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Abstract

Stochastic volatility (SV) models are a family of models that commonly used in the model-

ing of stock prices. In all SV models, volatility is treated as a stochastic time series. However,

SV models are still quite different from each other from the perspective of both underlying

principles and parameter layouts. Therefore, selecting the most appropriate SV model for a

given set of stock price data is important in making future predictions of stock market. To

achieve this goal, leave-one-out cross-validation (LOOCV) methods could be used. However,

LOOCV methods are computationally expensive, thus its use is very limited in practice.

In our studies of SV models, we proposed two new model-selection approaches, integrated

widely applicable information criterion (iWAIC) and integrated importance sampling infor-

mation criterion (iIS-IC), as alternatives to approximate LOOCV results. In iWAIC and

iIS-IC methods, we first calculate the expected likelihood of each observation as an integral

with respect to the corresponding latent variable (the current log-volatility parameter). Since

the observations are highly correlated with their corresponding latent variable, the integrated

likelihood of each tth observation (yobs
t ) is expected to approximate the expect likelihood of

yobs
t calculated from the model with yobs

t as its holdout data. Second, the integrated ex-

pected likelihood is used, as a replacement of the expected likelihood, in the calculation of

information criteria. Since the integration with respect to the latent variable largely reduces

the model’s bias towards the corresponding observation, the integrated information criteria

are expected to approximate LOOCV results. To evaluate the performance of iWAIC and

iIS-IC, we first conducted an empirical study using simulated data sets. The results from this

study show that iIS-IC method has an improved performance over the traditional IS-IC, but

iWAIC does not outperform the non-integrated WAIC method. A further empirical study

using real-world stock market return data was subsequently carried out. According to the

model-selection results, the best model for the given data is either the SV model with two

independent autoregressive processes, or the SV model with nonzero expected returns.
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Chapter 1

Introduction

1.1 Stochastic Volatility Models

Stochastic volatility (SV) models are widely used in modeling stock prices, as described in

journal papers written by Taylor (1982) and Hull and White (1987). In the basic stochastic

volatility model, the mean-corrected daily continuously compounded returns yt can be mod-

eled as normal distributions with stochastic volatilities. Unlike the exponentially weighted

moving average (EWMA) model and the generalized autoregressive conditional heteroskedas-

ticity (GARCH) model, log-volatilities are treated as a Markov process in the SV model.

As a result of the Markov process, the log-volatility itself becomes a stochastic process.

Therefore, SV models do not need to assume a constant volatility or a fixed volatility process

like some other models (i.e., the well-known Black-Scholes model proposed by Black and

Scholes (1973)). Since volatilities do change over time, the assumption of a constant volatility

is a major shortcoming for many non-SV models, especially when the time horizon is long.

Thus SV models are often a good alternative in the modeling of stock prices and some other

derivatives with changing volatilities.

In addition to the basic model, many extended SV models are used for the purpose of

stock price modeling as well, as described in the papers published by Harvey et al. (1994);

Shephard (1996); Gallant and Tauchen (1996); Chernov et al. (2003).

In this thesis, eight different models were tested and compared for stock price modeling.

Each of the tested models is either the basic SV model or its variation.

To sample from the posterior distributions of SV model parameters using Markov chain

Monte Carlo method, we need to know a function that is proportional to the posterior

distributions. To achieve this goal, Bayesian inference were used in the study. According
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to Bayes’ rule, given the prior distribution of model parameters π(θ), and a set of observed

data D, the posterior distribution of model parameters is proportional to the product of the

posterior likelihood function of model parameters f(D|θ)π(θ) and the prior distribution of

model parameters:

fpost(θ|D) =
f(D|θ)π(θ)∫
f(D|θ)π(θ)d(θ)

, (1.1)

where θ are model parameters, fpost(θ|D) is the posterior distribution of model parameters,

and fpost stands for posterior density functions.

1.2 Review of Model Comparison Methods

Currently, many model comparison techniques are used to select an appropriate model for a

given real data set. Since the ability to make out-of-sample predictions is a vital criterion for

comparing models, a proper model-comparison method should be able to choose the model

that best predicts out-of-sample data.

Naturally, cross-validation methods are used to evaluate out-of-sample predictive per-

formance, and one of the most commonly used cross-validation method is leave-one-out

cross-validation (LOOCV). In LOOCV, each validating set contains only one observation

from the original data set, and the training set comprises all the other observations. When

we estimate out-of-sample predictive performance with LOOCV, we hold one observation

out, and test the model with the holdout observation upon the completion of the training.

This training-and-testing procedure goes on until each of the observations has served as a

holdout. In the end, predictions of the holdouts are compared against true observations,

and a loss function is calculated as a measure of the goodness of the prediction. However,

since LOOCV requires multiple rounds of model-training procedure, the method is often very

computationally expensive.

Common alternatives to cross-validation approach is to measure the adjusted within-

sample predictive accuracy. Since within-sample predictions of a model is always better as

model-complexity increases, the goodness of within-sample predictions needS to be penal-

ized with a model complexity measure to estimate the out-of-sample predictive performance.

Therefore, in the alternative approaches, the model selection criteria are corrected by im-
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posing a penalty for the model’s complexity. As a result, comparison methods are able

to select models with balanced goodness-of-fit and model complexity as an approximate of

out-of-sample predictive information criterion. Examples of the adjusted within-sample pre-

dictive accuracy approach include Akaike information criterion (AIC), deviance information

criterion (DIC), widely applicable information criterion (WAIC), and importance sampling

information criterion (IS-IC, or just IS). Formulas of these information criteria for models

without latent variables (or viewing latent variables as part of parameters θ) are given as

follows. We will use yobs
t to denote the actual observation of the variable yt.

• The Akaike Information Criterion and Deviance Information Criterion The

Akaike information criterion (AIC) has long been used to evaluate the quality of a model

for a given set of data. The goodness of fit is AIC is measured by the logarithm of

the maximum likelihood function for the model, and the model complexity is measured

simply by the number of parameters:

AIC = −2[log(L)− k], (1.2)

where L is the maximal value of the likelihood function, and k is the number of param-

eters in the model.

The deviance information criterion (DIC) is a widely used Bayesian model selection

criterion that is closely related to the AIC. As described by Spiegelhalter et al. (2002),

the general formula for DIC is given by:

DIC = −2[log f(yobs|θ)− pD], (1.3)

where the term log f(yobs|θ) measures within-sample goodness of fit, and the term pD

is the effective number of parameters (a measure of model complexity).

The first term in the DIC formula, log f(yobs|θ), measures the relative goodness of fit

for a given model. The θ is posterior expected value of model parameters, which can
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be calculated by the following formula:

θ = Epost(θ|yobs). (1.4)

On the other hand, the second term in the formula, pD, measures effective number of

parameters. The pD can be calculated by the following formula:

pD = 2[log f(yobs|θ)− Epost[log f(yobs|θ)]. (1.5)

A larger pD value suggests a larger number of effective model parameters, which corre-

sponds to a higher level of model complexity. As a result, the pD needs to be subtracted

from the goodness-of-fit measurement in order to correct for model complexity.

The use of DIC is limited by a number of theoretical issues (Spiegelhalter et al., 2002,

2014). In the case of SV models, the number of latent variable increases with the

increase of the sample size in latent variable models, causing non-regular likelihood-

based statistical inference problems. As a result, the asymptotic justification of DIC

is not validated, since the asymptotic theory of DIC is derived from regular likelihood

(Gelman et al., 2014). Another major shortcoming of DIC is that the DIC is not

invariant to re-parametrization. For the same model with different parametrizations,

we may get different DIC values.

• The Widely Applicable Information Criterion

The widely applicable information criterion (WAIC) is an approximation to the cross-

validation approach proposed by Watanabe (2010). In the WAIC method, goodness-

of-fit is measured by calculating the summation of the log-scaled expected predictive

probability density of sample points yobs
1 , ..., yobs

n :

n∑
t=1

logEpost[f(yobs

t |θ)], (1.6)

where θ is the estimated model parameters. In this formula, a higher log-probability

summation value suggests a better fit of the data.
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On the other hand, model-complexity is measured by effective number of parameters

(pWAIC):

pWAIC1 = 2
n∑
t=1

{logEpost[f(yobs

t |θ)]− Epost[log f(yobs

t |θ)]}, or (1.7)

pWAIC2 =
n∑
t=1

Varpost[log f(yobs

t |θ)], (1.8)

where pWAIC1 is calculated by summing up the difference between the logarithm of the

expected posterior probability of each observation and the expected value of the log-

scaled posterior probability of each observation, and pWAIC2 is the sum of the variance

of the posterior probability of each observation. Either one of the two can be used as

an estimate of the effective number of parameters. A higher pWAIC implicates that a

more complicated model is used, and the model needs to be penalized more as a result.

Similar to the DIC method, the WAIC criterion takes both goodness-of-fit and model

complexity into consideration:

WAIC = −2
n∑
t=1

logEpost[f(yobs

t |θ)] + 2pWAIC . (1.9)

In the formula above, the summation of the log-probabilities measures how well the

model predicts the sample data, and effective number of parameters (pWAIC) adjusts

the criterion for model complexity.

The WAIC method is different from AIC and DIC methods mainly on how posterior

parameter estimates are used during the calculation. In the AIC and DIC methods,

likelihood functions are calculated according to point estimates of the posterior param-

eters, while in the WAIC method, the calculation is based on the posterior distribution

of the parameters. Therefore, the WAIC approach generally works better on reflecting

posterior uncertainties, and can be used as an alternative to the AIC and DIC methods

when parameters are non-identifiable (Celeux et al., 2006). However, the asymptotic

justification of WAIC only holds when all the observations are independent of each

other, which is not the case in SV models.

5



• The Importance Sampling Information Criterion

As described by Gelfand et al. (1992) and Gelfand (1996), the importance sampling

information criterion (IS-IC) approach approximates cross-validation results by intro-

ducing a weight measurement:

Wt =
1

f(yobs
t |θ)

. (1.10)

The weight formula suggests that the higher the posterior predictive density of yobs
i is,

the smaller the weight is. Using this weight, the IS-IC can be calculated as:

IS-IC = −2
n∑
t=1

log
Epost[f(yobs

t |θ)Wt]

Epost(Wt)
(1.11)

= −2
n∑
t=1

log
1

Epost[1/f(yobs
t |θ)]

, (1.12)

where the IS-IC is −2 times the summation of the weighted estimates of expected

pointwise predictive densities.

The IS-IC is asymptotically equivalent to LOOCV, but the criterion’s approximation

to LOOCV may be negatively affected if a certain observation has a large impact on the

value of θ (for example, an outlier observation) (Peruggia, 1997; Vehtari, 2001; Vehtari

and Lampinen, 2002; Epifani et al., 2008; Li et al., 2015).

1.3 Contributions of This Thesis

In this thesis, we propose to compare stochastic volatility models which have latent vari-

ables (such as ht) using regular DIC, WAIC, IS-IC methods, as well as two new approaches

named integrated widely applicable information criterion (iWAIC) method and integrated

importance sampling information criterion (iIS-IC, or just iIS) method. In non-integrated

WAIC (nWAIC) and IS-IC (nIS-IC, or nIS) approaches, the likelihood f(yobs
t |ht,θ) is com-

puted conditional on the full set of fitted model parameters and latent variables ht. However,

unlike LOOCV, nWAIC and nIS are calculated according to models fitted with entire data
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set. Therefore, the f(yobs
t |ht,θ) might be biased towards yobs

t and thus cannot be considered

as out-of-sample likelihood. In our particular case of SV models, estimated log-volatility

parameters, ht, are strongly correlated with corresponding yobs
t . As a result, the bias of the

likelihood f(yobs
t |ht,θ) could be greatly reduced if direct uses of ht is avoided.

If we denote h−t as all the estimated log-volatilities except ht, and θ as all the other

parameters, then this integrated likelihood f(yobs
t |h−t,θ) could be calculated according to

the following integral:

f(yobs

t |h−t,θ) =

∫ ∞
−∞

f(yobs

t |θ, ht)f(ht|θ, h−t)dht, (1.13)

where t = 1, ..., n, and n is total number of observations.

Once f(yobs
t |h−t,θ) is calculated, the integrated likelihood could be plugged into the

nWAIC and nIS formulas (in replacement of f(yobs
t |ht,θ)) to calculate the iWAIC and iIS

values. In our studies, we proposed integrated iWAIC and iIS methods as potential alterna-

tives to the nWAIC and nIS. Therefore, the performance of the two newly proposed model

selection methods needs to be evaluated as well. In order to make comparisons, another

popular approach, DIC, was also included in the testing process.

In our studies, DIC, nWAIC, nIS, iWAIC, and iIS criteria are studied for their performance

in model selection. The model selection methods were used to select models that best fit

the given data sets. In the first study, data sets were firstly generated from an SV model,

and the generated data sets were subsequently fitted into eight candidate SV models. The

data-generating model is one of the candidate models, and we choose to use eight different

models so that it is unlikely that a certain model-selection criterion would favor the correct

model just by chance. In the end, the models were compared by applying DIC, nWAIC, nIS,

iWAIC, and iIS methods. Through this simulation study, we have found that all the tested

information criteria are able to select the correct model (in this case, the data-generating

model) most of the time, and the integration does improve the performance of IS method.

In the second study, a real set of stock market return data (S&P 100) was respectively fitted

into the eight different SV models, and DIC, nWAIC, nIS, iWAIC, and iIS criteria were used

to determine the best model for the given data set. The results of the real-world stock data

7



indicate that the best model for the given data is either the SV model with two independent

autoregressive processes of ht, or the SV model with a non-zero expected return.
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Chapter 2

The Stochastic Volatility Models and the

Model-Fitting Process

2.1 The Stochastic Volatility Models

The price of a corporation stock is determined by the entity’s capability to generate future

cash flows, and is also affected by the stock’s supply and demand. If we make an investment

on a certain stock, then the profit of the investment on the stock over a period of time is called

the stock’s rate of return. In practice, the return of a stock is closely related to the stock’s

volatility. If yt is continuously compounded rate of return, then the relationship between the

two can be modeled by the following formula:

yt|σt ∼ N(0, σ2
t ), t = 1, ..., n, (2.1)

where σ2
t is the corresponding price volatility.

The stock price volatility is a measure of expected magnitude of the change of prices

(up or down) of an underlying asset, which is a very important feature of a stock. The

volatility for a given stock is essential in predicting the price of a stock itself, as well as many

other stock-related derivatives. For example, according to the famous Black-Scholes model,

a European call option on a given stock (with the same strike price and expiration) requires

more premium (more valuable) when the implied volatilities of the underlying stock is higher

(Black and Scholes, 1973). In addition, from the risk management point of view, volatilities

of stocks are needed to determine the value at risk (VaR) of a portfolio (Giot and Laurent,

2004).
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Traditional approaches such as historical simulation may not recognize changes in volatil-

ity, and generalized autoregressive conditional heteroskedasticity (GARCH) models are often

used to forecast future volatilities as a result (Engle, 1982; Bollerslev, 1986). For example, in

the GARCH (1, 1) model, volatilities σ2
t are calculated according to the following formula:

σ2
t = ω + αy2t−1 + βσ2

t−1, t = 1, ..., n, (2.2)

where ω = ρVL is weighted long-run variance (VL is long-run variance, and ρ is its weight),

αy2t−1 is weighted previous period’s return (yt−1 is previous period’s return), and α is its

weight), and βσ2
t−1 is weighted previous volatility estimate (β is the weight). This model

becomes popular in estimating volatilities due to its simplicity and some theoretical justifi-

cations. However, in practice, the estimated parameters often renders the model unusable.

For example, the summation of the estimated weights assigned to y2t−1 and σ2
t−1, α+β, often

exceeds one. In this situation, the volatility is not a stationary process.

Stochastic volatility (SV) models are alternatives to GARCH models in the modeling

of stock price volatilities (Taylor, 1982; Hull and White, 1987). In SV models, volatility is

considered as a random process. By allowing randomness in the process, SV models have

more theoretical benefits. In this study, we tested several autoregressive stochastic volatility

(AR-SV) models, which is a popular sub-category of SV models. In basic AR-SV models, the

logarithm of volatilities , ht = log(σt), are modeled as a stochastic autoregressive process:

ht = µ+ φ(ht−1 − µ) + vt, t = 1, ..., n, (2.3)

which can also be written as:

ht = (1− φ)µ+ φht−1 + vt, t = 1, ..., n, (2.4)

where µ is long-run volatility, ht−1 is previous volatility, and vt is normally distributed with

mean 0 and variance τ 2. If the weight assigned to previous log-volatility is between zero and

one, then ht is a stationary process. This formula also shows that the long-run mean of log-

volatilities is evaluated as µ, indicating ht is mean reverting. This mean-reverting property
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of ht is consistent with many empirical studies. In addition, the equation suggests that

current log-volatility is dependent on the previous log-volatility estimate, which satisfies the

volatility-clustering feature of stock price (high volatility is typically followed by another high

volatility, and vise versa). Furthermore, the introduction of vt suggests that log-volatility is

not a fixed function of its previous estimate, but also has its own randomness.

Given log-volatilities, daily stock returns yt can be modeled as:

yt = exp

(
ht
2

)
ut, t = 1, ..., n, (2.5)

where ut follows a normal distribution with mean zero and variance τ 2, and is independent

of vt.

In the literature, various AR-SV models have been proposed. In this study we consider

the following eight plausible AR-SV models, as described and summarized by Berg et al.

(2004).

• Model 1

This model is the basic AR-SV model as we mentioned previously. The state equation

governing the log-volatility process is given by:

ht = µ+ φ(ht−1 − µ) + vt, t = 1, ..., n, (2.6)

and the observation equation equation of daily return is:

yt = exp

(
ht
2

)
ut, t = 1, ..., n, (2.7)

where ut is a standard normal distribution, vt ∼ N(0, τ 2), and vt and ut are independent

of each other.

• Model 2

Model 2 is a variation of the basic SV model. In this model, the state equation of the

log-volatilities is the same with the basic AR-SV model, but the mean of daily returns
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yt is α (nonzero) instead of zero:

ht = µ+ φ(ht−1 − µ) + vt, t = 1, ..., n, (2.8)

yt = α + exp

(
ht
2

)
ut, t = 1, ..., n, (2.9)

where ut is a standard normal distribution, vt ∼ N(0, τ 2), and vt and ut are independent

of each other. In practice, it makes sense to assume that the expected daily return is

not zero. According to the “trade-off between risk and reward” principle, the more risk

taken, the greater the potential reward (Lundblad, 2007). Therefore, mean returns on

stocks should be at least not less than the risk-free rate.

• Model 3

In this model, log-volatilities ht follow an AR(2) process:

ht = µ+ φ(ht−1 − µ) + ψ(ht−2 − µ) + vt, t = 1, ..., n, (2.10)

yt = exp

(
ht
2

)
ut, t = 1, ..., n, (2.11)

where ut is a standard normal distribution, vt ∼ N(0, τ 2), and vt and ut are independent

of each other.

This equation is best used to model a log-volatility process that has a lower autocorre-

lation with lag-1 log-volatility. According to the Yule-Walker equation (Cheng, 2005),

for any ht in this AR(2) process, lag-1 autocorrelation (the correlation between ht and

ht−1) is the coefficient of ht−1, which is φ. On the other hand, the lag-n autocorrelation

(the correlation between ht and ht−n) is given by φn + ψn−1. Therefore, the model

indicates that current log-volatility is less correlated with its lag-1 log-volatility, but is

more correlated with all the other lagged log-volatilities.

• Model 4

The model consists of two independent AR(1) processes, as described by Harvey et al.
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(1994), Shephard (1996), and Chernov et al. (2003):

h
(1)
t = φh

(1)
t−1 + v

(1)
t , t = 1, ..., n, (2.12)

h
(2)
t = φ2h

(2)
t−1 + v

(2)
t , t = 1, ..., n, (2.13)

yt|ht = exp

(
µ

2
+
h
(1)
t

2
+
h
(2)
t

2

)
ut, t = 1, ..., n, (2.14)

where ut is a standard normal distribution, and v
(1)
t ∼ N(0, τ 2), v

(2)
t ∼ N(0, τ 2). Be-

sides, v
(1)
t , v

(2)
t , and ut are all independent of each other.

In this model, the log-volatility ht is given by µ + h
(1)
t + h

(2)
t , with h

(1)
t and h

(2)
t being

two independent AR(1) processes.

• Model 5

Model 5 allows a correlation between ut and vt+1, which causes an asymmetric effect

of yt. This correlation between ut and vt+1 has long been noticed by Black (1976), and

Engle and Ng (1993). In a previous study completed by Engle and Ng (1993), it was

found that return shocks has an impact on volatility. As a result, it is reasonable to

assume a correlation between the two. In model 5, the correlation is described by the

following covariance matrix: ut

vt+1

 ∼ N(

0

0

 ,
 1 ρτ

ρτ τ 2

) (2.15)

Therefore, the SV model equation and the state equation of ht can be written as:

ht = µ+ φ(ht−1 − µ)

+ρτ exp(−0.5ht−1)yt−1

+τ
√

1− ρ2wt, t = 1, ..., n, (2.16)

yt|ht = exp

(
ht
2

)
ut, t = 1, ..., n, (2.17)

where ut and wt are both independent normal distributions with mean 0 and unit

variance.
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• Model 6

In this model, a jump component (an additional random upward or downward move-

ment of an observation) is included in observation equation. Besides, yt is also affected

by its lagged observation yt−1:

ht = µ+ φ(ht−1 − µ) + vt, t = 1, ..., n, (2.18)

yt = βyt−1 + stqt + exp

(
ht
2

)
ut, t = 1, ..., n, (2.19)

where vt and ut are independently distributed with vt ∼ N(0, τ 2) and ut ∼ N(0, 1).

In addition, another parameter st with the distribution of log(1 + st) ∼ N(− δ2

2
, δ2)

measures jump sizes, and qt ∼ Bern(κ) is the probability of the occurrence of jumps.

The β parameter is a measurement of the sensitivity of the current observation (yt) to

the previous observation (yt−1).

In general, this model suggests that the current return yt is determined by the current

price volatility, the occurrence of a random jump, and the previous observation yt−1.

• Model 7

Similar to model 6, model 7 also includes a jump component, but not the previous

observations:

ht = µ+ φ(ht−1 − µ) + vt, t = 1, ..., n, (2.20)

yt = stqt + exp

(
ht
2

)
ut, t = 1, ..., n. (2.21)

The distributions of all the parameters in model 7 are identical to the ones in model 6.

• Model 8

To obtain this model, Gaussian observation errors in the observation equation are

replaced by Student t distributions with ν degrees of freedom:

ht = µ+ φ(ht−1 − µ) + vt, t = 1, ..., n, (2.22)

yt = exp

(
ht
2

)
ut, t = 1, ..., n. (2.23)
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where ut ∼ tν is a student t distribution with ν degrees of freedom, vt ∼ N(0, τ 2), and

vt and ut are independent of each other. This model assumes the distribution of daily

return yt has a heavier tail comparing to the basic model.

Since the errors are symmetric and nonnormal, scale-mixtures of normals could be used

for model fitting according to Andrews and Mallows (1974):

yt ∼ N

(
0,

exp(ht)

wt

)
, t = 1, ..., n,

wt ∼
1

ν
χ2
ν = Gamma

(ν
2
,
ν

2

)
, t = 1, ..., n. (2.24)

2.2 Bayesian Inference and Markov Chain Monte Carlo

Sampling for Fitting SV Models

It is rather difficult to apply classical statistical inferences, such as maximum likelihood es-

timation, to SV models due to the nonanalytic form of the likelihood function. To overcome

this problem, several alternative approaches have been proposed. For example, in quasi-

maximum likelihood method proposed by Harvey et al. (1994), an approximation of the

actual likelihood function is obtained by considering the distribution of log(yt) as a nor-

mal distribution. This approximated function (quasi-maximum likelihood function) is then

maximized instead of the actual likelihood function.

In another approach called efficient method of moments (EMM), the derivative of quasi-

likelihood function is used as the moment condition of generalized method of moments

(GMM). The EMM-estimated parameters are then calculated by minimizing the norm of

the moment condition. By using this moment condition instead of selecting a few low order

moments on an ad hoc basis, EMM method is found to be more efficient (Andersen et al.,

1999).

In our studies, we used Bayesian inference for SV models. According to Bayes’ rule, given

the prior distributions of model parameters π(θ,h) and the observed data yobs, the posterior
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distributions of model parameters can be expressed as:

fpost(θ,h|yobs) =
f(yobs|θ,h)π(θ,h)∫

f(yobs|θ,h)π(θ,h)d(θ,h)
, (2.25)

where f(yobs|θ,h) is the likelihood function of model parameters (θ,h) given the observed

data yobs, and the integral in the denominator calculates the normalizing constant. Since

it is usually very hard to calculate the integral, we apply MCMC sampling technique to

sample from the posterior distributions of model parameters based on the numerator func-

tion f(yobs|θ,h)π(θ,h), which is proportional to the posterior density function of model

parameters. This Bayesian approach, together with MCMC technique, is more efficient than

non-likelihood methods in estimating parameters of SV models (Jacquier et al., 2012). A

more recently developed MCMC technique, Hamiltonian Monte Carlo method, is especially

suitable for SV models due to its better handling of correlated model parameters ht (Car-

penter et al., 2015).

In order to fit the models to a given data set, we used Markov chain Monte Carlo (MCMC)

method to sample from the posterior distributions of parameters in each model. In an MCMC

process, model parameters were sampled according to a Markov chain. The Markov chain is

a random process that undergoes state transitions in a given state space. Given a finite state

space, a Markov chain is bound to reach a stationary state (invariant distribution) when the

chain is long enough (Gilks, 2005).

In MCMC, a Markov chain is designed to sample model parameter(s) so that the equi-

librium distribution(s) of the Markov chain is the posterior distribution of the parameter(s).

Several algorithms have been developed to accomplish this goal. One of the most commonly

used MCMC methods is Metropolis-Hastings algorithm proposed by Metropolis et al. (1953).

This algorithm starts with a non-normalized posterior probability density function f(θ|yobs)

(θ is the parameter of interest), an arbitrary initial value θ0, and an arbitrary transition prob-

ability density function Q(a|b). In the first step of the Metropolis-Hastings algorithm, a new

candidate θi is generated according to the probability density function of Q(θi|θi−1), where

i is the iteration number. In the following step, an acceptance rate α =
f(θi|yobs)Q(θi−1|θi)

f(θi−1|yobs)Q(θi|θi−1)

is calculated to determine if the newly-proposed θi should be accepted in the new iteration.
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Finally, we need to determine whether to accept the newly-proposed θi. If α is greater than

one, the θi would be automatically accepted; if α is between zero and one, the θi will be

accepted with a probability of α (if rejected, set θi = θi−1). These steps will be repeated

until we have collected necessary samples.

Although the Metropolis-Hastings algorithm could theoretically provide samples from

a posterior distribution in almost any situation, the method might not work well in some

practical problems, for example the sampling for SV models described in section 2.1. Since

the posterior density of θ does not change over the Metropolis-Hastings iterations, it is quite

likely that the sampling process gets stuck in a low-density region of θ. For example, if the

θi in the current iteration is far away from the high-density region, and most of the newly-

proposed θi+1 happen to have a very low acceptance rate α over the current θi, then the

Markov chain is highly likely to be stuck at the θi for quite a long time. If the Markov chain

gets stuck in the low-density region, we may observe an extremely slow convergence of the

chain. This convergence failure greatly limits the use of the Metropolis-Hastings method,

especially when the number of parameter is large.

To overcome the convergence problem of the Metropolis-Hastings algorithm, the Hamil-

tonian Monte Carlo (HMC) method was developed for posterior sampling (Alder and Wain-

wright, 1959; Andersen, 1980; Neal et al., 2011). The HMC method makes use of the concept

of a canonical distribution by replacing the energy function with the Hamiltonian energy

function H(q,p):

P (q,p) =
1

Z
exp[−H(q,p)] (2.26)

=
1

Z
exp[−U(q)] exp[−K(p)]

= C exp[−U(q)] exp[−K(p)],

where Z and C are normalizing constants, q is the position variable corresponding to the

potential energy, and p is the momentum variable that determines the kinetic energy. The

application of canonical distribution is to ensure a statistical equilibrium (steady state) in

the long run, since the mechanical system will reach a thermal equilibrium with a heat bath

eventually. To sample from the posterior distribution of parameter q, we define the following
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position function:

U(q) = − log g(q|yobs), (2.27)

where g(q|yobs) is non-normalized posterior probability density function of f(q|yobs), which

could be easily obtained according to the Bayes rule. In our studies of the SV models, q is

(θ, h1, . . . , hn)

On the other hand, the momentum variable p is used as an auxiliary variable to facilitate

the sampling of our target distribution of q. If we want to sample {q1, ..., qd} from the

target distribution of f(q|yobs), we would need to assign d auxiliary variables {p1, ...,pd} as

well. The p is usually defined as a zero-mean, unit variance multivariate normal distribution

independent of each other and the position variable q. Therefore, the kinetic function K(p)

can be expressed as:

K(p) =
d∑
i=1

1

2
p2i (2.28)

We are able to use the HMC method to draw sample from the posterior thanks to three fine

properties of the Hamiltonian dynamics: conserved total energy, volume preservation, and

time reversible. First, since the Hamiltonian dynamics is defined by the following differential

equations:

dqi
dτ

=
∂H

∂pi
= pi; (2.29)

dpi
dτ

= −∂H
∂qi

= −∂U
∂qi

, (2.30)

where τ is the physical time. We can easily tell that the Hamiltonian dynamics is conserved

over time:

dH

dτ
=

d∑
i=1

[
dqi
dτ

∂H

∂qi
+
dpi
dτ

∂H

∂pi

]
=

d∑
i=1

[
∂H

∂pi

∂H

∂qi
− ∂H

∂qi

∂H

∂pi

]
= 0. (2.31)

The conserved total energy indicates the Hamiltonian function H is invariant. Therefore,

when we use the Hamiltonian dynamics to propose a new state in the Metropolis updates, the

acceptance rate is always one. This high acceptance is desirable in the Metropolis method.

However, in practice, we are only able to approximate the Hamiltonian dynamics using
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multiple steps of discrete transformation functions (e.g., the leapfrog method), which makes

the actual acceptance rate a little bit smaller than one.

Besides, the Hamiltonian dynamics also preserves the volume after each transformation.

According to Liouville’s theorem, the phase space is conserved under the dynamics. This

volume preservation property is important, since constantly changing phase spaces can distort

the sampling process.

Thirdly, the time reversible property of the Hamiltonian dynamics comes from the way

the transformation (denoted by Ts) works. Since the mapping from (q(τ ),p(τ )) to (q(τ +

s),p(τ +s)) is one-to-one according to the Ts, the backward mapping from (q(τ +s),−p(τ +

s)) to (q(τ ),−p(τ )) can be achieved through T−s. This time reversible property suggests

the transformation leaves the target distribution invariant. As a result, the transformation

would provide a random sample from the target distribution.

One common approach of the Hamiltonian dynamics is through the application of multiple

steps of leapfrog transformation. In each single leapfrog jump, we start at a given state of

(p(τ ), q(τ )) at time τ , and after an arbitrary period of time ε, the new state (p(τ+ε), q(τ+

ε)) is calculated by the following formulas:

p̂i

(
τ +

ε

2

)
= p̂i(τ )− ε

2

∂U

∂qi
(q̂(τ )); (2.32)

q̂i(τ + ε) = q̂i(τ ) + εp̂i

(
τ +

ε

2

)
; (2.33)

p̂i(τ + ε) = p̂i

(
τ +

ε

2

)
− ε

2

∂U

∂qi
(q̂(τ + ε)). (2.34)

Since a series of leapfrog transformations is an approximation to the Hamiltonian dynamics,

the energy function H is not totally invariant. To compensate for this, we would accept the

newly proposed state (p′, q′) with a Metropolis acceptance rate instead of one.

Once we define the position function, the kinetic energy function and the Hamiltonian

dynamics, we can start the HMC sampling process with a current state q0 by repeating a

three-step iteration. In the first step of the iteration, we randomly select −p0 from their

independent standard normal distributions, and then we negate the variables to get p0. In

the second step, through the application of L leapfrog steps with an arbitrary time period of ε

each, a new (p′, q′) is proposed from the current state (p0, q0). In the end, the newly-proposed
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(p′, q′) is accepted with a probability of min(1, exp[−H(q′, p′) + H(q,−p)]). If rejected, the

next state would be the same as the current state. However, no matter whether the new

state is accepted or not, the momentum variable p would always be re-generated from its

independent multivariate normal distribution at the beginning of each iteration.

In the HMC sampling process, the choice of the leapfrog step size parameter ε and the

trajectory length parameter L is of paramount importance to the performance of the HMC

sampling. In order to best approximate a continuous Hamiltonian dynamics process and thus

avoid a high rejection rate, the step size parameter ε cannot be too large. However, an ε

that’s too small might slow down the trajectory too much. The trajectory length parameter,

L, on the other hand, also needs to be carefully chosen to minimize auto-correlations between

different samples. In other words, the ideal choice of L should be able to maximize the the

difference between q0 and q′.

In our studies, the model-fitting process was completed through the application of rstan

package, which is an R package based on stan sampler (Guo et al., 2016). The stan is a

recently developed MCMC sampler using the no-U-turn (NUT) HMC algorithm, which is a

modified HMC method that with a default scheme for choosing L (Carpenter et al., 2015;

Gelman et al., 2015). In the NUT sampling, the trajectory will automatically stop once the

next single leapfrog jump would make q′ closer to q0. Through the application of the NUT

HMC algorithm, the stan sampler generally works much better than traditional samplers

when dealing with models with a large number of parameters. As a result, we used the rstan

package in our studies to make posterior parameter sampling for our SV models.
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Chapter 3

Statistical Methods for Comparing the Stochas-

tic Models

Model selection is important in the study of stock market data and forecasting future

trends. By using the correct model, the property of the data is better understood and

interpreted, thus better predictions and estimations can be made. Using wrong models in

practice, on the other hand, may lead to unexpected losses that could be prevented.

Traditional methods, including the mean squared error (MSE) and the coefficient of de-

termination (R2), only measure the fit of the data to the models. Since adding additional

parameters into a model typically increases the goodness-of-fit, these methods tend to favor

complex models that may over-fit the data. To overcome the over-fitting problem, cross-

validation methods are introduced. The cross-validation methods involve partitioning the

data set into two subsets, fitting the model with one subset, and testing the model with

the other subset. Although the cross-validation methods seem to be able to fully address

the over-fitting problem, these methods are time-consuming and costly. Alternatively, many

methods impose penalties for model complexity.

3.1 The Cross-Validation Information Criterion

Among all cross-validation methods, leave-one-out-cross-validation (LOOCV) is usually used

to minimize the number of tests to run. In addition, LOOCV makes better use of the

given data set than any other cross-validation method. In LOOCV, the information criterion
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(cross-validation information criterion, or CVIC) is computed by the following formula:

CVIC = −2
n∑
t=1

log f(yobs

t |yobs

−t ). (3.1)

In this equation, the information criterion is calculated as −2 times the sum of log f(yobs
t |yobs

−t ).

The bigger the CVIC value, the worse the fit.

Applied to SV models, the LOOCV posterior predictive density of the tth observation,

f(yobs
t |yobs

−t ), can be calculated by the following equation:

f(yobs

t |yobs

−t ) =

∫∫
f(yobs

t |θ, ht)f(θ,h1:n|yobs

−t )dθdh1:n. (3.2)

In the equation above, hj is log-volatility parameter corresponding to the jth observation

(yobs
j ), and θ are all the other non-log-volatility model parameters. In addition, yobs

−t and h−t

represent all observations and latent variables except yobs
t and ht, respectively. The equation

(3.2) calculates f(yobs
t |yobs

−t ) as the expected value of f(yobs
t |θ, ht), where the distributions of

θ and ht could be obtained according to the data set yobs
−t . If we assume that the structural

information of the log-volatility series (h1:n) is preserved, then MCMC samples of θ,h1:n|yobs
−t

can be drawn according to the following joint posterior distribution:

f(θ,h1:n|yobs

−t ) ∝
∏
j 6=t

f(yobs

j |hj,θ)f(h1:n|θ)f(θ), (3.3)

where f(yobs
j |hj,θ) is the probability density of yobs

j conditional on hj and θ, f(h1:n|θ) is the

probability density of h1:n conditional on θ, and f(θ) is the prior distribution of θ. Once

we obtain the sample of the parameters,f(yobs
t |yobs

−t ) could be readily calculated according to

equation (3.2) by approximating the integral with averaging over MCMC samples. Finally,

the CVIC values of the SV models could be subsequently computed by formula (3.1) for each

t = 1, . . . , T .

However, when the model fitting process is time consuming, even LOOCV method might

become too expensive. In LOOCV, we need to simulate at least T Markov chains. In our

study of SV models, the time for a computer to finish running a single Markov chain ranges

from hours to several days, which is extremely time-consuming. Therefore, non-exhaust cross-
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validation methods are sometimes used to approximate exhaustive methods to further reduce

the computation. Instead of testing all possible combinations of training sets and validating

sets, non-exhaustive methods only use a finite number of randomly selected combinations.

In general, cross-validation approach is effective in dealing with optimistic bias problem,

but the great cost of computation limits its use. In our studies, the number of observations

in each data set is big, and the model fitting process is extremely time consuming (typically

from hours to days). Therefore, cross-validation approach is not a good option. Instead, sev-

eral other methods (DIC, WAIC, IS) were used to approximate cross-validation information

criterion.

3.2 The Deviance Information Criterion

The deviance information criterion (DIC) is often used for Bayesian model selections (Spiegel-

halter et al., 2002). In particular, DIC method is very useful in the Bayesian model selection

problems when the posteriors are generated from Markov chain Monte Carlo (MCMC) sim-

ulation. In the case of MCMC simulation, both expected deviance of fit (D) and effective

number of parameters (pD) can be readily calculated from samples of simulated posterior pa-

rameters and the original data set (Dempster, 1997). For example, for the basic SV model:

ht = µ+ φ(ht−1 − µ) + vt, t = 1, ..., n, (3.4)

yt = exp

(
ht
2

)
ut, t = 1, ..., n. (3.5)

The MCMC simulation will provide us with a list of parameter and latent variable ht values

from each iteration. So at the end of the simulation, we have h
(i)
1 , h

(i)
2 , ..., h

(i)
n , i = 1, ..., I,

where i means the ith sample and the I is the total number of samples. So in this particular

case, the goodness-of-fit measurement, D, is calculated by the following formula:

D = −2Eθ|y,h[log f(y|θ, ht)], which can be estimated by (3.6)

D̂ = −2
n∑
t=1

1

I

I∑
i=1

log f(yobs

t |h
(i)
t ), (3.7)

23



where log f(yobs
t |h

(i)
t ) is the log-scaled probability density of the tth observation with mean zero

and standard deviation exp(h
(i)
t ). On the other hand, the measurement of model complexity,

pD, is given by D −D(θ). The calculation of D has been shown in the above formula, and

the following equation can be used to compute the D(θ):

D̂(θ) = −2
n∑
t=1

log f(yobs

t |ht), t = 1, ..., n, (3.8)

where ht is the posterior mean of ht, which can be estimated by the average of ht in MCMC

samples.

In general, the major advantage of DIC method is that the method is very easy to im-

plement and is proven to work reasonably well for the problems with identifiable parame-

terization. The DIC method typically does not require many model specific adjustments,

and the calculation is usually not time consuming. Therefore, DIC method is a cost-efficient

solution to Bayesian model selection problems. However, the method assumes a posterior

multivariate normal distribution, which may not be guaranteed in some cases.

3.3 The Widely Applicable Information Criterion

The widely applicable information criterion (WAIC, also called non-integrated WAIC, or

nWAIC) is a recently developed model-selection method aiming to correct for optimistic

bias. Like other popular model selection methods, the formula of WAIC approach comprises

two terms, goodness-of-fit measurement and penalty for model-complexity, which is given

below(Watanabe, 2010):

WAIC = −2
n∑
t=1

logEpost[f(yobs

t |θ)] + 2pWAIC . (3.9)

The first term in the above formula is−2 times the summation of the log-scaled expectation of

predictive probability density. The higher the value, the worse the fit. The second term pWAIC

(effective number of parameters) measures model complexity, which could be calculated by
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either of the following two formulas:

pWAIC1 = 2
n∑
t=1

{logE
post, θ|yobs [f(yobs

t |θ)]− E
post, θ|yobs [log f(yobs

t |θ)]}, or (3.10)

pWAIC2 =
n∑
t=1

Varpost[log f(yobs

t |θ)]. (3.11)

A higher pWAIC value corresponds to a higher level of model complexity. In our study, the

effective number of parameters is calculated according to the latter formula (pWAIC2).

For all SV models in this study, goodness-of-fit measurement is calculated by −2 times

the summation of the log-scaled expected predictive probabilities of the observations:

−2
n∑
t=1

logEθ|yobs [f(yobs

t |θ, ht)], (3.12)

which is estimated by:

−2
n∑
t=1

log

[
1

I

I∑
i=1

f(yobs

t |θ(i), h
(i)
t )

]
. (3.13)

In the formula above, the logarithm of expected probabilities are calculated as the natural

logarithm of the average predictive probabilities of the observations over different parameter

samples.

The effective number of parameters, pWAIC , is calculated by summing up the vari-

ance of log f(yobs
t |θ). For each yobs

t , the variance is estimated by the sample variance of{
log f(yobs

t |θ(i), h
(i)
t )
}

, where i = 1, ..., I are numbers of samples.

In general, WAIC method is similar to DIC method. Like DIC method, WAIC method

contains a goodness-of-fit element and a penalty-for-model-complexity element. Also, WAIC

is easy to compute and requires few adjustments when implemented. However, the theoretical

basis of this method to models with latent variables is unknown, and further studies are

necessary to examine its correctness.
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3.4 The Importance Sampling Information Criterion

The importance sampling information criterion (IS-IC, also called non-integrated IS-IC, or

nIS-IC) is another model selection technique in an effort to approximate cross-validation

results (Gelfand et al., 1992; Gelfand, 1996). Although the importance sampling method has

been proposed for a long time, its application to SV models hasn’t been studied yet. Suppose

X and Y follow two distributions with probability density function of f(X) and g(Y ), and

we can sample directly from the distribution of X and we know that h(Y ) ∝ g(Y ), then we

can estimate the expected value of any function with respect to the distribution of Y . If the

function of interest is j(Y ), and a sample of X is given by {X1, X2, ..., XI}, then according

to the importance sampling rule, E[j(Y )] can be estimated as:

̂E[j(Y )] =
1
I

∑n
i=1 j(Xi) ∗Wi

1
I

∑n
i=1Wi

, (3.14)

W =
h(Xi)

f(Xi)
, (3.15)

where W is called the importance weight. If we apply the above formulas to our specific

problem of SV models, and our goal is to approximate the LOOCV result, then the above

formulas would be equivalent to:

IS-IC = −2
n∑
t=1

log
E
post, θ|yobs [f(yobs

t |θ, ht)Wt(θ, ht)]

E
post, θ|yobs [Wt(θ, ht)]

(3.16)

= −2
n∑
t=1

log
1

E
post, θ|yobs [1/f(yobs

t |θ, ht)]
,

whereWt(θ, ht) = 1

f(yobst |θ,ht)
is the weight measurement. The higher the pointwise probability

is, the smaller the weight. In our studies, the IS-IC can be estimated by:

IS-IC = −2
n∑
t=1

log
1

1
I

∑I
i=1 1/f(yobs

t |θ(i), h
(i)
t )

(3.17)

In the SV models, the ith sample of model parameters corresponding to the tth observation is

given by θ(i) and h
(i)
t . Given the θ(i) and h

(i)
t , the f(yobs

t |θ(i), h
(i)
t ) is the probability density of
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yobs
t according to a normal distribution with mean zero and standard deviation of exp

(
h
(i)
t

2

)
.

3.5 The Integrated WAIC and IS Criteria

Although both the non-integrated WAIC and IS-IC can be used to validate all SV models

covered in our studies, it should be noted that simulated ht are heavily affected by their

corresponding observations. In an effort to fit the observations, the MCMC samples of ht are

largely confined to the regions that fit yobs
t well (Li et al., 2015). As a result, the marginal

distribution of ht may be biased to the regions that fit yobs
t well. To reduce this bias, the

distribution of ht should cover larger regions that are not affected by yobs
t .

In actual LOOCV, the expectation of the likelihood of the test observation yobs
t is cal-

culated using the fitted parameters unaffected by the test observation itself. Under this

condition, model evaluation is generally considered to be unbiased estimate of the out-of-

sample predictive evaluation. Therefore, the likelihood in the formulas of WAIC and IS-IC

could be replaced by f(yobs
t |θ,h−t), where θ,h−t are fitted model parameters.

In our studies, each SV model has a series of latent variables ht as a measurement of

log-volatilities for the corresponding observations of yt. Since the latent variables ht are

the log-volatilities of the yt, each ht is highly correlated to its corresponding observation

yt. Due to this correlation, the likelihood estimates of the observations are considered to be

biased. As a result, by integrating with respect to the latent variable ht when calculating the

likelihood of the corresponding observation yt, this optimistic bias can be largely reduced.

Here, we denote f(yobs
t |θ,h−t) as the likelihood of yobs

t based on all of the fitted parameters

except ht. To calculate this new likelihood, the original function f(yobs
t |θ, ht) needs to be

weighted by the distribution of ht|θ,h−t. This weighted likelihood function can be calculated

by the following integral:

f(yobs

t |θ,h−t) =

∫ ∞
−∞

f(yobs

t |θ, ht)f(ht|θ,h−t)dht, (3.18)

where h−t means h1, h2, ..., ht−1, ht+1, ..., hn (n is the total number of the observations), and θ

denotes all the other model parameters (for example, µ, φ, τ). Once we obtain this integrated
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likelihood, we can use it to calculate a new version of WAIC:

piWAIC =
n∑
t=1

Varpost[log f(yobs

t |θ,h−t)], (3.19)

iWAIC = −2
n∑
t=1

logE[f(yobs

t |θ,h−t)] + 2pWAIC , (3.20)

and IS-IC:

iIS-IC = −2
n∑
t=1

log
1

Epost[1/f(yobs
t |θ,h−t)]

. (3.21)

This new version of WAIC and IS-IC is called integrated WAIC (iWAIC) and integrated IS-

IC (iIS-IC), respectively. Due to the avoidance of direct use of fitted ht during the calculation

of the integrated criteria, the optimistic bias is expected to be smaller. As a result, iWAIC

and iIS methods could potentially improve the performance of the model-selection criteria

over the conventional WAIC and IS-IC approaches.

In our study, we assume the distribution of current log-volatility, ht, can only be obtained

according to the values of the other parameters. The parameters determining the distribution

of ht include its neighboring log-volatility measurements and θ. This ht distribution can be

calculated as follows (see the appendix for the detailed derivations).

• Conditional distribution of ht given h−t in AR(1) process

When log-volatilities follow an AR(1) process (model 1, 2, 6, 7, and 8), then for t =

1, ..., n, the posterior of ht|θ,h−t follows the following normal distribution:

ht|θ,h−t ∼ N

(
φ

φ2 + 1
ht+1 +

φ

φ2 + 1
ht−1 +

µ

φ(φ2 + 1)
− φµ

φ2 + 1
− µ

φ
(3.22)

+µ,
τ 2φ2

φ2 + 1

)
.

• Conditional distribution of ht given h−t in AR(2) process

When the log-volatilities follow an AR(2) process (model 3), the distribution of ht|h−t,θ
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is normal as well:

ht|θ,h−t ∼ N

(
φ+ ψ − φψ

1 + φ2
ht−1 +

φ

1 + φ2
ht+1 +

φψµ− 2φµ− ψµ
1 + φ2

(3.23)

+µ,
τ 2

1 + φ2

)
, t = 1, ..., n.

• Conditional distribution of ht given h−t in two independent AR(1) process

When there are two independent log-volatility processes going on simultaneously (model

4), the distributions of h
(1)
t |h−t,θ and h

(2)
t |h−t,θ are given by:

h
(1)
t |h−t, φ, τ ∼ N

(
φ(h

(1)
t+1 + h

(1)
t−1)

1 + φ2
,
τ 2φ2

1 + φ2

)
, t = 1, ..., n. (3.24)

h
(2)
t |h−t, φ2, τ2 ∼ N

(
φ2(h

(2)
t+1 + h

(2)
t−1)

1 + φ2
2

,
τ 22φ

2
2

1 + φ2
2

)
, t = 1, ..., n. (3.25)

• For model 5, however, the distribution of ht|θ,h−t is not well-defined. Like all the

other models, the probability density function of ht|θ,h−t is proportional to the product

of the probability density functions of ht|θ, ht−1 and ht+1|θ, ht:

g(ht|θ,h−t) = exp


−
[
ht − µ− φht−1 + φµ− ρφyt−1 exp

(
−ht−1

2

)]2
2τ 2(1− ρ2)

(3.26)

−
−
[
ht+1 − µ− φht + φµ− ρτyt exp

(
−ht

2

)]2
2τ 2(1− ρ2)

 ,

f(ht|θ,h−t) ∝ g(ht|θ,h−t), t = 1, ..., n. (3.27)

Since f(yobs
t |θ,h−t) =

∫∞
−∞ f(yobs

t |θ, ht)f(ht|θ,h−t)dht, we have:

f(yobs

t |θ,h−t) =

∫∞
−∞ f(yobs

t |θ, ht)g(ht|θ,h−t)dht∫∞
−∞ g(ht|θ,h−t)dht

, t = 1, ..., n, (3.28)

where g(ht|θ,h−t) is proportional to f(ht|θ,h−t), and the integral in the denominator,
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∫∞
−∞ g(ht|θ,h−t)dht is the normalizing constant.

However, in practice, the direct calculation of the integral may give rise to a big error,

and a safer way to diminish this error is the application of the following logarithms:

log f(yobs

t |θ,h−t) = log

[∫∞
−∞ f(yobs

t |θ, ht)g(ht|θ,h−t)dht∫∞
−∞ g(ht|θ,h−t)dht

]
(3.29)

= log[

∫ ∞
−∞

f(yobs

t |θ, ht)g(ht|θ,h−t)dht] (3.30)

− log[

∫ ∞
−∞

g(ht|θ,h−t)dht], t = 1, ..., n.

Therefore, in order to calculate the integrated likelihood for this model, we need to

respectively evaluate the two integrals on the numerator and the denominator of the

equation.

As we can see from the upper and lower limits, the integrals are both improper integrals.

Therefore, we need to transform them to proper integrals in the first step. The transfor-

mation could be completed by substituting ht with a function of k: ht−1+ht+1

2
+log( k

1−k
).

This substitution changes the upper and lower limit of the integral from −∞ and∞ to

0 and 1. The result of the integrals can both be approximated by midpoint rule. To cal-

culate an integral of a function f using midpoint rule, we equally divide n subintervals

between the lower and upper limits, and calculate the function value at the midpoint

of each subinterval. An approximated result can thus be obtained by multiplying the

length of one subinterval by the summation of the function values at midpoints. Here,

we used n = 100 for the total number of the subintervals, and the integrals on the nu-

merator and denominator were calculated separately. The final result of the integrated

log-likelihood can be subsequently obtained once we are able to evaluate the numerator

and the denominator.
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Chapter 4

Empirical Results

4.1 Simulation Studies

In our first study, the performances of the model selection criteria were tested by using a

group of simulated data sets. First, we generated a data set from model 6, which means

that the real model for the data is model 6. This data-generating process was repeated 100

times to generate 100 data sets. Second, each of the simulated data sets was individually

fitted into all the candidate SV models listed in Chapter 2. Finally, the model-selection

criteria, including DIC, nWAIC, nIS, iWAIC, and iIS, were used to choose the best model

for simulated data sets.

In the first step, data sets were simulated by setting the parameters in model 6 to some

specific values. In our particular case, the parameters used for the data-generations are

µ = −10, φ = 0.96, τ = 0.345, β = 0.1, κ = 0.08, and δ = 0.03. Each simulated data set is a

time series with 2000 observations.

Once the data sets were generated, we subsequently fitted the candidate SV models (see

Chapter 2 for a list of the models) to the data. To fit the models, Markov chain Monte

Carlo (MCMC) method was used to sample from the posteriors of the parameters in each

model. A number of MCMC algorithms have been proposed to sample model parameter(s),

such as the Metropolis-Hastings algorithm and Gibbs sampling. Based on these MCMC algo-

rithms, many sampling software packages are developed, including WinBUGS, OpenBUGS

and JAGS (Lunn et al., 2000; Spiegelhalter et al., 2007; Plummer, 2003). However, since

these packages are mainly based on the Metropolis-Hastings algorithm, they may suffer from

slow convergence problem due to random walk method used in the algorithm to propose a

new state. To overcome this problem, stan package was developed (Carpenter et al., 2015;
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Gelman et al., 2015). In stan, convergence could be much faster through the application of

Hamiltonian Monte Carlo and no-U-turn sampling (Carpenter et al., 2015). Therefore, we

decided to use stan sampler for our particular studies of SV models.

Before we can use the stan sampler to sample from the posterior distributions of model

parameters, we need to assign priors to the parameters first. For all SV models in this

study, the prior distribution of µ is normal with mean −10 and standard deviation of 5. In

addition, the prior of τ 2 ∼ Inverse-Gamma(2.5, 0.025) (Kim et al., 1998), and the prior of

φ is uniformly distributed between zero and one for all the candidate models. For model 2,

the prior of the parameter α ∼ N(0, 10), and all the other parameter priors are the same

as the basic SV model. The prior distribution of ψ in model 3 is identical with the prior

distribution of φ in the basic SV model (uniformly distributed between 0 and 1). In model

4, the prior of the parameter φ2 has the same distribution as φ in the basic SV model. For

model 5, the prior of ρ is uniformly distributed between −1 and 1 with mean zero, which

gives a non-informative prior distribution to the correlation parameter ρ. The β parameter in

model 6 measures how much the current observation would affect the previous observation,

and the parameter is generally considered as small. As a result, we imposed an informative

prior of β ∼ N(0, 0.2) on this parameter. Also in model 6, the κ parameter that measures

the probability of the occurrence of a jump (an additional upward or downward movement

of yt that may or may not occur) in an observation, is assigned with a Beta(2, 100) prior

(Chib et al., 2002). On the other hand, the prior of the jump-size parameter st follows a

distribution of ln(1 + st) ∼ N(−δ2/2, δ2), and we assume that the prior distribution of log(δ)

is given by log(δ) ∼ N(−3.07, 0.149) (Chib et al., 2002). In model 8, the parameter ν has a

uniform distribution on [2, 128] as its prior (Chib et al., 2002).

Once the priors of the model parameters were set, stan sampler read in the simulated

observations (from model 6) and subsequently fitted the candidate models. In order to ensure

the convergence of Markov chains, the number of sampling iterations were set to be 20, 000

for each individual Markov chain. Since the chains may take a while to converge, the first

10, 000 samples were dropped. In order to reduce autocorrelations between the neighboring

samples, the final sample contains only every tenth sample of the remaining 10, 000 samples.

Besides, to ensure the convergence of the Markov chains, two independent chains were run
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Table 4.1: Average Parameter R̂ for Simulated Data. The values in the table
are the average R̂ values of the model parameters over all the 100 data sets, with their
corresponding standard deviations in the next line in the parentheses.

Model
Parameter 1 2 3 4 5 6 7 8

µ 1.0001 1.0000 1.0004 1.0918 1.0000 1.0003 1.0003 1.0006
(0.0008) (0.0007) (0.0018) (0.2289) (0.007) (0.0010) (0.0011) (0.0014)

φ 1.0024 1.0026 1.0174 53.8731 1.0024 1.0028 1.0026 1.0036
(0.0024) (0.0025) (0.0156) (70.0696) (0.0033) (0.0032) (0.0037) (0.0034)

φ2 - - - 59.9186 - - - -
- - - (90.8096) - - - -

τ 1.0056 1.0060 1.0181 2.8202 1.0062 1.0056 1.0048 1.0086
(0.0044) (0.0052) (0.0161) (1.8771) (0.0060) (0.0052) (0.0054) (0.0077)

τ2 - - - 2.9484 - - - -
- - - (1.9141) - - - -

α - 1.0000 - - - - - -
- (0.0010) - - - - - -

ψ - - 1.0168 - - - - -
- - (0.0152) - - - - -

ρ - - - - 0.9999 - - -
- - - - (0.0007) - - -

β - - - - - 1.0002 - -
- - - - - (0.0010) - -

κ - - - - - 1.0034 1.0046 -
- - - - - (0.0056) (0.0075) -

δ - - - - - 1.3777 1.3637 -
- - - - - (0.2737) (0.2706) -

ν - - - - - - - 1.0465
- - - - - - - (0.0410)
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simultaneously for each simulated data set. Comparison between the two chains on the same

set of data confirmed that the Markov chains are converged before the first 10, 000 samples of

the MCMC sampling (see Figure 4.1 for examples of the trace plots for model 6 parameters,

and Table 4.1 for R̂ values). The R̂ is a relative measurement of cross-chain variances to

within-chain variances, with values near 1.0 indicating good convergence (Gelman et al.,

2011). In our studies, we ran two individual Markov chains for each posterior distribution

(based on a data set for a given model), and if the Markov chains do converge, the two chains

for the same set of data should exhibit similar patterns after the convergence point. An R̂

value greater than 1 suggests imperfect convergence, and the bigger the R̂ value, the worse

the convergence. The parameter R̂ values for the fitted models (using the simulated data)

are mostly very close to one, indicating the Markov chains do converge for these models.

An exception, though, is the φ (R̂ = 53.8731), τ (R̂ = 2.8202), φ2 (R̂ = 59.9186), and τ2

(R̂ = 2.9484) parameters in model 4. These large values of R̂ show that the Markov chains

do not converge well in this model. However, the issue is not a big concern in this particular

case. In model 4, we have two independent AR(1) processes that have the same formula

format. As a result, the model contains two modes. If one mode contains h
(1)
t , φ, τ , h

(2)
t ,

φ2, τ2 and all the other parameters, then the other mode is formed by keeping all the other

parameters unchanged while exchanging the values of h
(1)
t , φ, and τ altogether with h

(2)
t , φ2,

and τ2. Therefore, the high values of R̂ for model 4 are caused by the two chains converging

to the two different modes (see Figure 4.2 for an example). Since the two modes are relatively

far apart from each other, it is difficult for any existing sampler to explore the parameter

space in this particular case. Since converging to different modes would keep the distribution

of h
(1)
t + h

(2)
t unchanged, and the distribution of ŷt only depends on the summation of h

(1)
t

and h
(2)
t , the overall model is unaffected with respect to the predictions of yt.

The values of the fitted parameters and their standard deviations are listed in Table 4.2.

The results from the table show that the expected values of model parameters generally fits

the profile of the data-generating parameters, which indicates a good fit.
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Figure 4.1: Example of trace plots of µ, φ, τ , β, δ, and κ in model 6.
The two chains in each trace plot are from two individually simulated Markov chains
based on model 6 and the same set of data. The cross-chain variances is relatively
small comparing to the within-chain variances after the burn-in period, indicating good
convergence of the Markov chains.
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Figure 4.2: Example of trace plots of φ and φ2 in model 4 when two Markov
chains converge to different modes. The φ and φ2 in the trace plots are from two
individually simulated Markov chains based on model 4 and the same set of data. The
cross-chain variances are huge comparing to the within-chain variances due to the fact
that the two chain converge to two different modes.
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Table 4.2: Average Parameter Estimates for Simulated Data. The values in
the table are the expected values of the prior and the average values of the posterior
model parameters, with their corresponding standard deviations in the next line in the
parentheses.

Model

Parameter Distribution 1 2 3 4 5 6 7 8

µ Prior -10 -10 -10 -10 -10 -10 -10 -10

(5.00) (5.00) (5.00) (5.00) (5.00) (5.00) (5.00) (5.00)

[-10] Posterior -9.964 -9.964 -9.971 -9.97 -9.961 -9.971 -9.964 -9.991

(0.2020) (0.2054) (0.2051) (0.1918) (0.2027) (0.2098) (0.2085) (0.2055)

φ Prior 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

(0.2887) (0.2887) (0.2887) (0.2887) (0.2887) (0.2887) (0.2887) (0.2887)

[.96] Posterior 0.9577 0.9585 0.7504 0.5304 0.958 0.9588 0.9585 0.9592

(0.0093) (0.0091) (0.1423) (0.2629) (0.0092) (0.0093) (0.0093) (0.0091)

τ Prior 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

[.345] Posterior 0.3381 0.3367 0.3992 0.2364 0.3375 0.3377 0.3391 0.3301

(0.0292) (0.0290) (0.0520) (0.0766) (0.0294) (0.0295) (0.0295) (0.0296)

α Prior - 0 - - - - - -

- (3.16) - - - - - -

Posterior - −1.6e−5 - - - - - -

- (0.0001) - - - - - -

ψ Prior - - 0.5 - - - - -

- - (0.2887) - - - - -

Posterior - - 0.2004 - - - - -

- - (0.1377) - - - - -

φ2 Prior - - - 0.5 - - - -

- - - (0.2887) - - - -

Posterior - - - 0.4591 - - - -

- - - (0.0790) - - - -

τ2 Prior - - - 0.12 - - - -

- - - (0.05) - - - -

Posterior - - - 0.22 - - -

- - - (0.2693) - - - -

ρ Prior - - - - 0 - - -

- - - - (0.58) - - -
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Table 4.2: Average Parameter Estimates for Simulated Data (continued)

Model

Parameter Distribution 1 2 3 4 5 6 7 8

Posterior - - - - 0.0602 - - -

- - - - (0.0404) - - -

β Prior - - - - - 0 - -

- - - - - (0.45) - -

[0.1] Posterior - - - - - 0.0987 - -

- - - - - (0.0238) - -

κ Prior - - - - - 0.02 0.02 -

- - - - - (0.01) (0.01) -

[0.08] Posterior - - - - - 0.0188 0.0187 -

- - - - - (0.0130) (0.0130) -

δ Prior - - - - - 0.05 0.05 -

- - - - - (0.02) (0.02) -

[0.03] Posterior - - - - - 0.0484 0.0496 -

- - - - - (0.0144) (0.0152) -

ν Prior - - - - - - - 65

- - - - - - - (36.4)

Posterior - - - - - - - 74.943

- - - - - - - (30.347)

When the sampling of the model parameters was completed by the stan sampler, the

DIC, WAIC, IS, iWAIC, and iIS criteria were used to make the model selection. In order

to calculate the integrated likelihood for the iIS and iWAIC, we sampled one hundred ht for

each time point t in each iteration. This random sampling process was completed according

to the calculated distribution of ht|θ,h−t (see Chapter 3 for details). When the samples

from f(ht|θ,h−t) was obtained, the corresponding log f(yobs
t |θ,h−t) could be calculated. To

calculate this integrated likelihood, we plugged in the the samples from f(ht|θ,h−t) into

the probability function of yobs
t , one at a time, in order to compute a total of one hundred

log-scaled probability of yobs
t for each time point in each iteration. Finally, the average of the

one hundred log-likelihood of yobs
t would provide a good estimate of the desired integrated

log-likelihood log f(yobs
t |θ,h−t). For model 5, however, the samples from f(ht|θ,h−t) cannot
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be readily acquired from a well-defined distribution, and the approximated value of the

integrated log-likelihood is calculated by the method of numerical quadrature (see Chapter

3 for details).

Since the model used to generate the data is model 6, a good model-selection criterion

should be able to choose this model in most cases. For each data set under each criterion, the

best model is the model with the lowest IC value. The average IC value results provided by

Table 4.3b show that model 6 has the lowest average DIC and nWAIC values, suggesting the

two criteria are able to correctly choose the real model in general. On the other hand, the

average iWAIC value for model 6 (real model) is much higher than model 4, indicating the

iWAIC method is not very reliable in selecting the correct model. Besides, the average nIS

value for model 6 is also a little higher than model 4, although model 6 is more frequently

selected than model 4 under the nIS criterion. The average iIS value of model 6, however,

is much lower than that of model 4, indicating the integration step does improve the per-

formance of the importance sampling information criterion. The model selection frequency

results are listed in Table 4.3c. In this table, each information criterion decides which model

to choose according to the IC values. According to Table 4.3c, the DIC criterion is able to

choose the correct model (model 6) most of the time. In addition, although model 4 is not

the true model, the DIC criterion seems to have a strong favor over it (28 out of 100). Finally,

the DIC method manages to tell that the remaining candidate models (model 1, 2, 3, 5, 7,

and 8) are not suitable to the data sets. These patterns of model-selection results shown in

the DIC are very similar to the result patterns shown in the nIS. In nIS results, the true

model is also selected most of the time (57 out of 100), and model 4 is frequently mis-selected

as well (32 out of 100). The nWAIC method, on the other hand, has a moderate preference

on model 8 (11 out of 100) besides model 6 (55 out of 100)and model 4 (30 out of 100). The

iWAIC method is able to decrease the mis-selection of model 4 (24 out of 100) comparing to

the nWAIC, but a two-fold increase in the selection of another incorrect model, model 8 (35

out of 100), makes the iWAIC the least likely method to choose the correct model. The iIS

method, however, could successfully decrease the selection frequency of model 4 (24 out of

100) while not inflicting other significant mis-selections.

The CPU time table shows how much system time is used to calculate the information
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Table 4.3: The Model Selection Results for Simulated Data

(a) The DIC, nWAIC, iWAIC, nWAIC, nIS, and iIS
values for a randomly chosen set of simulation data.

Model DIC nWAIC iWAIC nIS iIS
1 -13733.7 -13740.8 -13718.2 -13704.3 -13696.4
2 -13730.7 -13738.5 -13714.2 -13699.0 -13693.9
3 -13735.5 -13746.2 -13709.8 -13706.7 -13694.7
4 -13733.2 -13742.8 -13714.8 -13709.6 -13696.8
5 -13735.0 -13742.2 -13719.8 -13694.5 -13698.4
6 -13735.6 -13744.7 -13704.5 -13697.3 -13696.6
7 -13724.6 -13733.4 -13667.8 -13694.9 -13656.0
8 -13731.2 -13746.4 -13722.0 -13701.6 -13693.0

(b) The average DIC, nWAIC, iWAIC, nWAIC, nIS,
and iIS values for the 100 sets of simulation data.

Model DIC nWAIC iWAIC nIS iIS
1 -14040.8 -14048.7 -14020.7 -14007.2 -13997.3
2 -14040.3 -14047.9 -14020.0 -14006.7 -13997.1
3 -14041.7 -14053.5 -14011.4 -14008.4 -13993.5
4 -14049.6 -14060.4 -14023.8 -14022.2 -14005.5
5 -14040.3 -14047.9 -14022.0 -14007.1 -14000.5
6 -14053.1 -14061.1 -14024.9 -14020.5 -14017.6
7 -14037.2 -14046.6 -13994.2 -14006.0 -13983.8
8 -14039.7 -14056.1 -14027.0 -14009.3 -13997.7

(c) The model selection frequencies for all the 100 sets of simulated data.

DIC nWAIC iWAIC nIS iIS
Model Times Selected Times Selected Times Selected Times Selected Times Selected

1 1 0 0 3 2
2 1 1 2 1 0
3 3 3 0 2 0
4 28 30 24 32 21
5 0 0 3 1 1
6 67 55 36 57 75
7 0 0 0 0 0
8 0 11 35 4 1
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criteria in each model. According to the results shown in Table 4.4, on average, the DIC

method takes the least amount of time (from 10.4 seconds to 25.5 seconds), and nWAIC and

nIS approaches both require slightly more time (about one second difference) than the DIC

method. The iWAIC and iIS methods are the most time-consuming approaches. Due to the

integration process, both iWAIC and iIS need 3 to 4.5 minutes of CPU time to compute. The

CPU time also varies with models. In general, the calculation of information criteria tend to

take less time for simple models (model 1, 2, 3, etc) than for complex models (model 6, 7,

etc).

Table 4.4: The Average CPU Time Used to Compute the Criteria for the
100 Simulated Data Sets (in Seconds)

Model DIC nWAIC iWAIC nIS iIS
1 10.403 11.240 181.519 11.470 181.672
2 10.457 11.292 194.370 11.555 194.412
3 10.452 11.290 182.253 11.525 182.401
4 15.571 16.407 262.114 16.707 262.200
5 10.212 11.048 277.157 11.260 277.367
6 25.448 26.282 273.858 26.525 273.995
7 25.506 26.328 274.639 26.562 274.785
8 15.591 16.427 213.800 16.678 213.964

4.2 An Empirical Study on S&P 100 Data

Besides the simulation study, we also used a set of real-world stock market data (the S&P 100

stock index data from September 2010 to August 2015) to fit the SV models. The S&P 100

includes 100 leading U.S. stocks that comprise almost 45 percent of the market capitalization

of the U.S. equity markets. This subset of stocks plays a major role in the capital market

and is a good indicator for the overall strength of financial market. As a result, finding an

appropriate way to model the S&P 100 index data is of great importance.

In this study, we used mean-corrected, continuously compounded daily returns of the

S&P 100 index (exported from Yahoo Finance) from September 2010 to August 2015 (1,258

trading days). In general, as shown in Figure 4.3, the returns during this period went up, and

is considered as a “recovery period” following the 2008 stock market falls. However, due to
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(b) The Daily Return Plot of S&P 100 from September 2010 to August 2015

Figure 4.3: The plot of S&P 100 daily returns and index data from Septem-
ber 2010 to August 2015
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frequent changes in economic conditions and monetary policies, the stock market volatilities

are considerably different from time to time. Therefore, it makes sense to apply SV models

to the stock market data.

Table 4.5: Parameter R̂ for S&P 100 Index Data

Model
Parameter 1 2 3 4 5 6 7 8

µ 1.0018 1.0000 1.0003 1.1284 0.9993 1.0003 1.0008 1.0046
φ 1.0163 0.9998 1.0152 1.3141 1.0066 1.0022 1.0165 1.0169
τ 1.0199 0.9991 1.0176 1.0505 1.0141 1.0043 1.0226 1.0277
α - 0.9991 - - - - - -
ψ - - 1.0141 - - - - -
φ2 - - - 1.0202 - - - -
τ2 - - - 1.0086 - - - -
ρ - - - - 1.0004 - - -
β - - - - - 0.9994 - -
κ - - - - - 1.0012 1.0002 -
δ - - - - - 1.9959 1.3827 -
ν - - - - - - - 1.0693

The model fitting process in the real data study is the same as our previous study on the

simulated data. The rstan package was used to fit the model parameters with the stock market

data. The total number of iterations for the Markov chain is 20,000, with a burn-in period

of 10,000 iterations. That is, the first 10,000 samples were discarded. For the remaining

10,000 samples, we only retained every tenth sample in order to reduce autocorrelations.

Two parallel Markov chains were run for the set of data in each model, and the R̂ results (see

Table 4.5 for details) show that the Markov chain converges after the burn-in period. The R̂

values of the model parameters are generally close to one, indicating a good convergence of

the Markov chains.

All the fitted parameters are listed in the model parameter table as shown in Table 4.6.

From the results provided by the table, we can tell that some model parameters have very

small absolute values and large variances, indicating the parameters are not significantly

different from 0. If that’s the case, the corresponding model may not be a good choice for

the given data.
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Table 4.6: Parameter Estimates for S&P 100 Index Data. The values in the
table are the expected values of the prior and the posterior of the model parameters,
with their corresponding standard deviations in the next line in the parentheses.

Model

Parameter Distribution 1 2 3 4 5 6 7 8

µ Prior -10 -10 -10 -10 -10 -10 -10 -10

(5.00) (5.00) (5.00) (5.00) (5.00) (5.00) (5.00) (5.00)

Posterior -9.825 -9.836 -9.83 -9.791 -9.831 -9.732 -9.741 -9.871

(0.1571) (0.1632) (0.1647) (0.1343) (0.1544) (0.1708) (0.1623) (0.1626)

φ Prior 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

(0.2887) (0.2887) (0.2887) (0.2887) (0.2887) (0.2887) (0.2887) (0.2887)

Posterior 0.9345 0.9363 0.5439 0.0074 0.9347 0.9401 0.9373 0.9383

(0.0182) (0.0179) (0.2279) (0.0066) (0.0191) (0.0185) (0.0185) (0.0186)

φ2 Prior - - - 0.5 - - - -

- - - (0.2887) - - - -

Posterior - - - 0.9419 - - - -

- - - (0.0139) - - - -

τ Prior 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Posterior 0.325 0.3283 0.4358 0.1313 0.3244 0.3139 0.3207 0.3121

(0.0441) (0.0457) (0.0810) (0.0551) (0.0480) (0.0455) (0.0470) (0.0475)

τ2 Prior - - - 0.12 - - - -

- - - (0.05) - - - -

Posterior - - - 0.3067 - - -

- - - (0.0343) - - - -

α Prior - 0 - - - - - -

- (3.16) - - - - - -

Posterior - 0.0004 - - - - - -

- (0.0002) - - - - - -

ψ Prior - - 0.5 - - - - -

- - (0.2887) - - - - -

Posterior - - 0.3702 - - - - -

- - (0.2173) - - - - -

ρ Prior - - - - 0 - - -

- - - - (0.58) - - -

Posterior - - - - 0.0104 - - -
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Table 4.6: Parameter Estimates for S&P 100 Index Data (continued)

Model

Parameter Distribution 1 2 3 4 5 6 7 8

- - - - (0.0104) - - -

β Prior - - - - - 0 - -

- - - - - (0.45) - -

Posterior - - - - - -0.0371 - -

- - - - - (0.0298) - -

κ Prior - - - - - 0.02 0.02 -

- - - - - (0.01) (0.01) -

Posterior - - - - - 0.0173 0.0182 -

- - - - - (0.0123) (0.0129) -

δ Prior - - - - - 0.05 0.05 -

- - - - - (0.02) (0.02) -

Posterior - - - - - 0.0553 0.0454 -

- - - - - (0.0242) (0.0225) -

ν Prior - - - - - - - 65

- - - - - - - (36.4)

Posterior - - - - - - - 58.354

- - - - - - - (33.324)

When we obtained the sample of model parameters from MCMC sampling process, we

applied DIC, nWAIC, iWAIC, nWAIC, nIS, and iIS methods, respectively, to the models

to make the selection (see the simulated study for details). The results listed in Table 4.7

show that all five model selection criteria except the iWAIC method select model 4 as the

best model for the given stock market index data. Besides, the DIC, nWAIC, nIS, and iIS

methods also provide very similar results on ranking the goodness of the models. The nWAIC

method, however, selects model 8 as the best model. Also for the nWAIC method, the rest

of the ranking result is very different from the other model-selection criteria as well.

The CPU time table for this empirical study exhibits a similar pattern as the simulated

data study (see Table 4.8 for detailed results). The DIC method takes the least amount of

time to compute (6 to 16 seconds), and the nWAIC and nIS methods needs a little bit more

time than the DIC method (about half a second). The iWAIC and iIS criteria are the most
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Table 4.7: The DIC, nWAIC, iWAIC, nWAIC, nIS, and iIS for S&P 100
Index Data

DIC nWAIC iWAIC nIS iIS
Model Value Ranking Value Ranking Value Ranking Value Ranking Value Ranking

4 -8674.47 1 -8673.28 1 -8649.779 3 -8655.53 1 -8639.73 1
2 -8672.7 2 -8669.39 4 -8651.002 2 -8646.8 2 -8636.47 2
1 -8665.9 5 -8661.55 5 -8644.613 4 -8631.92 5 -8629.95 3
8 -8668.75 4 -8670.61 3 -8652.337 1 -8632.02 4 -8629.88 4
3 -8670.91 3 -8671.88 2 -8638.254 6 -8640.62 3 -8629.76 5
5 -8663.63 6 -8659.54 6 -8643.669 5 -8631.54 6 -8629.19 6
7 -8661.08 7 -8656.85 7 -8629.491 7 -8630.55 8 -8623.23 7
6 -8659.46 8 -8654.25 8 -8623.167 8 -8630.58 7 -8616.41 8

expensive results, which requires 2 to 3 minutes CPU time on average.

Table 4.8: The CPU Time Used to Compute the Criteria for S&P 100 Index
Data (in Seconds)

Model DIC nWAIC iWAIC nIS iIS
1 6.356 6.878 114.088 7.015 114.222
2 6.446 6.970 118.802 7.112 118.931
3 6.497 7.023 115.261 7.162 115.394
4 9.558 10.081 161.369 10.237 161.498
5 6.431 6.957 179.323 7.095 179.470
6 15.776 16.302 180.280 16.439 180.412
7 15.722 16.236 176.942 16.375 177.083
8 9.480 10.003 129.989 10.134 130.119
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Chapter 5

Conclusions and Discussions

In conclusion, according to the simulated data study, HMC method is successful in sam-

pling from the posterior distributions of model parameters. Among the tested model-selection

methods, the DIC approach works reasonably well. The good performance of the DIC method

might be explained by the fact that in most of the fitted models, the parameters generally

follow a multivariate normal distribution. Furthermore, the nIS is pretty consistent as well,

which suggests the importance weight is an effective way to correct the optimistic bias. In

addition, the iIS results show that the integration with respect to the current log-volatility,

ht, is a good way to further address the bias issues. Therefore, the iIS method is able to make

improvements over the nIS approach. However, the integrated method might not always be

a good choice since it is computationally expensive. Finally, the performance of both nWAIC

and iWAIC is the worst among all the tested methods, which makes their theoretical basis

questionable. According to this study, we can tell that the two WAIC methods are probably

not able to accurately quantify the model-complexity by their formulas.

Besides, the study on real stock market return data (S&P 100 index from September 2010

to August 2015) suggests that the best model is model 4 according to the model selection

criteria, which indicates the data series follows an ARMA process. However, due to the fact

that all the selection criteria have a strong preference on model 4 even when the real model

is not model 4, selecting this model as the best model could be a mistake. As a result, the

next-best model, model 2 (the nonzero expected return model), is also a good candidate for

the real model.

In our studies, we used Markov chain Monte Carlo method to fit our stochastic volatility

models, and evaluate the models using five different model-selection criteria (DIC, nWAIC,

nIS, iWAIC, iIS) subsequently. To examine the reliability of the model-fitting algorithm and
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the consistency of the model-selection methods, a preliminary study was done on simulated

data sets before using any real data. In the simulated study, a total number of 100 data

sets were individually generated from model 6 with the following parameters: µ = −10,

φ = 0.96, τ = 0.345, β = 0.1, κ = 0.08, and δ = 0.03. Through the data-generating

process, we know both the real model and the true values for the model parameters. Thus

we are able to evaluate the goodness of the model-fitting method, and the consistencies of

the model-selection criteria as well.

Among the results, the parameter R̂ values indicate that the Hamiltonian Monte Carlo

(HMC) method does not give rise to any noticeable convergence issues in this study. Besides,

the average values of the fitted parameters in model 6 are very close to the true values,

indicating the HMC method works well in finding real parameter values for the model. It

should be noted that the average values of both φ and φ2 in model 4 are close to 0.5, and the

standard deviations of the two parameters are much larger than the standard deviation of φ

in the basic SV model (model 1). The average values and the large standard deviations of the

two parameters (φ and φ2) can be explained by the fact that the model 4 has two symmetric

modes, and converging to different modes leads to bimodal distributions of both φ and φ2.

Since in both of the bimodal distributions, one mode is close to 1 and the other mode is close

to 0, the average values of both φ and φ2 are close to 0.5, and their corresponding standard

deviations would be much larger than the unimodal φ in the basic SV model.

Although the primary goal of this study is not validating the HMC method, fitting the real

model with correct parameter values is still a vital step. Without finding the correct values

for the real model, the likelihood of the observations might be negatively affected, which

can distort the model-selection results consequently. The model selection results, on the

other hand, show that the DIC, nWAIC and nIS methods all perform reasonably well, while

the iWAIC method’s performance is worse than the nWAIC method. Among all the tested

criteria, the iIS outperforms any other criterion, suggesting the integration may potentially

improve the performance of the importance sampling information criterion.

The subsequent study on the S&P 100 index daily return data (from September 2010 to

August 2015) shows that the Markov chains for all the candidate models are well-converged

(all R̂ values being very close to 1). This good convergence indicates the HMC method
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manages to fit all the candidate models with the stock market return data properly. It is

noticed that unlike what we observed in the simulated data study, in the real data study,

the R̂ values for the φ and φ2 parameters in model 4 are also very close to one, suggesting

the two parallel Markov chains for the model happen to converge to the same mode in this

particular case.

Once the the model fitting processes were completed, the DIC, nWAIC, iWAIC, nIS,

and iIS criteria were used to select the best model for the data. Among all the information

criteria (IC), the result provided by the iIS method seems to be very sensible and neat, since

the top 4 models chosen by the iIS method (model 4, 2, 1, and 8) share many similarities.

The first similarity is that none of the log-volatility processes in these models are AR(2).

Secondly, none of the models contain the jump component in their observation equations.

Thirdly, model 1 is nested with model 4, which explains why their IC values (rankings) are

similar. In addition to the iIS result, all the other criteria except the iWAIC also picked

model 4 as the best model, indicating model 4 is the best approximation for the real model.

If that’s the case, it would suggest that the volatility of stock market returns is the sum of

two independent autoregressive processes during the given period of time. It should be noted,

however, that according to the simulated data study, all the selection criteria have a strong

favour on model 4, even when the real model is not model 4. As a result, model 4 could be

mis-selection again in the real data study. Since the next-best model is model 2 (according

to the DIC, iWAIC, nIS, and iIS results), it is possible that model 2 is the actual model for

the stock market return data. Model 2 assumes a non-zero expected return (α), which is

consistent with the stock market behavior between the selected period of time. According

to the data, the annual returns of the S&P 100 index are all positive for six consecutive

years from 2010 to 2015, which generally resembles a “recovery period” of the stock market

following the 2008 stock market falls. Since the expected stock returns is actually nonzero

for the selected period of time, it makes sense to consider model 2 as a good model for the

given data. Finally, the model selection results provided by the information criteria can also

be confirmed by the distributions of the fitted model parameters. From the MCMC samples

of model parameters, we can tell that some of the tested models may not be good candidates

for the real data set. For example, model 6 is not considered as a good model for the data
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set according to the IC results, which agrees with the fact that one of its unique model

parameters, β, is not significantly different from 0. According to the MCMC samples, the

average of β in model 6 is −0.0371 with a standard deviation of 0.0298, indicating the 95%

confidence interval of the parameter contains 0. Therefore, the parameter β in model 6 is not

significantly different from 0, suggesting the model may not be a good choice for the given

set of data.

50



References

Alder, B. J. and Wainwright, T. (1959), “Studies in molecular dynamics. I. General method,”
The Journal of Chemical Physics, 31, 459–466.

Andersen, H. C. (1980), “Molecular dynamics simulations at constant pressure and/or tem-
perature,” The Journal of Chemical Physics, 72, 2384–2393.

Andersen, T. G., Chung, H.-J., and Sørensen, B. E. (1999), “Efficient method of moments es-
timation of a stochastic volatility model: A Monte Carlo study,” Journal of Econometrics,
91, 61–87.

Andrews, D. F. and Mallows, C. L. (1974), “Scale mixtures of normal distributions,” Journal
of the Royal Statistical Society. Series B (Methodological), 36, 99–102.

Berg, A., Meyer, R., and Yu, J. (2004), “Deviance information criterion for comparing
stochastic volatility models,” Journal of Business & Economic Statistics, 22, 107–120.

Black, F. (1976), “Studies of Stock Market Volatility Changes,” in Proceedings of the 1976
Meeting of the American Statistical Association, Business and Economic Statistics Section,
pp. 177–181.

Black, F. and Scholes, M. (1973), “The pricing of options and corporate liabilities,” The
Journal of Political Economy, 81, 637–654.

Bollerslev, T. (1986), “Generalized autoregressive conditional heteroskedasticity,” Journal of
Econometrics, 31, 307–327.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker,
M. A., Guo, J., Li, P., and Riddell, A. (2015), “Stan: a probabilistic programming lan-
guage,” Journal of Statistical Software, 10.

Celeux, G., Forbes, F., Robert, C. P., Titterington, D. M., et al. (2006), “Deviance informa-
tion criteria for missing data models,” Bayesian analysis, 1, 651–673.

Cheng, B. (2005), “Yule–Walker Equations,” Wiley StatsRef: Statistics Reference Online.

Chernov, M., Gallant, A. R., Ghysels, E., and Tauchen, G. (2003), “Alternative models for
stock price dynamics,” Journal of Econometrics, 116, 225–257.

Chib, S., Nardari, F., and Shephard, N. (2002), “Markov chain Monte Carlo methods for
stochastic volatility models,” Journal of Econometrics, 108, 281–316.

51



Dempster, A. P. (1997), “The direct use of likelihood for significance testing,” Statistics and
Computing, 7, 247–252.

Engle, R. F. (1982), “Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation,” Econometrica: Journal of the Econometric Society,
50, 987–1007.

Engle, R. F. and Ng, V. K. (1993), “Measuring and testing the impact of news on volatility,”
The Journal of Finance, 48, 1749–1778.

Epifani, I., MacEachern, S. N., Peruggia, M., et al. (2008), “Case-deletion importance sam-
pling estimators: Central limit theorems and related results,” Electronic Journal of Statis-
tics, 2, 774–806.

Gallant, A. R. and Tauchen, G. (1996), “Which moments to match?” Econometric Theory,
12, 657–681.

Gelfand, A. E. (1996), “Model determination using sampling-based methods,” Markov Chain
Monte Carlo in Practice, 145–161.

Gelfand, A. E., Dey, D. K., and Chang, H. (1992), “Model determination using predictive
distributions with implementation via sampling-based methods,” Tech. rep., DTIC Docu-
ment.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2014), Bayesian data analysis,
vol. 2, Chapman & Hall/CRC Boca Raton, FL, USA.

Gelman, A., Lee, D., and Guo, J. (2015), “Stan a probabilistic programming language for
Bayesian inference and optimization,” Journal of Educational and Behavioral Statistics,
40, 530–543.

Gelman, A., Shirley, K., et al. (2011), “Inference from simulations and monitoring conver-
gence,” Handbook of Markov Chain Monte Carlo, 163–174.

Gilks, W. R. (2005), Markov chain monte carlo, Wiley Online Library.

Giot, P. and Laurent, S. (2004), “Modelling daily value-at-risk using realized volatility and
ARCH type models,” Journal of Empirical Finance, 11, 379–398.

Guo, J., Lee, D., Sakrejda, K., Gabry, J., Goodrich, B., De Guzman, J., Niebler, E., Heller,
T., and Fletcher, J. (2016), rstan: R Interface to Stan.

Harvey, A., Ruiz, E., and Shephard, N. (1994), “Multivariate stochastic variance models,”
The Review of Economic Studies, 61, 247–264.

Hull, J. and White, A. (1987), “The pricing of options on assets with stochastic volatilities,”
The Journal of Finance, 42, 281–300.

Jacquier, E., Polson, N. G., and Rossi, P. E. (2012), “Bayesian analysis of stochastic volatility
models,” Journal of Business & Economic Statistics, 20, 69–87.

52



Kim, S., Shephard, N., and Chib, S. (1998), “Stochastic volatility: likelihood inference and
comparison with ARCH models,” The Review of Economic Studies, 65, 361–393.

Li, L., Qiu, S., Zhang, B., and Feng, C. X. (2015), “Approximating cross-validatory predictive
evaluation in Bayesian latent variable models with integrated IS and WAIC,” Statistics and
Computing, 26, 1–17.

Lundblad, C. (2007), “The risk return tradeoff in the long run: 1836–2003,” Journal of
Financial Economics, 85, 123–150.

Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000), “WinBUGS-a Bayesian
modelling framework: concepts, structure, and extensibility,” Statistics and Computing,
10, 325–337.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953),
“Equation of state calculations by fast computing machines,” The Journal of Chemical
Physics, 21, 1087–1092.

Neal, R. M. et al. (2011), “MCMC using Hamiltonian dynamics,” Handbook of Markov Chain
Monte Carlo, 2, 113–162.

Peruggia, M. (1997), “On the variability of case-deletion Importance sampling Weights in
the Bayesian linear model,” Journal of the American Statistical Association, 92, 199–207.

Plummer, M. (2003), “JAGS: A program for analysis of Bayesian graphical models using
Gibbs sampling,” in Proceedings of the 3rd International Workshop on Distributed Statis-
tical Computing, Technische Universit at Wien Wien, Austria.

Shephard, N. (1996), “Statistical aspects of ARCH and stochastic volatility,” Monographs on
Statistics and Applied Probability, 65, 1–68.

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2007), “OpenBUGS user manual,
version 3.0. 2,” MRC Biostatistics Unit, Cambridge.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Linde, A. (2014), “The deviance informa-
tion criterion: 12 years on,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 76, 485–493.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002), “Bayesian
measures of model complexity and fit,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 64, 583–639.

Taylor, S. J. (1982), “Financial returns modelled by the product of two stochastic processes,
a study of daily sugar prices 1961-79,” in Financial Risk Measurement and Management,
Edward Elgar, pp. 441–464.

Vehtari, A. (2001), Bayesian model assessment and selection using expected utilities, Helsinki
University of Technology.

53



Vehtari, A. and Lampinen, J. (2002), “Bayesian model assessment and comparison using
cross-validation predictive densities,” Neural Computation, 14, 2439–2468.

Watanabe, S. (2010), “Asymptotic equivalence of Bayes cross validation and widely appli-
cable information criterion in singular learning theory,” The Journal of Machine Learning
Research, 11, 3571–3594.

54



APPENDIX A

THE DEVIATION OF THE CONDITIONAL 

DISTRIBUTIONS OF LOG-VOLATILITIES IN

THE AR-SV MODELS

A.1 Conditional Distribution of ht Given h−t in AR(1)

Process

When the log-volatilities follow an AR(1) process (model 1, 2, 6, 7, and 8), the state equations

governing the log-volatility process are identical:

ht|ht−1, µ, φ, τ ∼ N(µ+ φ(ht−1 − µ), τ 2), t = 1, ..., n; (A.1)

ht+1|ht, µ, φ, τ ∼ N(µ+ φ(ht − µ), τ 2), t = 1, ..., n. (A.2)

In the equations above, all the parameters except ht are treated as known. Based on these

known parameters, the distribution of ht|θ,h−t can be obtained. Using terminologies of

Bayesian inference, the first equation could be considered as the prior distribution of ht,

and the second equation provides information for the posterior distribution of ht. If we let

αt = µ+ φ(ht − µ), the state equations above can be transformed into:

αt|ht−1,θ ∼ N(µ− φ2µ+ φ2ht−1, τ
2φ2), t = 1, ..., n; (A.3)

ht+1|αt,θ ∼ N(αt, τ
2), t = 1, ..., n. (A.4)
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Therefore, the posterior distribution of αt is proportional to their product (constant coeffi-

cients are neglected):

f(αt|θ,h−t) ∝ exp

[
−0.5(ht+1 − αt)2

τ 2
− 0.5(αt − µ+ φ2µ− φ2ht−1)

2

τ 2φ2

]
(A.5)

∝ exp

−0.5

αt −
ht+1

τ 2
+
µ− φ2µ+ φ2ht−1

τ 2φ2

1

τ 2
+

1

τ 2φ2


2(

1

τ 2
+

1

τ 2φ2

) ,
t = 1, ..., n.

From the formula above, we can tell that the posterior of αt|θ,h−t follows the following

normal distribution:

αt|θ,h−t ∼ N


ht+1

τ 2
+
µ− φ2µ+ φ2ht−1

τ 2φ2

1

τ 2
+

1

τ 2φ2

,
1

1
τ2

+ 1
τ2φ2

 (A.6)

∼ N

(
φ2ht+1 + µ− φ2µ+ φ2ht−1

φ2 + 1
,
τ 2φ2

φ2 + 1

)
, t = 1, ..., n.

Since αt = µ + φ(ht − µ), we have ht = (αt − µ + φµ)/φ. As a result, for t = 1, ..., n, the

posterior of ht|θ,h−t follows the following normal distribution:

ht|θ,h−t ∼ N


(
φ2ht+1 + µ− φ2µ+ φ2ht−1

φ2 + 1
− µ+ φµ

)
φ

,
τ 2

φ2 + 1

 (A.7)

∼ N

(
φ

φ2 + 1
ht+1 +

φ

φ2 + 1
ht−1 +

µ

φ(φ2 + 1)
− φµ

φ2 + 1
− µ

φ
+ µ,

τ 2φ2

φ2 + 1

)
.
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A.2 Conditional Distribution of ht Given h−t in AR(2)

Process

When the log-volatilities follow an AR(2) process (model 3), the current ht depends on both

ht−1 and ht−2. Therefore, for t = 1, ..., n, we have the following state equations related to ht:

ht|ht−1, ht−2, µ, φ, τ ∼ N(µ+ φ(ht−1 − µ) + ψ(ht−2 − µ), τ 2); (A.8)

ht+1|ht, ht−1, µ, φ, τ ∼ N(µ+ φ(ht − µ) + ψ(ht−1 − µ), τ 2); (A.9)

ht+2|ht, ht+1, µ, φ, τ ∼ N(µ+ φ(ht+1 − µ) + ψ(ht − µ), τ 2). (A.10)

The distribution of ht|θ,h−t for model 3 can be similarly calculated. Let αt = ψφ(ht−µ), βt =

ψht+1, and γt = φht+2, then for t = 1, ..., n, the above state equations can be written as

follows:

αt|ht−1, ht−2,θ ∼ N(φψ[φ(ht−1 − µ) + ψ(ht−2 − µ)], τφψ); (A.11)

βt|αt, ht−1,θ ∼ N(ψµ+ αt + ψ2(ht−1 − µ), τψ); (A.12)

γt|αt, βt,θ ∼ N

(
φµ+ αt + φ2

(
βt
ψ
− µ

)
, τφ

)
. (A.13)

The first equation can be treated as a prior distribution of αt, and the second and the

third equations both provide information on the posterior distribution of αt. Therefore, the

posterior distribution of αt is proportional to the product of the three (neglecting constant

coefficients):

f(αt|ht−1, ht−2, βt, γt,θ) ∝ f(αt|ht−1, ht−2,θ)f(βt|αt, ht−1,θ)f(γt|αt, βt,θ) (A.14)

∝ exp

{
− [αt − φψ(φht−1 − φµ+ ψht−2 − ψµ)]2

2τ 2φ2ψ2

− [βt − (ψµ+ αt + ψ2ht−1 − ψ2µ)]2

2τ 2ψ2

−

[
γt −

(
φµ+ αt + φ2βt

ψ
− φ2µ

)]2
2τ 2φ2

 , t = 1, ..., n.

If we let at = µ + φ(ht−1 − µ) + ψ(ht−2 − µ), bt = βt − ψµ − ψ2(ht−1 − µ), and ct =

γt − φµ − φ2(βt/ψ − µ), then the desired density function f(αt|ht−1, ht−2, βt, γt,θ) can be
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written as:

f(αt|ht−1, ht−2, βt, γt,θ) ∝ exp

[
−0.5(αt − a)2

τ 2φ2ψ2
− −0.5(αt − b)2

τ 2ψ2
− (A.15)

−0.5(αt − c)2

τ 2φ2

]

∝ exp

−1

2

αt −
at

τ 2φ2ψ2
+

bt
τ 2ψ2

+
ct
τ 2φ2

1

τ 2φ2ψ2
+

1

τ 2ψ2
+

1

τ 2φ2


2

(
1

τ 2φ2ψ2
+

1

τ 2ψ2
+

1

τ 2φ2

)]
, t = 1, ..., n.

The equation above shows that the posterior distribution of αt is normal:

αt|θ,h−t ∼ N


at

τ 2φ2ψ2
+

bt
τ 2ψ2

+
ct
τ 2φ2

1

τ 2φ2ψ2
+

1

τ 2ψ2
+

1

τ 2φ2

,

√√√√ 1
1

τ 2φ2ψ2
+

1

τ 2ψ2
+

1

τ 2φ2

 (A.16)

∼ N

(
at + φ2bt + ψ2ct

1 + φ2 + ψ2
,

τφψ√
1 + φ2 + ψ2

)
, t = 1, ..., n.

Since αt = ψφ(ht − µ), we have ht = αt/(ψφ) + µ. Therefore, the distribution of ht|h−t,θ is

normal as well:

ht|θ,h−t ∼ N

(
at + φ2bt + ψ2ct
φψ(1 + φ2 + ψ2)

+ µ,
τ√

1 + φ2 + ψ2

)
(A.17)

∼ N

(
φ+ ψ − φψ

1 + φ2
ht−1 +

φ

1 + φ2
ht+1 +

φψµ− 2φµ− ψµ
1 + φ2

+ µ,

τ 2

1 + φ2

)
, t = 1, ..., n.
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A.3 Conditional Distribution of ht Given h−t in Two

Independent AR(1) Processes

When there are two independent log-volatility processes going on simultaneously (model 4),

the state equations are given by:

h
(1)
t |h

(1)
t−1, φ, τ ∼ N(φh

(1)
t−1, τ

2), (A.18)

h
(1)
t+1|h

(1)
t , φ, τ ∼ N(φh

(1)
t , τ 2), (A.19)

h
(2)
t |h

(2)
t−1, φ2, τ2 ∼ N(φ2h

(2)
t−1, τ

2
2 ), (A.20)

h
(2)
t+1|h

(2)
t , φ2, τ2 ∼ N(φ2h

(2)
t , τ 22 ), (A.21)

where t = 1, ..., n. In this model, each of the log-volatility processes can be treated as a

special case of the log-volatility process in the basic SV model (model 1) with µ = 0. As a

result, the calculations of the distributions of h
(1)
t |h

(1)
−t ,θ and h

(2)
t |h

(2)
−t ,θ are very similar to

the basic SV model. If we start from the conditional distribution of ht|h−t,θ for the basic

SV model, then by setting µ = 0 and replacing hi with h
(1)
i , the distribution of h

(1)
t |h−t,θ

can be obtained:

h
(1)
t |h−t, φ, τ ∼ N

(
φ(h

(1)
t+1 + h

(1)
t−1)

1 + φ2
,
τ 2φ2

1 + φ2

)
, t = 1, ..., n. (A.22)

The calculation of the distribution of h
(2)
t |h−t,θ is identical to h

(1)
t |h−t,θ. The final result

for the calculated distribution of h
(2)
t |h−t,θ is given by:

h
(2)
t |h−t, φ2, τ2 ∼ N

(
φ2(h

(2)
t+1 + h

(2)
t−1)

1 + φ2
2

,
τ 22φ

2
2

1 + φ2
2

)
, t = 1, ..., n. (A.23)
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APPENDIX B

R CODE FOR THE STOCHASTIC VOLATIL-

ITY MODELS

B.1 Generating Simulated Data Sets From Model 6

##########################################

## The following R code generates 100 sets of simulated data from model 6.
## The data sets are stored in the current folder once they are generated. 
##########################################

## y --- The simulated data set.
## mu, phi, tau, beta, kappa, delta, and h -- The true values of model parameters.

for (ifold in 1:100){
D <- 1900

T <- 3900

mu <- -10

phi <- 0.96

tau <- 0.345

beta <- 0.1

kappa <- 0.08

delta <- 0.03

h0 <- 2

s <- lss <- y<- h <- qq <- rep (0, T)

h[1] <- rnorm (1, mu + phi * (h0 - mu), tau)

for (t in 1:T) {lss[t] <- rnorm(1, -(delta^2)/2,delta^2); s[t] <- exp (lss[t]) -

1}

for (t in 1:T) qq[t] <- rbinom(1, 1, kappa)

for (i in 2:T) h[i] <- rnorm (1, mu + phi* (h[i-1] - mu), tau)

y[1] <- rnorm (1, s[1]*qq[1], exp (h[1]/2) )

for (t in 2:T) y[t] <- rnorm (1, beta*y[t-1]+s[t]*qq[t] , exp (h[t]/2) )

x <- rnorm (T)

x <- x[-(1:D)]

y <- y[-(1:D)]

h <- h[-(1:D)]
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T <- T - D

rm (.Random.seed)

save.image (file = sprintf ("sample_data%d.RData", ifold))

}

B.2 Model Specifications and Model Fittings

The entire Section B.2 is written by Zhouji Zheng.

• Model 1

##########################################

## The following R code defines model 1 in rstan language.

##########################################

library(rstan)

model1 <- ’

data {

int<lower=1> T;

vector[T] y;

}

parameters {

real mu;

real<lower=0,upper=1> phi;

real<lower=0.01> tausq;

real h0;

vector[T] h;

}

transformed parameters {

real<lower=0> tau;

tau <- sqrt(tausq);

}

model {

mu ~ normal(-10,5);

phi ~ beta(1, 1);

tausq ~ inv_gamma(2.5, 0.025);

h0 ~ normal(0, 10000);

h[1] ~ normal(mu + phi*(h0-mu), tau);

for (t in 2:T)

h[t] ~ normal(mu + phi*(h[t-1]-mu), tau);

for (t in 1:T)

y[t] ~ normal(0,exp(h[t]/2));

}
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generated quantities {

vector[T] log_lik;

for (t in 1:T){

log_lik[t] <- normal_log (y[t],0,exp (h[t]/2) );

}

}

’

##########################################

## The following R code fits the model with a given set of data using HMC

method.

## Two independent Markov chains are generated from each set of tested data.

##########################################

load ("sample_data.RData")

fit <- stan(model_code = model1, data = list(y = y, T = T), iter = 20000,

chains = 2, thin = 10)

save (fit, file = "sample_fit")

• Model 2

##########################################

## The following R code defines model 2 in rstan language.

##########################################

library (rstan)

model2 <- ’

data {

int<lower=1> T;

vector[T] y;

}

parameters {

real mu;

real<lower=0,upper=1> phi;

real<lower=0.01> tausq;

real alpha;

real h0;

vector[T] h;

}

transformed parameters {

real<lower=0> tau;

tau <- sqrt(tausq);

}
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model {

mu ~ normal(-10,5);

phi ~ beta(10, 1);

tausq ~ inv_gamma(2.5, 0.025);

alpha ~ normal(0, sqrt(10));

h0 ~ normal(0, 10000);

h[1] ~ normal(mu + phi*(h0-mu), tau);

for (t in 2:T)

h[t] ~ normal(mu + phi*(h[t-1]-mu), tau);

for (t in 1:T)

y[t] ~ normal(alpha, exp(h[t]/2));

}

generated quantities {

vector[T] log_lik;

for (t in 1:T){

log_lik[t] <- normal_log (y[t],alpha,exp (h[t]/2) );

}

}

’

##########################################

## The following R code fits the model with a given set of data using HMC

method.

## Two independent Markov chains are generated from each set of tested data.

##########################################

load ("sample_data.RData")

fit <- stan(model_code = model2, data = list(y = y, T = T), iter = 20000,

chains = 2, thin = 10)

save (fit, file = "sample_fit")

• Model 3

##########################################

## The following R code defines model 3 in rstan language.

##########################################

library (rstan)

model3 <- ’

data {

int<lower=1> T;

vector[T] y;

}

parameters {

real mu;
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real<lower=0.01> tausq;

real h0;

vector[T] h;

real<lower=-1,upper=1> r1;

real<lower=-1,upper=1> r2;

}

transformed parameters {

real phi;

real psi;

real<lower=0> tau;

phi <- r1;

psi <- r2;

tau <- sqrt(tausq);

}

model {

r1 ~ uniform(0,1);

r2 ~ uniform(0, 1);

mu ~ normal(-10,5);

tausq ~ inv_gamma(2.5, 0.025);

h0 ~ normal(0, 10000);

h[1] ~ normal(mu + phi*(h0-mu), tau);

h[2] ~ normal(mu + phi*(h[1]-mu)+ psi*(h0-mu), tau);

for (t in 3:T)

h[t] ~ normal(mu + phi*(h[t-1]-mu)+ psi*(h[t-2]-mu), tau);

for (t in 1:T)

y[t] ~ normal(0,exp(h[t]/2));

}

generated quantities {

vector[T] log_lik;

for (t in 1:T){

log_lik[t] <- normal_log (y[t], 0 ,exp (h[t]/2) );

}

}

’

##########################################

## The following R code fits the model with a given set of data using HMC

method.

## Two independent Markov chains are generated from each set of tested data.

##########################################

load ("sample_data.RData")

fit <- stan(model_code = model3, data = list(y = y, T = T), iter = 20000,

chains = 2, thin = 10)

64



save (fit, file = "sample_fit")

• Model 4

##########################################

## The following R code defines model 4 in rstan language.

##########################################

library (rstan)

model4 <- ’

data {

int<lower=1> T;

vector[T] y;

}

parameters {

real mu;

real<lower=0,upper=1> phi1;

real<lower=0,upper=1> phi2;

real<lower=0.0001> tausq;

real<lower=0.0001> tau2sq;

real h10;

real h20;

vector[T] h1;

vector[T] h2;

}

transformed parameters {

real<lower=0> tau;

real<lower=0> tau2;

tau <- sqrt(tausq);

tau2 <- sqrt(tau2sq);

}

model {

mu ~ normal(-10,5);

phi1 ~ beta(1, 1);

phi2 ~ beta(1, 1);

tausq ~ inv_gamma(2.5, 0.025);

tau2sq ~ inv_gamma(2.5, 0.025);

h10 ~ normal(0, 10000);

h20 ~ normal(0, 10000);

h1[1] ~ normal(phi1*h10, tau);

h2[1] ~ normal(phi2*h20, tau2);

for (t in 2:T)

h1[t] ~ normal(phi1*h1[t-1], tau);

for (t in 2:T)
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h2[t] ~ normal(phi2*h2[t-1], tau2);

for (t in 1:T)

y[t] ~ normal(0,exp (mu/2 + h1[t]/2+ h2[t]/2 ));

}

generated quantities {

vector[T] log_lik;

for (t in 1:T){

log_lik[t] <- normal_log (y[t], 0 ,exp (mu/2 + h1[t]/2+ h2[t]/2 ));

}

}

’

##########################################

## The following R code fits the model with a given set of data using HMC

method.

## Two independent Markov chains are generated from each set of tested data.

##########################################

load ("sample_data.RData")

fit <- stan(model_code = model4, data = list(y = y, T = T), iter = 20000,

chains = 2, thin = 10)

save (fit, file = "sample_fit")

• Model 5

##########################################

## The following R code defines model 5 in rstan language.

##########################################

library (rstan)

model5 <- ’

data {

int<lower=1> T;

vector[T] y;

}

parameters {

real mu;

real<lower=-1,upper=1> phis;

real<lower=0.0001> tausq;

real<lower=0,upper=1> rho;

real h0;

real y0;

vector[T] h;

}

transformed parameters {
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real phi;

real<lower=0> tau;

phi <- 2*phis - 1;

tau <- sqrt(tausq);

}

model {

mu ~ normal(-10,5);

phis ~ uniform(-1, 1);

tausq ~ inv_gamma(2.5, 0.025);

rho ~ uniform(-1,1);

h0 ~ normal(0, 10000);

h[1] ~ normal(mu + phi*(h0-mu) + rho*tau*exp(-0.5*h0)*y0, tau*sqrt(1-

square(rho)));

for (t in 2:T)

h[t] ~ normal(mu + phi*(h[t-1]-mu) + rho*tau*exp(-0.5*h[t-1])*y[t-1],

tau*sqrt(1-square(rho)));

for (t in 2:T)

y[t] ~ normal(0,exp(h[t]/2));

y0 ~ normal(0,exp(h0/2));

y[1] ~ normal(0,exp(h[1]/2));

}

generated quantities {

vector[T] log_lik;

for (t in 1:T){

log_lik[t] <- normal_log (y[t], 0 ,exp (h[t]/2) );

}

}

’

##########################################

## The following R code fits the model with a given set of data using HMC

method.

## Two independent Markov chains are generated from each set of tested data.

##########################################

load ("sample_data.RData")

fit <- stan(model_code = model5, data = list(y = y, T = T), iter = 20000,

chains = 2, thin = 10)

save (fit, file = "sample_fit")

• Model 6

##########################################

## The following R code defines model 6 in rstan language.
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##########################################

library ("rstan")

model6 <- ’

data {

int<lower=1> T;

vector[T] y;

}

parameters {

real mu;

real<lower=0,upper=1> phi;

real<lower=0.01> tausq;

real beta;

real<lower=0,upper=1> kappa;

real h0;

real y0;

real ldelta;

vector[T] h;

real l[T];

vector[T] q;

}

transformed parameters {

real<lower=0> tau;

real delta;

vector[T] s;

tau <- sqrt(tausq);

delta <- exp(ldelta);

for (t in 1:T)

s[t] <- exp(l[t])-1;

}

model {

matrix[T,2] logpy;

mu ~ normal(-10,5);

phi ~ beta(1, 1);

tausq ~ inv_gamma(2.5, 0.025);

kappa ~ beta(2,100);

beta ~ normal(0,sqrt(0.2));

ldelta ~ normal(-3.07, sqrt(0.149));

h0 ~ normal(mu, tau);

h[1] ~ normal(mu + phi*(h0-mu), tau);

for (t in 1:T)

l[t] ~ normal(-square(delta)/2,square(delta));

for (t in 2:T)

h[t] ~ normal(mu + phi*(h[t-1]-mu), tau);

for (t in 2:T)
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{

increment_log_prob (

log_sum_exp(

log (1-kappa) + normal_log(y[t], beta*y[t-1],exp(h[t]/2)),

log (kappa) + normal_log(y[t], beta*y[t-1]+s[t],exp(h[t]/2))

)

);

}

y0 ~ normal(0, exp(h0/2));

increment_log_prob (

log_sum_exp(

log (1-kappa) + normal_log(y[1], beta*y0,exp(h[1]/2)),

log (kappa) + normal_log(y[1], beta*y0+s[1],exp(h[1]/2))

)

);

}

generated quantities {

vector[T] log_lik;

for (t in 2:T){

log_lik[t] <- log_sum_exp(

log (1-kappa) + normal_log(y[t], beta*y[t-1],exp(h[t

]/2)),

log (kappa) + normal_log(y[t], beta*y[t-1]+s[t],exp(h[

t]/2))

);

}

log_lik[1] <- log_sum_exp(

log (1-kappa) + normal_log(y[1], beta*y0,exp(h[1]/2)),

log (kappa) + normal_log(y[1], beta*y0+s[1],exp(h[1]/2)

)

);

}

’

##########################################

## The following R code fits the model with a given set of data using HMC

method.

## Two independent Markov chains are generated from each set of tested data.

##########################################

load ("sample_data.RData")

fit <- stan(model_code = model6, data = list(y = y, T = T), iter = 20000,

chains = 2, thin = 10)

save (fit, file = "sample_fit")
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• Model 7

##########################################

## The following R code defines model 7 in rstan language.

##########################################

library (rstan)

model7 <- ’

data {

int<lower=1> T;

vector[T] y;

}

parameters {

real mu;

real<lower=0, upper=1> phis;

real<lower=0.01> tausq;

real<lower=0,upper=1> kappa;

real h0;

real y0;

real ldelta;

vector[T] h;

real l[T];

vector[T] q;

}

transformed parameters {

real<lower=0> tau;

real phi;

real delta;

vector[T] s;

tau <- sqrt(tausq);

delta <- exp(ldelta);

phi <- phis;

for (t in 1:T)

s[t] <- exp(l[t])-1;

}

model {

mu ~ normal(-10,5);

phis ~ beta(1, 1);

tausq ~ inv_gamma(2.5, 0.025);

kappa ~ beta(2,100);

ldelta ~ normal(-3.07, sqrt(0.149));

h0 ~ normal(mu, tau);

h[1] ~ normal(mu + phi*(h0-mu), tau);

for (t in 1:T)
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l[t] ~ normal(-square(delta)/2,square(delta));

for (t in 2:T)

h[t] ~ normal(mu + phi*(h[t-1]-mu), tau);

for (t in 2:T)

{

increment_log_prob (

log_sum_exp(

log (1-kappa) + normal_log(y[t], 0,exp(h[t]/2)),

log (kappa) + normal_log(y[t], s[t],exp(h[t]/2))

)

);

}

y0 ~ normal(0, exp(h0/2));

increment_log_prob (

log_sum_exp(

log (1-kappa) + normal_log(y[1], 0,exp(h[1]/2)),

log (kappa) + normal_log(y[1], s[1],exp(h[1]/2))

)

);

}

generated quantities {

vector[T] log_lik;

for (t in 2:T){

log_lik[t] <- log_sum_exp(

log (1-kappa) + normal_log(y[t], 0,exp(h[t]/2)),

log (kappa) + normal_log(y[t], s[t],exp(h[t]/2))

);

}

log_lik[1] <- log_sum_exp(

log (1-kappa) + normal_log(y[1], 0,exp(h[1]/2)),

log (kappa) + normal_log(y[1], s[1],exp(h[1]/2))

);

}

’

##########################################

## The following R code fits the model with a given set of data using HMC

method.

## Two independent Markov chains are generated from each set of tested data.

##########################################

load ("sample_data.RData")

fit <- stan(model_code = model7, data = list(y = y, T = T), iter = 20000,

chains = 2, thin = 10)

save (fit, file = "sample_fit")
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• Model 8

##########################################

## The following R code defines model 8 in rstan language.

##########################################

library (rstan)

model8 <- ’

data {

int<lower=1> T;

vector[T] y;

}

parameters {

real mu;

real<lower=0, upper=1> phis;

real<lower=0.01> tausq;

real<lower=0> nu;

real h0;

vector[T] h;

real<lower=0> w[T];

}

transformed parameters {

real phi;

real<lower=0> tau;

tau <- sqrt(tausq);

phi <- 2*phis - 1;

}

model {

mu ~ normal(-10,5);

phis ~ uniform(0.5, 1);

tausq ~ inv_gamma(2.5, 0.025);

h0 ~ normal(0, 10000);

h[1] ~ normal(mu + phi*(h0-mu), tau);

nu ~ uniform(2,128);

for (t in 1:T)

w[t] ~ gamma(nu/2,nu/2);

for (t in 2:T)

h[t] ~ normal(mu + phi*(h[t-1]-mu), tau);

for (t in 1:T)

y[t] ~ normal(0,exp (h[t]/2)/sqrt(w[t]));

}

generated quantities {

vector[T] log_lik;

for (t in 1:T){
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log_lik[t] <- normal_log (y[t], 0 ,exp (h[t]/2)/sqrt(w[t]) );

}

}

’

##########################################

## The following R code fits the model with a given set of data using HMC

method.

## Two independent Markov chains are generated from each set of tested data.

##########################################

load ("sample_data.RData")

fit <- stan(model_code = model8, data = list(y = y, T = T), iter = 20000,

chains = 2, thin = 10)

save (fit, file = "sample_fit")
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APPENDIX C

R CODE FOR CALCULATING THE INFOR-

MATION CRITERIA

C.1 Utility Functions

C.1.1 Sums and Means

##########################################

## The following functions are used in the calculations of the information
criteria.

## log_sum_exp --- This function reads in a set of log-scaled data, and outputs
the logarithm of the sum of the data.

## log_mean_exp --- This function reads in a set of log-scaled data, and outputs
the logarithm of the mean of the data.

## log_hmean_exp --- This function reads in a set of log-scaled data, and outputs
the logarithm of the harmonic mean of the data.

## log_sum_exp_mat --- This function reads in a matrix of log-scaled data, and
outputs the logarithm of the sums of the data by the rows.

## log_mean_exp_mat --- This function reads in a matrix of log-scaled data, and
outputs the logarithm of the means of the data by the rows. 

##########################################

log_sum_exp <- function (lx)
{

mlx <- max (lx)

log (sum (exp (lx - mlx))) + mlx

}

log_mean_exp <- function (lx)

{

log_sum_exp (lx) - log(length (lx))

}

log_hmean_exp <- function (lx)

{

- log_mean_exp (-lx)
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}

log_sum_exp_mat <- function (lx)

{

mlx <- apply(lx, 1, max)

log (rowSums (exp (lx - mlx))) + mlx

}

log_mean_exp_mat <- function (lx)

{

log_sum_exp_mat (lx) - log(length (lx[1, ]))

}

C.1.2 WAIC and IS-IC

##########################################

## logp.tr is a matrix storing log P (y_i|theta_j) with cols for cases (y_i) and

rows for theta_j (mc samples).

## is_function --- This function calculates the IS-IC value for a model with

respect to its fitted data.

## waic_function --- This function calculates the WAIC value for a model with

respect to its fitted data.

##########################################

is_function <- function (logp.tr){

logp_is <- apply (logp.tr, 2, log_hmean_exp)

logp_within_sample <- apply (logp.tr,2, log_mean_exp)

p_is <- sum(logp_within_sample - logp_is)

is <- -2 * sum (logp_is)

list (logp_is = logp_is, is = -2 * sum (logp_is), p_is = p_is,

total = c(is=is, p_is = p_is))

}

waic_function <- function (logp.tr){

mlogp <- apply (logp.tr, 2, log_mean_exp)

vlogp <- apply (logp.tr, 2, var)

logp_waic <- mlogp - vlogp

p_waic <- sum(vlogp)

waic <- -2 * sum (logp_waic)

list (logp_waic = logp_waic, waic = -2 * sum (logp_waic), p_waic = p_waic,

total = c(waic=waic, p_waic=p_waic))

}

C.1.3 Functions Related to the Calculation of the Integrals in
Model 5
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##########################################

## log_f --- a function computing the logarithm of the integrant function

## range --- the range of integral varaible, a vector of two elements

## n --- the number of points at which the integrant is evaluated

## ... --- other parameters needed by log_f

## log_int_mid --- This function reads in the log of a function and outputs the

log of the integral result.

##########################################

log_int_mid <- function(log_f, range, n,...)

{ if(range[1] >= range[2])

stop("Wrong ranges")

h <- (range[2]-range[1]) / n

v_log_f <- sapply(range[1] + (1:n - 0.5) * h, log_f,...)

log_sum_exp_mat(v_log_f) + log(h)

}

##########################################

## log_f_num --- This function gives the logarithm of the numerator value before

the integration in model 5.

## log_f_denum --- This function gives the logarithm of the denominator value

before the integration in model 5.

## log_f_num_transformed --- This function substitutes the "hcondi" in the

log_f_num function with "mu0+log(k/(1-k))".

## log_f_denum_transformed --- This function substitutes the "hcondi" in the

log_f_denum function with "mu0+log(k/(1-k))".

##########################################

log_f_num <- function (mu, phi, tau, rho, hcondi, htplus, htminus, yt, ytminus){

dnorm (yt, 0, exp(hcondi/2), log = T) +

-.5*(hcondi-mu-phi*htminus+phi*mu-rho*tau*ytminus*exp(-.5*htminus))^2 / (tau

^2*(1-rho^2)) +

-.5*(htplus-mu-phi*hcondi+phi*mu-rho*tau*yt*exp(-.5*hcondi))^2 / (tau^2*(1-rho

^2))

}

log_f_num_transformed <- function (mu, phi, tau, rho, k, htplus, htminus, yt,

ytminus){

mu0 <- (htplus + htminus)/2

log_f_num(mu = mu, phi = phi, tau = tau, rho=rho, hcondi=mu0+log(k/(1-k)),

htplus=htplus, htminus=htminus, yt=yt, ytminus=ytminus)-log(k-k^2)

}

log_f_denum <- function (mu, phi, tau, rho, hcondi, htplus, htminus, yt, ytminus){

-.5*(hcondi-mu-phi*htminus+phi*mu-rho*tau*ytminus*exp(-.5*htminus))^2 / (tau

^2*(1-rho^2)) +
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-.5*(htplus-mu-phi*hcondi+phi*mu-rho*tau*yt*exp(-.5*hcondi))^2 / (tau^2*(1-rho

^2))

}

log_f_denum_transformed <- function (mu, phi, tau, rho, k, htplus, htminus, yt,

ytminus){

mu0 <- (htplus + htminus)/2

log_f_denum(mu = mu, phi = phi, tau = tau, rho=rho, hcondi=mu0+log(k/(1-k)),

htplus=htplus, htminus=htminus, yt=yt, ytminus=ytminus)-log(k-k^2)

}

C.2 Computing the DIC, WAIC, and IS for the SV

Models

• Model 1

##########################################

## Sourcing functions, loading original data observations and the fitted

chains

##########################################

source ("iswaic.r")

source ("model1.r")

source ("log_sum_exp_arr.R")

raw_data <- load ("sample_data.RData")

load ("sample_fit")

##########################################

## Computing DIC/WAIC/IS

##########################################

time1 <- system.time (

{

sfit<-summary(fit)

log_lik <- extract (fit, "log_lik")$log_lik

Dbar <- sum(colMeans(-2*log_lik))

}

)

time2 <- system.time (

{

hrow <- grep("h\\[",rownames(sfit$summary))

hbar <- sfit$summary[hrow, "mean"]

Dthetabar <- -2* sum(dnorm (raw_data$y, 0, exp (hbar/2), log = TRUE))

dic <- 2*Dbar - Dthetabar
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}

)

dictime <- time1 + time2

time3 <- system.time (

{

is <- is_function (log_lik)$is

p_is <- is_function (log_lik)$p_is

}

)

istime <- time1 + time3

time4 <- system.time (

{

waic <- waic_function (log_lik)$waic

p_waic <- waic_function (log_lik)$p_waic

}

)

waictime <- time1 + time4

##########################################

## Computing log integrated likelihood

##########################################

time5 <- system.time (

{

fit_ss <- extract(fit, permuted = TRUE)

mu <- fit_ss$mu

phi <- fit_ss$phi

tau <- fit_ss$tau

y <- raw_data$y

I <- length(fit_ss$h[, 1])

T <- length(fit_ss$h[1, ])

h <- fit_ss$h

J <- 100

hcondi <- array(0, dim = c(I, T, J))

a <- phi / (phi^2 + 1)

b <- phi / (phi^2 + 1)

int <- ((mu - phi^2 * mu) / (phi^2 + 1) - mu + phi * mu) / phi

sd <- tau / (phi^2 + 1)^0.5

hcondi[, 1, ] <- rnorm(J * I, a * fit_ss$h0 + b * h[, 2] + int, sd)

hcondi[, T, ] <- rnorm(J * I, mu - phi * mu + phi * h[, T - 1], tau)

for (t in 2:(T - 1)) {

hcondi[,t,] <- rnorm(J * I, a * h[, t - 1] + b * h[, t +1 ] + int, sd)

}
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thcondi <- aperm(hcondi, c(2, 1, 3))

log_py <- dnorm(y, mean = 0, sd = exp(thcondi /2 ), log = T)

log_ipy<-log_mean_exp_arr(log_py)

}

)

time6 <- system.time(

{

iwaic <- waic_function (log_ipy) $waic

p_iwaic <- waic_function (log_ipy) $p_waic

}

)

time7 <- system.time(

{

iis <- is_function (log_ipy) $is

p_iis <- is_function (log_ipy) $p_is

}

)

iwaictime <- time5 + time6

iistime <- time5 +time7

##########################################

## Creating files for the calculated results

##########################################

dicwaicis_list <- list (dic = dic, waic = waic, iwaic =iwaic, is = is, iis =

iis)

save (dicwaicis_list, file = "dicwaic_list")

system_time_list <- list (dictime = dictime, waictime = waictime, iwaictime =

iwaictime, istime = istime, iistime = iistime)

save (system_time_list, file = "system_time_list")

p_list <- list (p_waic = p_waic, p_iwaic = p_iwaic, p_is = p_is, p_iis =

p_iis)

save (p_list, file = "p_list")

• Model 2

##########################################

## Sourcing functions, loading original data observations and the fitted

chains

##########################################

source ("iswaic.r")
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source ("model2.r")

source ("log_sum_exp_arr.R")

raw_data <- load ("sample_data.RData")

load ("sample_fit")

##########################################

## Computing DIC/WAIC/IS

##########################################

time1 <- system.time (

{

sfit<-summary(fit)

log_lik <- extract (fit, "log_lik")$log_lik

Dbar <- sum(colMeans(-2*log_lik))

}

)

time2 <- system.time (

{

hrow <- grep("h\\[",rownames(sfit$summary))

hbar <- sfit$summary[hrow, "mean"]

Dthetabar <- -2* sum(dnorm (raw_data$y, 0, exp (hbar/2), log = TRUE))

dic <- 2*Dbar - Dthetabar

}

)

dictime <- time1 + time2

time3 <- system.time (

{

is <- is_function (log_lik)$is

p_is <- is_function (log_lik)$p_is

}

)

istime <- time1 + time3

time4 <- system.time (

{

waic <- waic_function (log_lik)$waic

p_waic <- waic_function (log_lik)$p_waic

}

)

waictime <- time1 + time4

##########################################
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## Computing log integrated likelihood

##########################################

time5 <- system.time (

{

fit_ss <- extract(fit, permuted = TRUE)

mu <- fit_ss$mu

phi <- fit_ss$phi

tau <- fit_ss$tau

y <- raw_data$y

I <- length(fit_ss$h[, 1])

T <- length(fit_ss$h[1, ])

h <- fit_ss$h

J <- 100

hcondi <- array(0, dim = c(I, T, J))

a <- phi / (phi^2 + 1)

b <- phi / (phi^2 + 1)

int <- ((mu - phi^2 * mu) / (phi^2 + 1) - mu + phi * mu) / phi

sd <- tau / (phi^2 + 1)^0.5

hcondi[, 1, ] <- rnorm(J * I, a * fit_ss$h0 + b * h[, 2] + int, sd)

hcondi[, T, ] <- rnorm(J * I, mu - phi * mu + phi * h[, T - 1], tau)

for (t in 2:(T - 1)) {

hcondi[,t,] <- rnorm(J * I, a * h[, t - 1] + b * h[, t +1 ] + int, sd)

}

thcondi <- aperm(hcondi, c(2, 1, 3))

log_py <- dnorm(y, mean = 0, sd = exp(thcondi /2 ), log = T)

dim(log_py)

log_ipy<-log_mean_exp_arr(log_py)

}

)

time6 <- system.time(

{

iwaic <- waic_function (log_ipy) $waic

p_iwaic <- waic_function (log_ipy) $p_waic

}

)

time7 <- system.time(

{

iis <- is_function (log_ipy) $is

p_iis <- is_function (log_ipy) $p_is

}

)

iwaictime <- time5 + time6
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iistime <- time5 +time7

##########################################

## Creating files for the calculated results

##########################################

dicwaicis_list <- list (dic = dic, waic = waic, iwaic =iwaic, is = is, iis =

iis)

save (dicwaicis_list, file = "dicwaic_list")

system_time_list <- list (dictime = dictime, waictime = waictime, iwaictime =

iwaictime, istime = istime, iistime = iistime)

save (system_time_list, file = "system_time_list")

p_list <- list (p_waic = p_waic, p_iwaic = p_iwaic, p_is = p_is, p_iis =

p_iis)

save (p_list, file = "p_list")

• Model 3

##########################################

## Sourcing functions, loading original data observations and the fitted

chains

##########################################

source ("iswaic.r")

source ("model3.r")

source ("log_sum_exp_arr.R")

raw_data <- load ("sample_data.RData")

load ("sample_fit")

##########################################

## Computing DIC/WAIC/IS

##########################################

time1 <- system.time (

{

sfit<-summary(fit)

log_lik <- extract (fit, "log_lik")$log_lik

Dbar <- sum(colMeans(-2*log_lik))

}

)

time2 <- system.time (

{

hrow <- grep("h\\[",rownames(sfit$summary))

hbar <- sfit$summary[hrow, "mean"]
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Dthetabar <- -2* sum(dnorm (raw_data$y, 0, exp (hbar/2), log = TRUE))

dic <- 2*Dbar - Dthetabar

}

)

dictime <- time1 + time2

time3 <- system.time (

{

is <- is_function (log_lik)$is

p_is <- is_function (log_lik)$p_is

}

)

istime <- time1 + time3

time4 <- system.time (

{

waic <- waic_function (log_lik)$waic

p_waic <- waic_function (log_lik)$p_waic

}

)

waictime <- time1 + time4

##########################################

## Computing log integrated likelihood

##########################################

time5 <- system.time (

{

fit_ss <- extract(fit, permuted = TRUE)

mu <- fit_ss$mu

phi <- fit_ss$phi

psi <- fit_ss$psi

tau <- fit_ss$tau

Y <- raw_data$y

h <- fit_ss$h

I <- length(fit_ss$h[, 1])

T <- length(fit_ss$h[1, ])

J <- 100

hcondi <- array(0, dim = c(I, T, J))

a <- psi / (1 + phi^2 + psi^2)

b <- (phi - psi * phi) / (1 + phi^2 + psi^2)

c <- (phi - psi * phi) / (1 + phi^2 + psi^2)

d <- psi / (1 + phi^2 + psi^2)

int <- (-2 * phi * mu - 2 * psi * mu + 2 * phi * psi * mu) / (1 + phi^2 +

psi^2) + mu
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sd <- tau / sqrt(phi^2 + psi^2 + 1)

hcondi[, 1, ] <- rnorm(J * I, (phi * (fit_ss$h0 - mu) + phi * (h[, 2] - mu

- psi * (fit_ss$h0 - mu)) + psi * (h[, 3] - mu - phi * (h[, 2] - mu)))

/(1 + phi^2 + psi^2) + mu, sd)

hcondi[, 2, ] <- rnorm(J * I, a * fit_ss$h0 + b * h[, 1] + c * h[, 3] + d *

h[, 4] + int, sd)

hcondi[, T - 1, ] <- rnorm(J * I, (phi * (h[, T - 2] - mu) + psi * (h[, T -

3] - mu) + phi * (h[, T] - mu - psi * (h[, T - 2] - mu))) / (1 + phi

^2) + mu, tau / sqrt(1 + phi^2))

hcondi[, T, ] <- rnorm (J * I, mu + phi * (h[, T - 1] - mu) + psi * (h[, T

- 2] - mu), tau)

for (t in 3:(T - 2)) {

hcondi[, t, ] <- rnorm(J * I, a * h[, t - 2] + b * h[, t - 1] + c * h[, t

+ 1] + d * h[, t + 2] + int, sd)

}

thcondi <- aperm(hcondi, c(2, 1, 3))

log_py <- dnorm(y, mean = 0, sd = exp(thcondi /2 ), log = T)

log_ipy<-log_mean_exp_arr(log_py)

}

)

time6 <- system.time(

{

iwaic <- waic_function (log_ipy) $waic

p_iwaic <- waic_function (log_ipy) $p_waic

}

)

time7 <- system.time(

{

iis <- is_function (log_ipy) $is

p_iis <- is_function (log_ipy) $p_is

}

)

iwaictime <- time5 + time6

iistime <- time5 +time7

##########################################

## Creating files for the calculated results

##########################################

dicwaicis_list <- list (dic = dic, waic = waic, iwaic =iwaic, is = is, iis =

iis)

save (dicwaicis_list, file = "dicwaic_list")
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system_time_list <- list (dictime = dictime, waictime = waictime, iwaictime =

iwaictime, istime = istime, iistime = iistime)

save (system_time_list, file = "system_time_list")

p_list <- list (p_waic = p_waic, p_iwaic = p_iwaic, p_is = p_is, p_iis =

p_iis)

save (p_list, file = "p_list")

• Model 4

##########################################

## Sourcing functions, loading original data observations and the fitted

chains

##########################################

source ("iswaic.r")

source ("model4.r")

source ("log_sum_exp_arr.R")

raw_data <- load ("sample_data.RData")

load ("sample_fit")

##########################################

## Computing DIC/WAIC/IS

##########################################

time1 <- system.time (

{

sfit<-summary(fit)

log_lik <- extract (fit, "log_lik")$log_lik

Dbar <- sum(colMeans(-2*log_lik))

}

)

time2 <- system.time (

{

hrow <- grep("h\\[",rownames(sfit$summary))

hbar <- sfit$summary[hrow, "mean"]

Dthetabar <- -2* sum(dnorm (raw_data$y, 0, exp (hbar/2), log = TRUE))

dic <- 2*Dbar - Dthetabar

}

)

dictime <- time1 + time2

time3 <- system.time (

{
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is <- is_function (log_lik)$is

p_is <- is_function (log_lik)$p_is

}

)

istime <- time1 + time3

time4 <- system.time (

{

waic <- waic_function (log_lik)$waic

p_waic <- waic_function (log_lik)$p_waic

}

)

waictime <- time1 + time4

##########################################

## Computing log integrated likelihood

##########################################

time5 <- system.time (

{

fit_ss <- extract(fit, permuted = TRUE)

mu <- fit_ss$mu

phi <- fit_ss$phi

phi2 <- fit_ss$phi2

tau <- fit_ss$tau

tau2 <- fit_ss$tau2

h1 <- fit_ss$h1

h2 <- fit_ss$h2

y <- raw_data$y

I <- length(fit_ss$h1[, 1])

T <- length(fit_ss$h1[1, ])

J <- 100

h1condi <- array (0, dim = c(I, T, J))

h2condi <- h1condi

log_py <- array(0, dim = c(I, T, J))

log_ipy <- matrix(0, nrow = I, ncol = T)

a1 <- phi / (phi^2 + 1)

b1 <- phi / (phi^2 + 1)

sd1 <- tau / sqrt(phi^2 + 1)

a2 <- phi2 / (phi2^2 + 1)

b2 <- phi2 / (phi2^2 + 1)

sd2 <- tau2 / sqrt(phi2^2 + 1)

h1condi[, 1, ] <- rnorm(J * I, a1 * fit_ss$h10 + b1 * h1[, 2], sd1)

h2condi[, 1, ] <- rnorm(J * I, a2 * fit_ss$h20 + b2 * h2[, 2], sd2)

h1condi[, T, ] <- rnorm(J * I, phi * h1[, T - 1], tau)

h1condi[, T, ] <- rnorm(J * I, phi2 * h2[, T - 1], tau2)
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for (t in 2:(T - 1)) {

h1condi[, t, ] <- rnorm(J * I, a1 * h1[, t - 1] + b1 * h1[, t + 1], sd1)

h2condi[, t, ] <- rnorm(J * I, a2 * h2[, t - 1] + b2 * h2[, t + 1], sd2)

}

th1condi <- aperm(h1condi, c(2, 1, 3))

th2condi <- aperm(h2condi, c(2, 1, 3))

mu_array <- array(mu, dim = c(I, T, J))

tmu_array <- aperm(mu_array, c(2, 1, 3))

log_py <- dnorm(y, mean = 0, sd = exp(tmu_array /2 + th1condi /2 + th2condi

/2 ), log = T)

log_ipy<-log_mean_exp_arr(log_py)

}

)

time6 <- system.time(

{

iwaic <- waic_function (log_ipy) $waic

p_iwaic <- waic_function (log_ipy) $p_waic

}

)

time7 <- system.time(

{

iis <- is_function (log_ipy) $is

p_iis <- is_function (log_ipy) $p_is

}

)

iwaictime <- time5 + time6

iistime <- time5 +time7

##########################################

## Creating files for the calculated results

##########################################

dicwaicis_list <- list (dic = dic, waic = waic, iwaic =iwaic, is = is, iis =

iis)

save (dicwaicis_list, file = "dicwaic_list")

system_time_list <- list (dictime = dictime, waictime = waictime, iwaictime =

iwaictime, istime = istime, iistime = iistime)

save (system_time_list, file = "system_time_list")

p_list <- list (p_waic = p_waic, p_iwaic = p_iwaic, p_is = p_is, p_iis =

p_iis)

save (p_list, file = "p_list")
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• Model 5

##########################################

## Sourcing functions, loading original data observations and the fitted

chains

##########################################

source ("model5.r")

source ("iswaic.r")

source ("log_int_mid.r")

source ("log_f_num.R")

source ("log_f_denum.R")

source ("log_f_num_transformed.R")

source ("log_f_denum_transformed.R")

source ("log_sum_exp_arr.R")

raw_data <- load ("sample_data.RData")

load ("sample_fit")

##########################################

## Computing DIC/WAIC/IS

##########################################

time1 <- system.time (

{

sfit<-summary(fit)

log_lik <- extract (fit, "log_lik")$log_lik

Dbar <- sum(colMeans(-2*log_lik))

}

)

time2 <- system.time (

{

hrow <- grep("h\\[",rownames(sfit$summary))

hbar <- sfit$summary[hrow, "mean"]

Dthetabar <- -2* sum(dnorm (raw_data$y, 0, exp (hbar/2), log = TRUE))

dic <- 2*Dbar - Dthetabar

}

)

dictime <- time1 + time2

time3 <- system.time (

{

is <- is_function (log_lik)$is

p_is <- is_function (log_lik)$p_is

}

)
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istime <- time1 + time3

time4 <- system.time (

{

waic <- waic_function (log_lik)$waic

p_waic <- waic_function (log_lik)$p_waic

}

)

waictime <- time1 + time4

##########################################

## Computing log integrated likelihood

##########################################

time5 <- system.time (

{

fit_ss <- extract(fit, permuted = TRUE)

mu <- fit_ss$mu

phi <- fit_ss$phi

tau <- fit_ss$tau

rho <- fit_ss$rho

y <- raw_data$y

I <- length(fit_ss$h[, 1])

T <- length(fit_ss$h[1, ])

J <- 100

h <- fit_ss$h

y0 <- fit_ss$y0

h0 <- fit_ss$h0

log_ipy <- matrix(0, nrow = I, ncol = T)

hcondiT <- array (0, dim = c (1, I, J))

hcondiT[1, , ] <- rnorm(J * I, mu + phi * (h[, T - 1] - mu) + rho * tau * y

[T-1] * exp(-.5 * h[, T-1]), tau * sqrt (1-rho^2))

log_pyT <- dnorm(y[T], mean = 0, sd = exp(hcondiT /2 ), log = T)

log_ipy[, T] <- log_mean_exp_arr(log_pyT)

log_ipy_num_1 <- log_int_mid (log_f_num_transformed, c(0, 1), n = 100, mu =

mu, phi = phi, tau = tau, rho = rho, htplus = h[, 2], htminus = h0, yt

= rep (y[1], I), ytminus = y0)

log_ipy_denum_1 <- log_int_mid (log_f_denum_transformed, c(0, 1), n = 100,

mu = mu, phi = phi, tau = tau, rho = rho, htplus = h[, 2], htminus = h0

, yt = rep (y[1], I), ytminus = y0)

log_ipy[, 1] <- log_ipy_num_1 - log_ipy_denum_1

for (t in 2:(T-1)) {

log_ipy_num_t <- log_int_mid (log_f_num_transformed, c(0, 1), n = 100, mu =
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mu, phi = phi, tau = tau, rho = rho, htplus = h[, t+1], htminus = h[,

t-1], yt = rep (y[t], I), ytminus = rep (y[t-1], I))

log_ipy_denum_t <- log_int_mid (log_f_denum_transformed, c(0, 1), n = 100,

mu = mu, phi = phi, tau = tau, rho = rho, htplus = h[, t+1], htminus =

h[, t-1], yt = rep (y[t], I), ytminus = rep (y[t-1], I))

log_ipy[, t] <- log_ipy_num_t - log_ipy_denum_t

}

}

)

time6 <- system.time(

{

iwaic <- waic_function (log_ipy) $waic

p_iwaic <- waic_function (log_ipy) $p_waic

}

)

time7 <- system.time(

{

iis <- is_function (log_ipy) $is

p_iis <- is_function (log_ipy) $p_is

}

)

iwaictime <- time5 + time6

iistime <- time5 +time7

##########################################

## Creating files for the calculated results

##########################################

dicwaicis_list <- list (dic = dic, waic = waic, iwaic =iwaic, is = is, iis =

iis)

save (dicwaicis_list, file = "dicwaic_list")

system_time_list <- list (dictime = dictime, waictime = waictime, iwaictime =

iwaictime, istime = istime, iistime = iistime)

save (system_time_list, file = "system_time_list")

p_list <- list (p_waic = p_waic, p_iwaic = p_iwaic, p_is = p_is, p_iis =

p_iis)

save (p_list, file = "p_list")

• Model 6

##########################################
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## Sourcing functions, loading original data observations and the fitted

chains

##########################################

source ("iswaic.r")

source ("model6.r")

source ("log_sum_exp_arr.R")

raw_data <- load ("sample_data.RData")

load ("sample_fit")

##########################################

## Computing DIC/WAIC/IS

##########################################

time1 <- system.time (

{

sfit<-summary(fit)

log_lik <- extract (fit, "log_lik")$log_lik

Dbar <- sum(colMeans(-2*log_lik))

}

)

time2 <- system.time (

{

hrow <- grep("h\\[",rownames(sfit$summary))

hbar <- sfit$summary[hrow, "mean"]

Dthetabar <- -2* sum(dnorm (raw_data$y, 0, exp (hbar/2), log = TRUE))

dic <- 2*Dbar - Dthetabar

}

)

dictime <- time1 + time2

time3 <- system.time (

{

is <- is_function (log_lik)$is

p_is <- is_function (log_lik)$p_is

}

)

istime <- time1 + time3

time4 <- system.time (

{

waic <- waic_function (log_lik)$waic

p_waic <- waic_function (log_lik)$p_waic

}
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)

waictime <- time1 + time4

##########################################

## Computing log integrated likelihood

##########################################

time5 <- system.time (

{

fit_ss <- extract(fit, permuted = TRUE)

mu <- fit_ss$mu

phi <- fit_ss$phi

tau <- fit_ss$tau

kappa <- fit_ss$kappa

beta <- fit_ss$beta

y <- raw_data$y

s <- fit_ss$s

I <- length(fit_ss$h[, 1])

T <- length(fit_ss$h[1, ])

y0 <- fit_ss$y0

h <- fit_ss$h

J <- 100

hcondi <- array(0, dim = c(I, T, J))

a <- phi / (phi^2 + 1)

b <- phi / (phi^2 + 1)

int <- ((mu - phi^2 * mu) / (phi^2 + 1) - mu + phi * mu) / phi

sd <- tau / (phi^2 + 1)^0.5

hcondi[, 1, ] <- rnorm(J * I, a * fit_ss$h0 + b * h[, 2] + int, sd)

hcondi[, T, ] <- rnorm(J * I, mu - phi * mu + phi * h[, T - 1], tau)

for (t in 2:(T - 1)) {

hcondi[,t,] <- rnorm(J * I, a * h[, t - 1] + b * h[, t +1 ] + int, sd)

}

thcondi <- aperm(hcondi, c(2, 1, 3))

ytminus1_matrix <- rbind(y0, matrix(y[1:T-1], nrow = T-1, ncol = I))

beta_matrix <- t(matrix(beta, nrow = I, ncol = T))

kappa_array <- aperm(array(kappa, dim = c(I, T, J)), c(2, 1, 3))

log_py <- log ((1 - kappa_array) * dnorm(y, mean = beta_matrix *

ytminus1_matrix, sd = exp(thcondi /2 )) + kappa_array * dnorm(y, mean =

beta_matrix * ytminus1_matrix + t(s), sd = exp(thcondi /2 )))

log_ipy<-log_mean_exp_arr(log_py)

}

)

time6 <- system.time(

{

iwaic <- waic_function (log_ipy) $waic
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p_iwaic <- waic_function (log_ipy) $p_waic

}

)

time7 <- system.time(

{

iis <- is_function (log_ipy) $is

p_iis <- is_function (log_ipy) $p_is

}

)

iwaictime <- time5 + time6

iistime <- time5 +time7

##########################################

## Creating files for the calculated results

##########################################

dicwaicis_list <- list (dic = dic, waic = waic, iwaic =iwaic, is = is, iis =

iis)

save (dicwaicis_list, file = "dicwaic_list")

system_time_list <- list (dictime = dictime, waictime = waictime, iwaictime =

iwaictime, istime = istime, iistime = iistime)

save (system_time_list, file = "system_time_list")

p_list <- list (p_waic = p_waic, p_iwaic = p_iwaic, p_is = p_is, p_iis =

p_iis)

save (p_list, file = "p_list")

• Model 7

##########################################

## Sourcing functions, loading original data observations and the fitted

chains

##########################################

source ("iswaic.r")

source ("model7.r")

source ("log_sum_exp_arr.R")

raw_data <- load ("sample_data.RData")

load ("sample_fit")

##########################################

## Computing DIC/WAIC/IS

##########################################
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time1 <- system.time (

{

sfit<-summary(fit)

log_lik <- extract (fit, "log_lik")$log_lik

}

)

time2 <- system.time (

{

Dbar <- sum(colMeans(-2*log_lik))

hrow <- grep("h\\[",rownames(sfit$summary))

hbar <- sfit$summary[hrow, "mean"]

kappabar <- sfit$summary["kappa", "mean"]

srow <- grep("s\\[",rownames(sfit$summary))

sbar <- sfit$summary[srow, "mean"]

Dthetabar <- -2* sum(log((1 - kappabar) * dnorm(y, 0, exp(hbar /2 )) +

kappabar * dnorm(y, sbar, exp(hbar/2 ))))

dic <- 2*Dbar - Dthetabar

}

)

dictime <- time1 + time2

time3 <- system.time (

{

is <- is_function (log_lik)$is

p_is <- is_function (log_lik)$p_is

}

)

istime <- time1 + time3

time4 <- system.time (

{

waic <- waic_function (log_lik)$waic

p_waic <- waic_function (log_lik)$p_waic

}

)

waictime <- time1 + time4

##########################################

## Computing log integrated likelihood

##########################################

time5 <- system.time (

{

fit_ss <- extract(fit, permuted = TRUE)
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mu <- fit_ss$mu

phi <- fit_ss$phi

tau <- fit_ss$tau

kappa <- fit_ss$kappa

delta <- fit_ss$delta

s <- fit_ss$s

I <- length(fit_ss$h[, 1])

T <- length(fit_ss$h[1, ])

h <- fit_ss$h

J <- 100

hcondi <- log_py <- array(0, dim = c(I, T, J))

a <- phi / (phi^2 + 1)

b <- phi / (phi^2 + 1)

int <- ((mu - phi^2 * mu) / (phi^2 + 1) - mu + phi * mu) / phi

sd <- tau / (phi^2 + 1)^0.5

hcondi[, 1, ] <- rnorm(J * I, a * fit_ss$h0 + b * h[, 2] + int, sd)

hcondi[, T, ] <- rnorm(J * I, mu - phi * mu + phi * h[, T - 1], tau)

for (t in 2:(T - 1)) {

hcondi[,t,] <- rnorm(J * I, a * h[, t - 1] + b * h[, t +1 ] + int, sd)

}

log1ps <- matrix (rnorm (J * I, -(delta^2/2), delta), nrow = I, ncol = J)

s <- exp(log1ps) - 1

kappa_matrix <- matrix(rep(kappa, J), nrow = I, ncol = J)

for (t in 1:T){

log_py[, t, ] <- log ((1 - kappa_matrix) * dnorm(y[t], 0, exp(hcondi[, t,

]/2 )) + kappa_matrix * dnorm(y[t], s, exp(hcondi[, t, ]/2 )))

}

log_ipy <- log_mean_exp_arr(aperm(log_py,c(2,1,3)))

}

)

time6 <- system.time(

{

iwaic <- waic_function (log_ipy) $waic

p_iwaic <- waic_function (log_ipy) $p_waic

}

)

time7 <- system.time(

{

iis <- is_function (log_ipy) $is

p_iis <- is_function (log_ipy) $p_is

}
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)

iwaictime <- time5 + time6

iistime <- time5 +time7

##########################################

## Creating files for the calculated results

##########################################

dicwaicis_list <- list (dic = dic, waic = waic, iwaic =iwaic, is = is, iis =

iis)

save (dicwaicis_list, file = "dicwaic_list")

system_time_list <- list (dictime = dictime, waictime = waictime, iwaictime =

iwaictime, istime = istime, iistime = iistime)

save (system_time_list, file = "system_time_list")

p_list <- list (p_waic = p_waic, p_iwaic = p_iwaic, p_is = p_is, p_iis =

p_iis)

save (p_list, file = "p_list")

• Model 8

##########################################

## Sourcing functions, loading original data observations and the fitted

chains

##########################################

source ("iswaic.r")

source ("model8.r")

source ("log_sum_exp_arr.R")

raw_data <- load ("sample_data.RData")

load ("sample_fit")

##########################################

## Computing DIC/WAIC/IS

##########################################

time1 <- system.time (

{

sfit<-summary(fit)

log_lik <- extract (fit, "log_lik")$log_lik

Dbar <- sum(colMeans(-2*log_lik))

}

)

time2 <- system.time (
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{

hrow <- grep("h\\[",rownames(sfit$summary))

hbar <- sfit$summary[hrow, "mean"]

wrow <- grep("w\\[",rownames(sfit$summary))

wbar <- sfit$summary[wrow, "mean"]

Dthetabar <- -2* sum(dnorm (y, 0, exp (hbar/2)/sqrt(wbar), log = TRUE))

dic <- 2*Dbar - Dthetabar

}

)

dictime <- time1 + time2

time3 <- system.time (

{

is <- is_function (log_lik)$is

p_is <- is_function (log_lik)$p_is

}

)

istime <- time1 + time3

time4 <- system.time (

{

waic <- waic_function (log_lik)$waic

p_waic <- waic_function (log_lik)$p_waic

}

)

waictime <- time1 + time4

##########################################

## Computing log integrated likelihood

##########################################

time5 <- system.time (

{

fit_ss <- extract(fit, permuted = TRUE)

mu <- fit_ss$mu

phi <- fit_ss$phi

tau <- fit_ss$tau

w <- fit_ss$w

I <- length(fit_ss$h[, 1])

T <- length(fit_ss$h[1, ])

h <- fit_ss$h

J <- 100

log_py <- array(0, dim=c(I, T, J))

hcondi <- array(0, dim = c(I, T, J))

a <- phi / (phi^2 + 1)
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b <- phi / (phi^2 + 1)

int <- ((mu - phi^2 * mu) / (phi^2 + 1) - mu + phi * mu) / phi

sd <- tau / (phi^2 + 1)^0.5

hcondi[, 1, ] <- rnorm(J * I, a * fit_ss$h0 + b * h[, 2] + int, sd)

hcondi[, T, ] <- rnorm(J * I, mu - phi * mu + phi * h[, T - 1], tau)

for (t in 2:(T - 1)) {

hcondi[,t,] <- rnorm(J * I, a * h[, t - 1] + b * h[, t +1 ] + int, sd)

}

for (t in 1:T){

log_py[, t, ] <- dnorm(y[t], mean = 0, sd = exp(hcondi[, t, ]/2) / sqrt(

matrix(w[, t], nrow = I, ncol = J)), log = T)

}

log_ipy <- log_mean_exp_arr(aperm(log_py,c(2,1,3)))

}

)

time6 <- system.time(

{

iwaic <- waic_function (log_ipy) $waic

p_iwaic <- waic_function (log_ipy) $p_waic

}

)

time7 <- system.time(

{

iis <- is_function (log_ipy) $is

p_iis <- is_function (log_ipy) $p_is

}

)

iwaictime <- time5 + time6

iistime <- time5 +time7

##########################################

## Creating files for the calculated results

##########################################

dicwaicis_list <- list (dic = dic, waic = waic, iwaic =iwaic, is = is, iis =

iis)

save (dicwaicis_list, file = "dicwaic_list")

system_time_list <- list (dictime = dictime, waictime = waictime, iwaictime =

iwaictime, istime = istime, iistime = iistime)

save (system_time_list, file = "system_time_list")

p_list <- list (p_waic = p_waic, p_iwaic = p_iwaic, p_is = p_is, p_iis =
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p_iis)

save (p_list, file = "p_list")
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