint distribution and

in many cases reduce to standard density from which direct sampling is straight forward. Full

conditional distributions are extracted by abstracting out the elements involving parameter

of interest from the joint density and treating other components as constants (referred in

Congdon (2010) ). For example, we derive the full conditional for βi by picking out the

terms from joint density (equation A.1) which involves βi. It is to be noted that any terms,
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not depending on βi, is taken as proportionality constant in the full conditional.

An appealing feature of bent-cable function is that it is partially linear (Khan, 2010).

This fact leads to closed-form full conditional for some parameters while the conditional

for others can be expressed up to a proportionality constant. As our model is an exten-

sion of longitudinal bent-cable model (Khan et al., 2009), conditional distributions for some

hyper-parameters are same for both models. We reproduce them here in our context for

completeness of this thesis. We define the following notations to extract the full conditional

distributions for parameters involved in our spatial-longitudinal bent-cable model.

zij = yij − δ

m�
k=1

wik(ykj − fkj) and zi = (zi1, zi2, ..........., zin)�

Xi =





1 ti,1 qi,1

1 ti,2 qi,2

...
...

...

1 ti,n qi,n





M−1

i = σ
−2

i X�
iXi + Σ−1

β , U−1

β = mΣ−1

β +H−1

β and U−1

α = mΣ−1

α +H−1

α

ξi = log(αi) = (log γi, log τi)�

β̃ =
m�
i=1

βi and ξ̃ =
m�
i=1

ξi

A.3.1 Full Conditional for βi

Abstracting out the terms involving βi from the joint density (equation A.1), we have

π (βi|.) ∝ exp

�
− 1

2σ2

i

(yi − µi)
� (yi − µi)−

1

2

�
βi − µβ

��
Σ−1

β

�
βi − µβ

��
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From Section A.1, we can write

yij − µij = yij − δ

m�

k=1

wik (ykj − fkj)− β0i − β1itij − β2iqij

= zij − β0i − β1itij − β2iqij for j = 1, 2, ........., n

In vector-matrix notation, we can write yi − µi = zi − Xiβi. Using the result, we have

π (βi|.) ∝ exp

�
−1

2

�
σ
−2

i (zi − Xiβi)
� (zi − Xiβi) +

�
βi − µβ

��
Σ−1

β

�
βi − µβ

���

= exp

�
−1

2

�
σ
−2

i z
�
izi − σ

−2

i z
�
iXiβi − σ

−2

i β�
iX�

izi + σ
−2

i β�
iX�

iXiβi

+ β�
iΣ

−1

β βi − β�
iΣ

−1

β µβ − µ�
βΣ

−1

β βi + µ�
βΣ

−1

β µβ

��

∝ exp

�
−1

2

�
σ
−2

i z
�
iXiβi − σ

−2

i β�
iX�

izi + σ
−2

i β�
iX�

iXiβi + β�
iΣ

−1

β βi

−β�
iΣ

−1

β µβ − µ�
βΣ

−1

β βi

��

[proportionality follows because σ
−2

i z
�
izi and µ�

βΣ
−1

β µβ are independent of βi]

= exp

�
−1

2

�
−2σ−2

i β�
iX�

izi + σ
−2

i β�
iX�

iXiβi + β�
iΣ

−1

β βi − 2β�
iΣ

−1

β µβ

��

[σ−2

i z
�
iXiβi and µ�

βΣ
−1

β βi are scalers]

= exp

�
−1

2

�
−2β�

i

�
σ
−2

i X�
izi + Σ−1

β µβ

�
+ β�

i

�
σ
−2

i X�
iXi + Σ−1

β

�
βi

��

= exp

�
−1

2

�
−2β�

i

�
σ
−2

i X�
izi + Σ−1

β µβ

�
+ β�

iM−1

i βi

��

∝ exp

�
−1

2

�
−β�

i

�
σ
−2

i X�
izi + Σ−1

β µβ

�
−
�
σ
−2

i X�
izi + Σ−1

β µβ

��
βi + β�

iM−1

i βi

+
�
σ
−2

i X�
izi + Σ−1

β µβ

�� Mi

�
σ
−2

i X�
izi + Σ−1

β µβ

���

[β�
i(σ

−2

i X�
izi+Σ−1

β µβ) is a scaler and so is β�
i(σ

−2

i X�
izi+Σ−1

β µβ) = (σ−2

i X�
izi+Σ−1

β µβ)
�βi and

proportionality follows as (σ−2

i X�
izi +Σ−1

β µβ)
�Mi(σ

−2

i X�
izi +Σ−1

β µβ) does not depend on βi ]

= exp

�
−1

2

�
βi −Mi

�
σ
−2

i X�
izi + Σ−1

β µβ

��� M−1

i

�
βi −Mi

�
σ
−2

i X�
izi + Σ−1

β µβ

���
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which is proportional to a density function of trivariate normal distribution with mean vector

Mi

�
σ
−2

i X�
izi + Σ−1

β µβ

�
and covariance matrix Mi. Thus,

[βi|.] ∼ N3

�
Mi

�
σ
−2

i X�
izi + Σ−1

β µβ

�
,Mi

�

A.3.2 Full Conditional for αi

The full conditional distribution of αi can’t be expressed in closed-form, only upto the

following proportionality constant:

π (αi|.) ∝ exp

�
− 1

2σ2

i

(zi − Xiβi)
� (zi − Xiβi)

�
×

�
1

γiτi
exp

�
−1

2
(ξi − µα)

� Σ−1

α (ξi − µα)

��

We use random-walk Metropolis to generate samples in the MCMC scheme.
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A.3.3 Full Conditional for µβ

Taking out the terms, which involves µβ, from the joint density (equation A.1), we get

π
�
µβ|.

�
∝

m�

i=1

exp

�
−1

2

�
βi − µβ

��
Σ−1

β

�
βi − µβ

��
exp

�
−1

2

�
µβ − hβ

�� H−1

β

�
µβ − hβ

��

= exp

�
−1

2

�
m�

i=1

�
βi − µβ

��
Σ−1

β

�
βi − µβ

�
+
�
µβ − hβ

�� H−1

β

�
µβ − hβ

�
��

= exp

�
−1

2

�
m�

i=1

�
β�

iΣ
−1

β βi − β�
iΣ

−1

β µβ − µ�
βΣ

−1

β βi + µ�
βΣ

−1

β µβ

�
+
�
µ�

βH−1

β µβ

−µ�
βH−1

β hβ − h
�
βH−1

β µβ + h
�
βH−1

β hβ

���

∝ exp

�
−1

2

�
m�

i=1

�
−β�

iΣ
−1

β µβ − µ�
βΣ

−1

β βi + µ�
βΣ

−1

β µβ

�
+ µ�

βH−1

β µβ − µ�
βH−1

β hβ

−h
�
βH−1

β µβ

��

[proportionality follows because β�
iΣ

−1

β βi and h
�
βH−1

β hβ are independent of µβ]

= exp

�
−1

2

�
−2µ�

βΣ
−1

β

m�

i=1

βi +mµ�
βΣ

−1

β µβ + µ�
βH−1

β µβ − 2µ�
βH−1

β hβ

��

[β�
iΣ

−1

β µβ and h
�
βH−1

β µβ are scalers and so are β�
iΣ

−1

β µβ = µ�
βΣ

−1

β βi and h
�
βH−1

β µβ =

µ�
βH−1

β hβ ]

= exp

�
−1

2

�
−2µ�

β

�
Σ−1

β

m�

i=1

βi +H−1

β hβ

�
+ µ�

β

�
mΣ−1

β +H−1

β

�
µβ

��

= exp

�
−1

2

�
−2µ�

β

�
Σ−1

β β̃ +H−1

β hβ

�
+ µ�

βU−1

β µβ

��

∝ exp

�
−1

2

�
µ�

β

�
Σ−1

β β̃ +H−1

β hβ

�
−

�
Σ−1

β β̃ +H−1

β hβ

��
µβ + µ�

βU−1

β µβ

+
�
Σ−1

β β̃ +H−1

β hβ

��
Uβ

�
Σ−1

β β̃ +H−1

β hβ

���

[µ�
β(Σ

−1

β β̃ + H−1

β hβ) is a scaler, and so µ�
β(Σ

−1

β β̃ + H−1

β hβ) = (Σ−1

β β̃ + H−1

β hβ)�µβ; propor-

tionality follows as (Σ−1

β β̃ +H−1

β hβ)�Uβ(Σ
−1

β β̃ +H−1

β hβ) is independent of µβ]

= exp

�
−1

2

�
µβ − Uβ

�
Σ−1

β β̃ +H−1

β hβ

���
H−1

β

�
µβ − Uβ

�
Σ−1

β β̃ +H−1

β hβ

���
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which is the density function of a trivariate normal distribution with mean vectorUβ

�
Σ−1

β β̃ +H−1

β hβ

�

and covariance matrix Uβ. Hence,

�
µβ|.

�
∼ N3

�
Uβ

�
Σ−1

β β̃ +H−1

β hβ

�
,Uβ

�
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A.3.4 Full Conditional for µα

Picking out the terms involving µα from the joint density (equation A.1), we have

π (µα|.) ∝
m�

i=1

exp

�
−1

2
(ξi − µα)

� Σ−1

α (ξi − µα)

�
exp

�
−1

2
(µα − hα)

� H−1

α (µα − hα)

�

= exp

�
−1

2

�
m�

i=1

(ξi − µα)
� Σ−1

α (ξi − µα) + (µα − hα)
� H−1

α (µα − hα)

��

= exp

�
−1

2

�
m�

i=1

�
ξ�iΣ

−1

α ξi − ξ�iΣ
−1

α µα − µ�
αΣ

−1

α ξi + µ�
αΣ

−1

α µα

�

+
�
µ�

αH−1

α µα − µ�
αH−1

α hα − h
�
αH−1

α µα + h
�
αH−1

α hα

���

∝ exp

�
−1

2

�
m�

i=1

�
−ξ�iΣ

−1

α µα − µ�
αΣ

−1

α ξi + µ�
αΣ

−1

α µα

�
+ µ�

αH−1

α µα

−µ�
αH−1

α hα − h
�
αH−1

α µα

��

[proportionality follows because ξ�iΣ
−1

α ξi and h
�
αH−1

α hα are independent of µα]

= exp

�
−1

2

�
−2µ�

αΣ
−1

α

m�

i=1

ξi +mµ�
αΣ

−1

α µα + µ�
αH−1

α µα − 2µ�
αH−1

α hα

��

[ ξ�iΣ
−1

α µα and h
�
αH−1

α µα are scalers, and so are ξ�iΣ
−1

α µα = µ�
αΣ

−1

α ξi and h
�
αH−1

α µα =

µ�
αH−1

α hα]

= exp

�
−1

2

�
−2µ�

α

�
Σ−1

α

m�

i=1

ξi +H−1

α hα

�
+ µ�

α

�
mΣ−1

α +H−1

α

�
µα

��

= exp

�
−1

2

�
−2µ�

α

�
Σ−1

α ξ̃ +H−1

α hα

�
+ µ�

αU−1

α µα

��

∝ exp

�
−1

2

�
−µ�

α

�
Σ−1

α ξ̃ +H−1

α hα

�
−

�
Σ−1

α ξ̃ +H−1

α hα

��
µα + µ�

αU−1

α µα

+
�
Σ−1

α ξ̃ +H−1

α hα

��
Uα

�
Σ−1

α ξ̃ +H−1

α hα

���

[µ�
α(Σ

−1

α ξ̃ +H−1

α hα) is a scaler, and so is µ�
α(Σ

−1

α ξ̃ +H−1

α hα) = (Σ−1

α ξ̃ +H−1

α hα)�µα; propor-

tionality follows because (Σ−1

α ξ̃ +H−1

α hα)�Uα(Σ−1

α ξ̃ +H−1

α hα) is independent of µα]

= exp

�
−1

2

�
µα − Uα

�
Σ−1

α ξ̃ +H−1

α hα

���
U−1

α

�
µα − Uα

�
Σ−1

α ξ̃ +H−1

α hα

���
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which is proportional to the density function of a bivariate normal distribution with mean

vector Uα

�
Σ−1

α ξ̃ +H−1

α hα

�
and covariance matrix Uα. Therefore,

[µα|.] ∼ N2

�
Uα

�
Σ−1

α ξ̃ +H−1

α hα

�
,Uα

�

66



A.3.5 Full Conditional for Σ−1
β

Taking out the terms involving Σ−1

β from the joint density (equation A.1), we have

π
�
Σ−1

β |.
�
∝

m�

i=1

1

| Σβ |1/2 exp
�
−1

2

�
βi − µβ

��
Σ−1

β

�
βi − µβ

��
| Σ−1

β |
νβ−3−1

2 exp
�
−νβ

2
tr
�
AβΣ

−1

β

��

=
1

| Σβ |m/2
exp

�
−1

2

m�

i=1

�
βi − µβ

��
Σ−1

β

�
βi − µβ

�
�

| Σ−1

β |
νβ−3−1

2 exp
�
−νβ

2
tr
�
AβΣ

−1

β

��

=| Σ−1

β |
m+νβ−3−1

2 exp

�
−1

2

�
m�

i=1

(βi − µβ)
�Σ−1

β (βi − µβ) + tr(νβAβΣ
−1

β )

��

=| Σ−1

β |
(m+νβ)−3−1

2 exp

�
−1

2

�
m�

i=1

tr

��
βi − µβ

� �
βi − µβ

��
Σ−1

β

�
+ tr

�
νβAβΣ

−1

β

�
��

[Assuming d1i = (βi − µβ)
�Σ−1

β and d2i = (βi − µβ), we can write d1id2i = tr(di1di2) =

tr(d2id1i) by the property of trace of a matrix]

=| Σ−1

β |
(m+νβ)−3−1

2 exp

�
−1

2

�
tr

�
m�

i=1

�
βi − µβ

� �
βi − µβ

��
Σ−1

β

�
+ tr

�
νβAβΣ

−1

β

�
��

=| Σ−1

β |
(m+νβ)−3−1

2 exp

�
−1

2

�
tr

�
m�

i=1

�
βi − µβ

� �
βi − µβ

��
+ νβAβ

�
Σ−1

β

��

which is a proportional to the density function of Wishart distribution with degrees of

freedom m+ νβ and scale matrix

�
m�
i=1

�
βi − µβ

� �
βi − µβ

��
+ νβAβ

�−1

. Thus,

�
Σ−1

β |.
�
∼ W



m+ νβ,

�
m�

i=1

(βi − µβ)(βi − µβ)
� + νβAβ

�−1



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A.3.6 Full Conditional for Σ−1
α

Picking out the terms involving Σ−1

α from the joint density (equation A.1), we get

π
�
Σ−1

α |.
�
∝

m�

i=1

1

| Σα |1/2 exp
�
−1

2
(ξi − µα)

� Σ−1

α (ξi − µα)

�
| Σ−1

α |
να−2−1

2 exp
�
−να

2
tr
�
AαΣ

−1

α

��

=
1

| Σα |m/2
exp

�
−1

2

m�

i=1

(ξi − µα)
� Σ−1

α (ξi − µα)

�
| Σ−1

α |
να−2−1

2 exp
�
−να

2
tr
�
AαΣ

−1

α

��

=| Σ−1

α |
m+να−2−1

2 exp

�
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2

�
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i=1

(ξi − µα)
� Σ−1

α (ξi − µα) + tr
�
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α

�
��
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2 exp

�
−1

2

�
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tr
�
(ξi − µα) (ξi − µα)
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α

�
+ tr

�
ναAαΣ

−1

α

�
��

[Again, assuming d1i = (ξi − µα)
� Σ−1

α and d2i = Ii (ξi − µα), we can write d1id2i =

tr (di1di2) = tr (d2id1i) by the property of trace of a matrix]

=| Σ−1

α |
(m+να)−2−1

2 exp

�
−1

2

�
tr

�
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i=1

(ξi − µα) (ξi − µα)
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α

�
+ tr

�
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�
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�
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2

�
tr

�
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(ξi − µα) (ξi − µα)
� + ναAα

�
Σ−1

α

��

which is proportional to the density function of Wishart distribution with degrees of freedom

m+ να and scale matrix

�
m�
i=1

(ξi − µα) (ξi − µα)
� + ναAα

�−1

. Thus,

�
Σ−1

α |.
�
∼ W



m+ να,

�
m�

i=1

(ξi − µα) (ξi − µα)
� + ναAα

�−1



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A.3.7 Full Conditional for σ
−2
i

Taking out the relevant terms for σi from the joint density (equation A.1), we have

π
�
σ
−2

i |.
�
∝ 1

| σ2

i Ii |1/2
exp

�
− 1

2σ2

i

(yi − µi)
� (yi − µi)

��
σ
−2

i

�d0
2 −1

exp

�
−d1

2
σ
−2
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�

=
1

| σ2

i Ii |1/2
exp
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− 1

2σ2
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(zi − Xiβi)
� (zi − Xiβi)

��
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�
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i

�

=
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σ
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i

�n
2 exp

�
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2σ2

i

(zi − Xiβi)
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�
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�
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i
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�
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2
σ
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i

�

which is proportional to the density function of a Gamma distribution with shape parameter

as n+d0
2

and rate parameter (zi−Xiβi)
�
(zi−Xiβi)+d1

2
. Thus,

�
σ
−2

i |.
�
∼ G

�
n+ d0

2
,
(zi − Xiβi)

� (zi − Xiβi) + d1

2

�

A.3.8 Full Conditional for δ

The full conditional distribution of δ cannot be expressed as a standard density function.

Abstracting out the relevant terms from the joint density (equation A.1), we can write it as

the following proportionality constant:

π (δ|.) ∝| Im − δW |n exp




−1

2

m�

i=1

n�

j=1

σ
−2

i

�
yij − δ

m�

k=1

wik (ykj − fkj)− fij

�2





where | Im − δW |n is the Jacobian term taking into account the effect of
m�
k=1

wikekj

=| Im − δW |n exp

�
−1

2

m�

i=1

n�

j=1

σ
−2

i (Zi − Xiβi)
� (Zi − Xiβi)
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