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Abstract

Background: Recent advances in next-generation sequencing (NGS) technology enable re-

searchers to collect a large volume of microbiome data. Microbiome data consist of oper-

ational taxonomic unit (OTU) count data characterized by zero-inflation, over-dispersion,

and grouping structure among the sample. Currently, statistical testing methods based on

generalized linear mixed effect models (GLMM) are commonly performed to identify OTUs

that are associated with a phenotype such as human diseases or plant traits. There are a

number of limitations for statistical testing methods including these two: (1) the validity

of p-value/q-value depends sensitively on the correctness of models, and (2) the statistical

significance does not necessarily imply predictivity. Statistic testing methods depend on

model correctness and attempt to select ”marginally relevant” features, not the most predic-

tive ones. Predictive analysis using methods such as LASSO is an alternative approach for

feature selection. To the best of our knowledge, this approach has not been used widely for

analyzing microbiome data.

Methodology: We use four synthetic datasets simulated from zero-inflated negative bino-

mial distribution and a real human gut microbiome data to compare the feature selection

performance of LASSO with the likelihood ratio test methods applied to GLMMs. We also

investigate the performance of cross-validation in estimating the out-of-sample predictivity

of selected features in zero-inflated data.

Results: Our studies with synthetic datasets show that the feature selection performance of

LASSO is remarkably excellent in zero-inflated data and is comparable with the likelihood

ratio test applied to the true data generating model. The feature selection performance of

LASSO is better when the distributions of counts are more differentiated by the phenotype,

which is a categorical variable in our synthetic datasets.

In addition, we performed LOOCV on the train set and out-of-sample prediction on the

test set. The performance of the cross-validatory (CV) predictive measures are very close

to the out-of-sample predictivity measures. This indicates that LOOCV predictive metrics

provide honest measures of the predictivity of the features selected by LASSO. Therefore, the

CV predictive measures are good guidance for choosing cutoffs (shrinkage parameter λ) in

selecting features with LASSO. By contrast, when wrong models are fitted to a dataset, the

differences between the q-values and the actual false discovery rates are huge; hence, their

q-values are tremendously misleading for selecting features. Our comparison of LASSO and

statistical testing methods (likelihood ratio test in our analysis) in the real dataset shows that

small q-values do not necessarily imply high predictivity of the selected OTUs. However, the
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researchers often use q-values to find the predictors. That is why we need to look at q-values

carefully.

Conclusions: Statistical testing methods perform greatly in zero-inflated datasets on both

synthetic and real data. However, a serious model checking should be conducted before we use

q-values to choose features. Predictive analysis with LASSO is recommended to supplement

q-values for selecting features and for measuring the predictivity of selected features.
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1. Introduction

1.1 Background and motivation

The microbiome comprises all of the genetic material within a microbiota (the entire collection

of microorganisms in a specific niche, such as the human gut). This can also be referred to

as the metagenome of the microbiota [1]. The far-reaching effects of the microbiome on

human diseases and many other biological phenotypes have only recently discovered [2].

Bacteria in the body and on the surface have a significant impact on the development of

health and disease states. For example, microbial changes are shown to be associated with

Parkinson’s disease [3]. The abundance of a bacterium species or genus is quantified by

operational taxonomic unit (OTU) counts using genetic sequence similarity, produced via

targeted amplification and sequencing of the 16S rRNA gene [4].

Microbiome OTU count data often have excessive zeros than what is expected in Poisson

or NB models. There are three different types of zeros in Microbiome Data, which are outlier

zeros, structural zeros and sampling zeros [5]. One source of the zero microbiota abundance

is that only a few major bacterial taxa of the microbiota are shared across samples and

the rest are detected only in a small percentage of the samples. The zero counts may also

be observed when the counts are present with a low frequency but not observed because of

sampling variation (sampling zeros). When OTU counts are non-zero, it is often observed that

they are highly skewed to the right, often called over-dispersion. There are other statistical

issues due to the study designs commonly used in microbiome studies. Microbiome studies

usually collect samples with complicated grouping structure, for example, plants from the

same plot, and individuals from the same family. The grouping structure in the sample causes

correlation among the samples and thus further complicate the analysis and interpretation of

microbiome count data. Ignoring the correlation among samples can result in biased inference

and misleading results [6]. Generalized linear mixed effects models are often adopted to

account for the grouping structure by treating the group identities as random factors [6, 7].
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Sample/random variables represent sample collection identifiers in the hierarchical study

design, such as family structure, repeated measures from multiple body sites or time points.

There is increasing interest among scientists to find the association between the abun-

dances of a subset of OTUs and host factors, for example, health disorder, and plant traits;

see [8–10]. For example, [11] reports various relationships between the gut microbiome and

cancer, inflammatory bowel disease (IBD), and obesity. We will call this goal of data analysis

by feature selection, that is, to select features related to a response variable. For microbiome

data, the features are OTU variables, and the response is a phenotype variable such as

disease indicator or plant traits. Currently, researchers fit each OTU variable with gener-

alized mixed effect models given the phenotype variable and other factors and then apply

a statistical testing method to each OTU to test whether the OTU is differentiated by the

phenotype variable [6, 7]. Features selection can be achieved by thresholding the q-values

returned by the statistical testing procedure. However, statistical testing methods have a

number of limitations. First, the validity of q-values relies on the correctness of assumed

models, which may not hold for real datasets. Second, q-values and p-values only measure

statistical significance but not practical significance. Small q-values do not necessarily imply

strong predictivity [12]. However, researchers still try to find the predictors with q-values

method. For example, many SNPs selected by genome-wide association studies are not good

predictors [12–14]. Third, the joint effects of features on a phenotype cannot be measured

in statistical testing methods that look at each feature individually. Many phenotypes are

believed to be related to multiple features [15–17].

1.2 Methodology

Feature selection can also be achieved by predictive analysis with statistical learning meth-

ods. In this thesis, we consider LASSO multinomial logistic regression [18]. LASSO applies

the L1 penalty to the coefficients of the logistic regression model of a phenotype variable given

predictor variables derived from OTU measurements. The OTU variables with non-zero co-

efficients after the shrinkage will be selected. There also has been a tentative exploration

of LASSO for microbiome data [19]. However, the study of LASSO for microbiome data is
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still very limited. The reason is probably that many researchers think that LASSO logistic

regression may have difficulty in handling the zero-inflation in microbiome data. This moti-

vated us to investigate the performance of LASSO logistic regression in microbiome data. We

conducted an empirical study using synthetic datasets and a real dataset to investigate the

feature selection performance of statistical significance testing and LASSO methods. Four

synthetic datasets were generated using zero-inflated negative binomial models (ZINB) with

varying signal magnitudes on counts and zeros. We chose to generate datasets from ZINB

models because many researchers in microbiome studies have adopted such models; see [6, 7].

We applied the likelihood ratio test (LRT) and LASSO logistic regression to select OTUs that

are related to a fixed factor (a phenotype). The feature selection performance of LRT and

LASSO are compared with the actual false discovery rate (FDR), which can be calculated

in synthetic data with the true indicators of whether an OTU is associated with the pheno-

type. We also assessed the agreement of actual false discovery rates and the q-values which

are estimates of FDR without using the true association indicators. For LASSO, we also

assessed the agreement of cross-validatory predictive measures (error rate and average minus

log probabilities) and the actual out-of-sample predictive measures which are obtained with

the test sample. Out-of-sample forecast is the process of formally evaluating the predictive

capabilities of the models developed using test data to see how effective the algorithms are

in reproducing data.

1.3 Summary of results

Our studies with synthetic datasets show that the feature selection performance of LASSO

is remarkably excellent in zero-inflated data, and is comparable with the likelihood ratio test

applied to the true data generating model. The feature selection performance of LASSO is

better when the distributions of counts are more differentiated with the phenotype. Besides,

the cross-validatory (CV) predictive measures provide honest measures of the predictivity of

features selected by LASSO. LOOCV can choose the best λ in selecting the most predictive

features in microbiome data. Therefore, the CV predictive measures are proper guidance for

choosing cutoffs (shrinkage parameter λ) in selecting features. It is reasonable that LASSO
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performs slightly worse than likelihood ratio test applied to the true data generating model

because LASSO model is not the true model for the dataset and LASSO will lose power

even when the model is true for a dataset due to the shrinkage for controlling overfitting.

By contrast, when wrong models are fitted to a dataset, the differences between the q-values

and the actual false discovery rates are huge; hence, q-values are tremendously misleading for

choosing cutoffs in selecting features. Our comparison of LASSO and statistical testing meth-

ods in the real dataset shows that small q-values do not necessarily imply high predictivity

of selected OTUs.

1.4 Organization of the thesis

In Chapter 2, we introduce the feature selection methods by applying the likelihood ratio test

to generalized linear mixed effect models (GLMMs), and by fitting LASSO logistic regression

models. We also describe the metrics for comparing feature selection and prediction, including

the false discovery rate (FDR), error rate and average minus log probabilities (AMLP). In

Chapter 3, we describe how to simulate four datasets using zero-inflated negative binomial

(ZINB) with varying signal magnitudes on counts and zeros and a real human gut microbiome

data. In Chapter 4, we compare the feature selection performance of LASSO and LRT. We

also investigate the performance of cross-validation in estimating the out-of-sample predictive

accuracy of LASSO. The thesis is concluded in Chapter 5.
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2. Methods

2.1 Feature selection in microbiome data

A typical OTU dataset contains measurements of abundance for OTUs, the total reads, a

number of fixed factors and random factors for each sample, as shown by Table 2.1:

Table 2.1: A general form of microbiome Data

OTU1 OTU2 · · · OTUm Total reads Fixed factors Random factors

Sample 1 Y
(1)
1 Y

(2)
1 · · · Y

(m)
1 T1 X

(1)
1 , · · · , X(s)

1 Z
(1)
1 , · · · , X(t)

1
...

...
... · · · ...

...
...

...

Sample n Y
(1)
n Y

(2)
n · · · Y

(m)
n Tn X

(1)
n , · · · , X(s)

n Z
(1)
n , · · · , Z(t)

n

We will describe the mathematical details of the notations in the Table 2.1:

• Y
(j)
i , i = 1, 2, ..., n, j = 1, 2, ...,m, is the count number of the OTU j in sample i. This

number can be the abundance of taxa grouped at different levels such as species, genus,

and family etc.

• Ti, i = 1, 2, ..., n is the total sequence reads for sample i. If we all measured OTUs are

included in our model, Ti =
∑m

j=1 Y
(j)
i . However, Ti may be smaller than

∑m
j=1 Y

(j)
i if

some OTUs are omitted for measurement quality control reason.

• X
(j)
i , i = 1, 2, ..., n, j = 1, 2, ..., s, represents the jth fixed factor associated for the ith

sample. s is the total number of fixed factors considered in the mixed effect model.

They could be host or clinical factors. When the jth fixed factor is categorical variable

with k classes, X
(j)
i is a row vector of k − 1 binary variables indicating the class of

sample i.

• Z
(j)
i , i = 1, 2, ..., n, j = 1, 2, ..., t, represents the jth random factor associated for the ith

sample. t is the number of random factors considered in the mixed effect model. They

are used to account for the correlation between samples since microbiota from the same
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group of samples are more similar than the ones from different groups. Random factors

are all categorical. Similar to X
(j)
i , the Z

(j)
i is a row vector of binary indicator variables

to represent the group identity of sample i in the jth random factor.

An important goal of microbiome studies is to identify/select a subset of OTUs that are

associated/related with a fixed factor, say X(1), which represents a phenotype variable of

interest in real microbiome data, for example, a variable indicating disease status or plant

traits. Currently, researchers fit each OTU variable Y (j) with generalized linear mixed effect

models (GLMM) [6] given all fixed and random factors, and then apply a statistical testing

method to test whether the proportion of the jth OTU among all OTUs, often defined as

Y
(j)
i /Ti, is differentiated (ie, associated) with X(1) [6, 7]. Selection of OTUs can be achieved

by thresholding the q-values returned by the statistical testing procedure (likelihood ratio

test). We will describe how to apply likelihood ratio test to GLMMs in Section 2.2 for

selecting OTUs. Statistical learning is another important alternative approach to selecting

OTUs. In LASSO, the X(1) is treated as a response/output variable, and the predictor/input

variables are OTU variables Y (1), . . . , Y (m) after certain transformation, and other fixed and

random factors. Selection of OTUs can be achieved by looking at the coefficients associated

with OTU variables. We will describe how to apply LASSO multinomial logistic regression

for microbiome data in Section 2.3.2. The performances of these two distinct methods for

feature selection will be compared with four synthetic data and a real gut microbiome dataset

in Section 4.

2.2 Statistical testing methods

2.2.1 GLMMs for zero-inflated data

Generalized linear mixed model (GLMM) is a flexible modelling framework that can take

into account both fixed effects and random effects into the modelling of a response variable.

Generalized linear mixed models (GLMMs) are an extension of generalized linear models

(GLMs) [20] and linear mixed models (LMMs) [21]. GLMMs are extended to include both

fixed and random effects and use non-normal distribution to model a response. In this section,

6



we will describe three GLMMs which are often used to model count data with zero-inflation

and over-dispersion. We will apply GLMMs to model each OTU variable Y
(j)
i individually,

conditional on fixed and random factors as shown in Table 2.1. Although different OTUs

are theoretically dependent due to that they are summed to equal to Ti, we adopt this

independent modelling for simplicity by considering that the correlations between OTUs are

very small because the proportion of each OTU is very small when m is large. For simplicity

in notations, we will omit the OTU index j in Section 2.2.

Negative binomial mixed effect models (NBMM):

For simplicity, we only describe one OTU here without superscript j. In NBMM, we will

use negative binomial distribution to model Yi given fixed and random factors. The PMF of

Yi is given by:

fNB(yi;µi, θ) =
Γ(yi + θ)

Γ(θ)Γ(yi + 1)

(
θ

θ + µi

)θ (
µi

θ + µi

)yi
, (2.1)

where yi takes values in {0, 1, . . .}, µi > 0 is the mean of yi, and θ > 0 is the inverse dispersion

parameter. In NBMMs, the mean µi is linked to fixed factors and random factors as follows:

log(µi) = log(Ti) +Xiβ + Zib (2.2)

where Xi = (X
(1)
i , . . . , X

(s)
i ) is a vector for representing all fixed factors, and similarly Zi =

(Z
(1)
i , . . . , Z

(t)
i ) is a vector of binary dummy variables for representing all random factors.

The total reads Ti exhibit big differences across samples. Thus, the log of total reads (Ti) is

also considered as a random factor and added to the link function with fixed coefficient 1.

Such a variable is often called an offset variable. In other words, the equation (2.2) links the

log of µi/Ti, i.e., the proportion of the abundance of an OTU among all OTUs, to fixed and

random factors.

The NB distribution has heavier tails than the Poisson distribution. When θ → ∞, the

NB distribution converges to Poisson distribution. Compared to other distributions such as

Poisson or normal, the advantage of using the NB distribution with small parameter θ, such

as 1 or 2, is that the heavier tails of NB can reduce the influence of extraordinarily large (over-

dispersed) counts yi in estimating the parameters in µi. Other characteristics of microbiome
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data are the presence of many zeros. To address the zero-inflation in yi, zero-inflated or

zero-modified models have been adopted for modelling yi.

Zero-modified poisson mixed effect model (ZMP):

In zero-modified models [22], also called hurdle models, the probability that yi = 0

is modified be value φi different from what is postulated by a standard distribution such

as the Poisson or NB distributions. The modified probability φi is often linked to fixed and

random factors using logistic regression model. The non-zero values in yi’s, often called count

values, are separately modelled by a zero-truncated distribution, for example, zero-truncated

Poisson or NB distribution. Such distributions are often called zero-modified Poisson (ZMP)

or zero-modified NB (ZMNB) models. In particular, the PMF of ZMP for yi is written as:

fZMP(yi) =


φi for yi = 0

(1− φi)
fPois(yi;µi)

1− fPois(0;µi)
for yi = 1, 2, . . .

(2.3)

where fPois(yi;µi) denotes the PMF of the Poisson distribution with mean µi. The φi and µi

are often linked to fixed and random factors as follows:

log

(
φi

1− φi

)
= Wiγ + Vir (2.4)

log(µi) = log(Ti) +Xiβ + Zib (2.5)

where Xi,Wi, Vi, Zi are covariates constructed from fixed and random factors. Note that the

covariates used in φi and µi are not necessarily the same in theory.

Zero-inflated negative binomial mixed effect models (ZINB)

Another way to model zero-inflated count data is to model yi as a mixture distribution of

0 and a standard distribution such as Poisson or NB distributions [23], instead of using zero-

truncated distribution for non-zero yi. They are often understood as that the yi is generated

in two steps. The first step is to generate a binary indicator from a logistic regression

distribution. In the second step, if the indicator in the first step is zero, then the yi is zero;

otherwise, yi is generated from a standard distribution such as NB. In particular, the PMF
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of a zero-inflated negative binomial (ZINB) model for yi can be written as:

fZINB(yi) =

 φi + (1− φi)fNB(0;µi, θ), for yi = 0

(1− φi)fNB(yi;µi, θ), for yi = 1, 2, . . .
(2.6)

where 0 < φi < 1 is the probability of an excess zero response. fNB(yi;µi, θ) is the negative

binomial distribution given by (2.1). The parameters µi and φi in ZINB are often linked to

fixed and random factors using the same way as described in equations (2.4) and (2.5).

2.2.2 Likelihood ratio test

In this thesis, we applied likelihood ratio test (LRT) to test whether a fixed factor of interest,

say X(1), is associated with each OUT variable y
(j)
i for j = 1, . . . ,m based on a GLMM model

as described in Section 2.2.1. A vector of p-values p(j), j = 1, . . . ,m will be returned from

these tests, and will be converted into q-values q(j), j = 1, . . . ,m to reflect false discovery

rate, which will be introduced in Section 2.2.3. The OTUs with small false discovery rates (q-

values) will be selected. In this section, we will briefly describe how to apply LRT to GLMM.

For more detailed discussion of LRT for testing fixed effects of GLMMs can be found from

[24] and the references therein. We will omit OTU index j for simplicity. The fixed factor of

interest is denoted by X(1), and all other factors are collectively denoted by X(2). In LRT,

we test the following two model assumptions:

H0 : yi ∼ f(yi|X(2)
i ), in words, X

(1)
i has no effect on yi

H1 : yi ∼ f(yi|X(1)
i , X

(2)
i ), in words, X

(1)
i has effect on yi

(2.7)

Let L0 and L1 represent the maximized likelihoods under model H0 and H1 respectively. The

log likelihood ratio statistic is defined as

Tn = 2(logL1 − logL0). (2.8)

If the model H1 is the true model for yi, Tn is expected to be a large value. Therefore, larger

Tn favours H1 against H0. A p-value can be calculated by computing P (Tn > T
(obs)
n )|H0)
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where T
(obs)
n is the observed value of Tn given the dataset. By Wilk’s theorem [25], the

sampling distribution of Tn under H0 is asymptotically a chi-square distribution with degree

freedom α equal to the difference of the numbers of parameters in H0 and H1. Suppose the

number of levels of X
(1)
i is K, the degree freedom α is equal to K − 1 in NBMM, and α is

equal to 2(K − 1) in ZMP and ZINB if X
(1)
i is used to model both µi and φi.

2.2.3 False discovery rate and q-value

Due to the large number of OTUs, there is the multiple testing problem. Therefore, we

need to convert p-values into false discovery rate to better understand the chance of false

positive. Suppose we know the true relationship between OTUs and a phenotype, represented

by a relevancy indicator S(j): S(j) = 1 if the jth OTU is related to the fixed factor X
(1)
i

(called alternative hypothesis) and S(j) = 0 if the jth OTU is unrelated to X
(1)
i (called

null hypothesis). Given p-values obtained with a statistical test method, we make feature

selection by thresholding p(j) with a cutoff t:

Ŝ(j) =

 1 if p(j) ≤ t,

0 if p(j) > t.
(2.9)

The binary vector, (Ŝ(1), . . . , Ŝ(m)), is a result of feature selection based on p(j) at cutoff

t. The goodness of (Ŝ(1), . . . , Ŝ(m)) can be summarized with four numbers: the number of

true positives TP (t) =
∑m

j=1 I(S(j) = 1, Ŝ(j) = 1), the number of false positives FP (t) =∑m
j=1I(S(j) = 0, Ŝ(j) = 1), the number of true negatives TN(t) =

∑m
j=1I(S(j) = 0, Ŝ(j) = 0),

the number of false negatives FN(t) =
∑m

j=1I(S(j) = 1, Ŝ(j) = 0)), where I(·) is the indicator

function. We also denote the total number of selected features (rejections of null hypotheses)

by R(t) = FP (t) + TP (t). In terms of p-values, the FP (t) and R(t) are written as follows:

FP (t) = #{p(j) ≤ t and S(j) = 0; j = 1, ...,m},

R(t) = #{p(j) ≤ t; j = 1, ...,m}.
(2.10)

Let m0 be the number of OTUs that are unrelated to X
(1)
i , and m1 = m−m0 be the number

of truly related OTUs. These numbers can be displayed with a confusion matrix (Table 2.2):
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Table 2.2: A feature selection confusion matrix

Predicted result
Class 1 Class 0 Total

True condition
Class 0 FP TN m0

Class 1 TP FN m1

Total R m−R m

The actual false discovery rate (FDR) of (Ŝ(1), . . . , Ŝ(m)) is the proportion of false positives

among the selected features:

actual FDR(t) =
Number of false positive features

Number of selected features
=
FP (t)

R(t)
(2.11)

The FP (t), R(t), and actual FDR(t) in (2.11) are random variables. There are many defi-

nitions of a theoretical FDR. [26] defines the positive FDR for independent tests as follows:

FDR(t) = P (S(j) = 0|p(j) ≤ t) ≈ E[FP (t)]

E[R(t)]
(2.12)

In practice, we do not know the true relevancy indictor S(j). We need to estimate FDR(t)

with only observed p-values p(j) for j = 1, . . . ,m. The observed R(t) is a reasonable estimate

of E[R(t)], which is the number of observed p-values ≤ t. Suppose we know the proportion

of unrelated features (null hypotheses) π0 = m0/m. Based on the theory that p-values are

uniformly distributed under null hypothesis (S(j)=0), we can obtain that P (Ŝ(j) = 1|S(j) =

0) = P (p(j) ≤ t|S(j) = 0) = t. Then, we can see that E[FP (t)] = m · π0 · t. A conservative

estimate of π0 is 1. This will give an upper bound of FDR(t) as given by [27]. Alternatively,

[28] provides a more accurate estimate by finding a cutoff ζ such that the probability density

of p-values are nearly uniform on the right of ζ; the value of this density is expected to be

close to π0. This argument leads to an estimate of π0 as follows:

π̂0(ζ) =
#{p(j) ≥ ζ; j = 1, ...,m}/m

1− ζ
. (2.13)

Given an estimate π̂0 for π0, FDR(t) is estimated by

F̂DR(t) =
m · π̂0 · t
R(t)

. (2.14)
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The q-value for a p-value p(j) is the FDR if we use p(j) as the cutoff t in feature selection,

ie, features with p-values ≤ p(j) are selected. To ensure theoretical monotonicity, q(p(j)) is

defined as the minimum of FDR(t) for t ≥ p(j):

q(p(j)) = min
t≥p(j)

F̂DR(t). (2.15)

If we order all the p-values, and denote the jth p-value by p[j], an approximate for the q-value

is q̂(p[j]) = m · π̂0 · p[j]/j, which may not be monotone with p[j], but is easy to calculate and

typically close to q(p[j]) (2.15) when m is large; see a discussion of FDR by [29].

When the model for yi is correctly specified, the q-values are good estimates of the actual

FDRs, as explained above. In such cases, the q-value is useful guidance for determining the

cutoff t in feature selection. However, in practice, the correctness of a model often lacks

serious verification. Our empirical studies with synthetic datasets will show that there are

huge gaps between q-values and actual FDRs when a wrong model (the model describing

the data distribution wrongly) is used. This problem is particularly crucial in microbiome

data analysis because OTU counts are difficult to model due to the clustering, skewness,

and zero-inflation. The basic counts of OTU categories are relative values, which can not be

regarded as absolute values. They depend upon the sampling depth corresponding to each

sample.

2.3 Predictive analysis with LASSO

2.3.1 Transformation of OTU counts

Statistical learning is another important alternative approach to selecting OTUs. In statisti-

cal learning methods, the phenotype variable X
(1)
i is treated as a response/output variable,

and the predictor/input variables are OTU variables Y
(1)
i , . . . , Y

(m)
i with certain transforma-

tion, and other fixed and random factors. In microbiome data, it is often believed that the

phenotype affects the composition of OTUs, rather than the raw counts of OTUs which are

also affected by the total read Ti. As such, a reasonable transformation for OTU counts is

the variance-stability transformation of the proportion of the counts of the jth OTU among

12



those of all OTUs:

Ỹ
(j)
i = arcsin

(√
Y

(j)
i /Ti

)
, for j = 1, . . . ,m

Other transformations can be investigated too. For example, if we believe that only the

presence or not of certain OTUs is related to the phenotype, we transform Y
(j)
i by Ỹ

(j)
i =

I(Y
(j)
i > 0), although some information would be lost by dichotomizing the raw data. This

binary transformation is useful for eliminating the adverse effect of the over-dispersion in

OTU counts. The choices of transformations are guided by the resulting predictive accuracy

in the test sample or using cross-validation.

To be consistent with conventional notations for statistical learning models, we will denote

the phenotype variable X
(1)
i by yi. The yi is a categorical variable taking values in {1, . . . , K},

where K is the number of levels of X
(1)
i ; this is different from that X

(1)
i is represented by a

K − 1 binary indicator variables used as a fixed factor of GLMMs described in Section 2.2.1.

The predictor variables are collectively denoted by xi, which includes Ỹ
(j)
i and all other fixed

and random factors (represented by binary indicator variables). The xi will be a column

vector in this section. The first value in xi is “1” for including an intercept. After we fit a

statistical learning model for yi given xi, selection of OTUs can be achieved by looking at

the coefficients associated with the transformed OTU variables Ỹ
(j)
i .

2.3.2 LASSO multinomial logistic regression

The least absolute shrinkage and selection operator (LASSO) [18] adds the L1 of the regression

coefficients as a penalty term to the log likelihood function to achieve shrinkage of regression

coefficients for avoiding overfitting and for achieving feature selection. Suppose the response

variable yi has K levels, that is, yi takes values in {1, 2, ..., K}. The multinomial logistic

regression links the probability of yi = k to xi using the soft-max function as follows:

P (yi = k|xi, β1, . . . , βK) =
exp(βTk xi)∑K
k=1 exp(βTk xi)

, for k = 1, . . . , K, (2.16)

where βk is the collection of all regression coefficients related to yi = k, which is a column

vector of the same length of xi. We will denote all these regression coefficients collectively
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by β. Given observations {(yi, xi), i = 1, . . . , n}, and a tuning parameter λ, the LASSO-

penalized negative log likelihood function is

lLASSO(β) = −
n∑
i=1

log(P (yi|xi, β0, β1, . . . , βK)) + λ

K∑
k=1

||βk||1, (2.17)

where ||βk||1 is the L1 norm of βk, equal to the sum of absolute values in βk (except the

intercept). The LASSO estimate of β is the minimizer of the LASSO-penalized negative log

likelihood function:

β̂LASSO = argmin
β

lLASSO(β). (2.18)

L1 can shrink the coefficients associated with less important predictor variables into exactly

zeros. The OTU variables with non-zero coefficients will be selected. We fit LASSO multi-

nomial logistic regression (MLR) using an R package called glmnet [30]. This package can fit

LASSO MLR efficiently for a series of different λ values. For each value of λ, we can obtain

a binary feature selection vector as follows:

Ŝ
(j)
LASSO(λ) =

 0, if β
(j)
k = 0 for all k ∈ {1, . . . , K},

1, otherwise.
(2.19)

where β
(j)
k represents the coefficient associated with the jth OTU for modelling P (yi = k).

The degree of coefficient shrinkage, correspondingly the size of selected features, is con-

trolled by the tuning parameter λ. Larger λ enforces greater shrinkage to the coefficients

β, resulting in selecting fewer predictors in xi. Therefore, the role of λ is similar to that

of the cutoff t for thresholding p-values in statistical testing methods. As discussed in Sec-

tion 2.2.3, one method for choosing t in statistical methods is to look at the false discovery

rates or q-values. In a predictive analysis, a straightforward method for choosing λ is to look

at the predictive performance in test samples, which is measured by a certain metric, for

example, the error rate in predicting yi. Cross-validation is a procedure to split the dataset

into artificial training and test sets to obtain out-of-sample predictive metrics. We use the

leave-one-out cross-validation (LOOCV). We fit the LASSO MLR model by holding the ith

sample out. Then, we can use the fitted model to make predictions of yi given xi by comput-
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ing the predictive probability using logistic regression model (2.16); let P̂ λ,−i
i (k|xi) denote

this CV predictive probability of yi = k, for k = 1, . . . , K. The goodness of P̂ λ,−i
i (k|xi) for

i = 1, . . . , n can be assessed with the actually observed {yi; i = 1, . . . , n}. We will discuss

two predictivity metrics in Section 2.3.3.

2.3.3 Predictive metrics

Let P̂i(k|xi) be a predictive probability of yi = k for k = 1, . . . K. We can assess the

goodness of P̂ (yi|xi) with actually observed {yi; i = 1, . . . , n}. The first metric is error rate.

We predict yi by the k with the highest probability: ŷi = argmaxk P̂i(k|xi). The error rate is

defined as the proportion of wrongly predicted cases:

ER =
1

n

n∑
i=1

I(ŷi 6= yi). (2.20)

The second metric is defined as the average of minus log predictive probabilities (AMLP)

at the actually observed yi:

AMLP = − 1

n

n∑
i=1

log(P̂i(yi|xi)). (2.21)

AMLP is more sensitive than ER because it measures not only the correctness of a point

estimate ŷi but also the degree of correctness expressed by P̂i(yi|xi).

Both of AMLP and ER should be interpreted relatively not absolutely. Let fk be the

observed frequency of yi = k for k = 1, . . . , K. Without including any predictor in xi (call

the null model), the naive predictive probabilities are P̂
(0)
i (k) = fk for k = 1, . . . , K. The

actual CV predictive probabilities will estimate fk with the yi removed, but the frequency

without considering yi is very close to fk. Based on these naive predictive probabilities, the

point prediction is that ŷ
(0)
i = argmaxk fk. for i = 1, . . . , n. That is, we will predict all the

yi’s by the mode of {yi; i = 1, . . . , n}. The ER with P̂
(0)
i (k) is

ER(0) = 1−max{fk; k = 1, . . . , K}, (2.22)
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which we will call the baseline error rate. A dataset with more unbalanced distribution in yi

is obviously easier to predict. For example, if maxk fk = 0.9, the baseline error rate is 0.1.

For such an easy dataset, an error rate of 0.1 means that the predictivity of xi for yi is low.

By contrast, if the maximum frequency is 0.6, then the baseline error rate is 0.4. For such

a difficult dataset, an error rate of 0.1 indicates that yi can be fairly well predicted by xi.

Similar to R2 used in linear regression, a relative predictivity metric based on ER is defined

as the percentage of the reduction of ER from ER(0):

R2
ER =

ER(0) − ER
ER(0)

. (2.23)

Similarly, plugging P̂
(0)
i (k) = fk for all samples into (2.21), we will see that nfk of terms in

the summation of (2.21) are equal to log(fk). Then, we can obtain the baseline AMLP (0):

AMLP (0) = −
K∑
k=1

fk log(fk). (2.24)

Note that AMLP (0) is the entropy of {fk; k = 1, . . . , K}, a quantity for measuring the un-

certainty of fk’s. A relative predictivity metric based on AMLP is defined as the percentage

of the reduction of AMLP from AMLP (0):

R2
AMLP =

AMLP (0) − AMLP

AMLP (0)
. (2.25)
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3. Data

3.1 Synthetic datasets from ZINB

We generated four synthetic datasets with n = 5000 samples, m = 3000 OTUs, and 5

categorical factors from ZINB models with different signal level settings. In ZINB models,

the response variable is modelled as a mixture of structural zeros and an NB distribution.

The process for generating one dataset can be described as follows:

Step 1: Generate 5 factors, denoted by X
(f)
i , for f = 1, · · · , 5, which are used as covariates

for generating OTU counts. Each of the five factors is generated uniformly from

integers 1, · · · , lf , where lf represents the number of levels of X(f). In particular, the

factor X(1) has 10 levels, which will be used as a phenotype variable. The total read

Ti is generated from Poisson distribution with mean λ = 30.

Step 2: A signal vector (S(1), . . . , S(m)) is generated from Bernoulli distribution with param-

eter p = 0.03. S(j) = 0 indicates that the jth OTU is related to the factor X(1),

otherwise unrelated.

Step 3: For i = 1, ..., n and j = 1, ...,m, generate one OTU count Y
(j)
i for the ith sample and

jth OTU as follows.

Step 3.1: Generate a binary variable H
(j)
i to indicate that Y

(j)
i is a structural zero

or not. The probability of H
(j)
i = 0, denoted by φ

(j)
i , is linked to the five

factors using logistic link function:

log

(
φ
(j)
i

1− φ(j)
i

)
= γ0 +X

(1)
i γ

(1)
j +X

(2)
i γ

(2)
j +X

(3)
i γ

(3)
j +X

(4)
i γ

(4)
j +X

(5)
i γ

(5)
j

where, γ0 is an intercept; the coefficient vector γ
(f)
j for the factor X(f),

for f = 2, · · · , 5, are generated from a normal distribution N(0, 22); the

17



coefficient vector γ
(1)
j for the phenotype factor X(1) is generated as follows:

γ
(1)
j ∼

0, if S(j) = 0

N(0, σ2
zero) if S(j) = 1

Step 3.2: If H
(j)
i = 0, Y

(j)
i = 0; otherwise, Y

(j)
i is generated from a NB distribution

with θ = 2 and mean µ
(j)
i , which is linked to the five factors as follows:

log(µ
(j)
i ) = log(Ti)+β0 +X

(1)
i β

(1)
j +X

(2)
i β

(2)
j +X

(3)
i β

(3)
j +X

(4)
i β

(4)
j +X

(5)
i β

(5)
j

where, β0 is an intercept; the coefficient vector β
(f)
j for the factor X(f),

for f = 2, · · · , 5, are generated from a normal distribution N(0, 0.22); the

vector β
(1)
j for the phenotype factor X(1) is generated as follows:

β
(1)
j ∼

0, if S(j) = 0

N(0, σ2
count) if S(j) = 1

The parameter σzero controls the degree that the status of the jth OTU being zero or

not is affected by the phenotype factor X(1). The parameter σcount controls the degree that

the magnitude of the count of the jth OTU is affected by the phenotype factor X(1). We will

refer to σzero and σcount respectively as zero signal level and count signal level. These

two parameters are varied at two different levels, resulting in four combinations of zero and

count signal levels. Their values are displayed in Table 3.1. Other parameter settings for the

four datasets are the same.

Table 3.1: Signal level settings for four synthetic datasets.

Dataset ID σcount σzero Description
1 1 1 large count signal, large zero signal
2 1 0.0001 large count signal, small zero signal
3 0.0001 1 small count signal, large zero signal
4 0.0001 0.0001 small count signal, small zero signal
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3.2 A human gut microbiome dataset

We applied the methods described in this thesis to a dataset reported by [10]. The study

cohort contained 1, 561 subjects from 2008 to 2014. Fecal samples were collected with 16S

ribosomal DNA sequencing. Their fecal were collected using the stool commode provided

by Fisher Scientific. They took an aliquot of stool with a polypropylene specimen collection

container. Stool samples were kept frozen until bacterial DNA was extracted. The fecal

bacterial DNA was extracted using the QIAamp DNA Stool Mini kit according to the protocol

with minor modifications, including physically disrupting the bacterial cell wall with 0.1−mm

glass beads. Then, non-chimeric sequences were grouped into OTUs at a minimum depth of

30, 000 reads/sample with a sequence identity threshold of 97%. They removed the samples

with fewer than 30, 000 reads and OTUs with a prevalence of < 5% as quality control. The

final data consists of n = 1, 098 subjects.

Firmicutes (relative abundance of 64.4 ± 13.9%), Bacteroidetes (26.7 ± 14.8%), and

Actinobacteria (5.0 ± 5.0%) were the three major bacterial phyla. Blautia, Coprococcus,

Ruminococcus, Bacteroides, Dorea, Roseburia, Faecalibacterium, Streptococcus, and Oscil-

lospira are found across subjects in the identified 127 genera. The remaining 118 genera were

observed irregularly in all subjects.

The study cohort (n = 1, 098) consisted of first-degree relatives of Crohn’s disease patients

with asymptomatic self-described white. The average age of the subjects was 20.1±7.8 years

(mean ± s.d.; range of 6− 35 years). 54.6% were female. We treat the “ethnicity” and “sex”

as fixed effects, “age” as random effects because there are too many levels. We are interested

in selecting OTU variables that can predict the ethnicity and quantifying the predictivity

of the selected OTUs. The purpose of this analysis is to illustrate the difference between

statistical testing and LASSO-MLR methods in selecting features.
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4. Results

4.1 Results of analyzing synthetic datasets

In this section, we will investigate the LRT methods applied to three GLMMs (ZINB, ZMP,

NB) and LASSO-MLR methods, on the four synthetic datasets generated from a ZINB model,

as described in Section 3.1. We split each dataset into a training dataset with ntrain = 300

subjects and a test dataset with the remaining ntest = 4700 subjects. Only the training

dataset is used to train the GLMMs and LASSO-MLR models. The test dataset is used to

check the predictive performance of LASSO-MLR.

In fitting the GLMMs, we treat X(1), X(2) as fixed factors, and the remaining three factors

as random factors. We fit the GLMMs using the R package glmmTMB [31]. In LRT tests, we

use X(1) as a phenotype variable, that is, to test whether X(1) has an effect on each OTU. A

vector of m = 3000 p-values are calculated for each model and each dataset. We employ the

package glmnet [32] to fit LASSO-MLR models, which use X(1) as a response variable, and

use the remaining four factors and all 3000 transformed OTU variables as predictors. For

the dataset 1 and 2, we transform the OTUs with arcsin(
√
Yij/Ti). For the dataset 3 and 4,

we transform the OTUs with I(Y
(j)
i > 0) since the magnitudes of the OTU counts are nearly

unrelated to the phenotype X(1). For real data analysis, the choice of such a transformation

is guided by cross-validatory or out-of-sample predictive metrics.

For feature selection with LRT p-values, we use all the means between two adjacent

ordered p-values as cutoffs. For each cutoff t, we can obtain a feature selection vector

{Ŝ(j); j = 1, . . . ,m} by selecting features with p-values ≤ t. For the synthetic datasets,

the true relevancy indicators {S(j); j = 1, . . . ,m} are known. Therefore, we can compute

FP (t), TP (t), R(t), and the actual FDR(t) as described in Section 2.2.3. The left panel of

Figure 4.1 shows the actual FDR(t) against R(t) for each of the three GLMMs; the right

panel of Figure 4.1 shows the ROC curves, ie, TP (t)/(m −m0) against FP (t)/m0. We fit

LASSO-MLR models using glmnet for 100 values of λ chosen in a reasonable range. For each
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Figure 4.1: Comparison of the actual FDRs of LRT and ROC curves between statis-
tical testing and LASSO under four different zero and count signal situations.

(a) Dataset 1, Actual FDR
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(b) Dataset 1, ROC
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(c) Dataset 2, Actual FDR
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(d) Dataset 2, ROC
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(e) Dataset 3, Actual FDR
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(f) Dataset 3, ROC
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(g) Dataset 4, Actual FDR
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(h) Dataset 4, ROC
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value of λ, we can use the estimates of the regression coefficients β̂LASSO to select features

as described in Section 2.3.2, that is, the features with at least one non-zero coefficient are

retained. For each λ, we can compute the number of false positives FP (λ), the number of

true positives TP (λ), the number of retained features R(λ), and the actual FDR(λ) using the

same method described in Section 2.2.3. The plots of FDR(λ) against R(λ) and the ROC

curves of TP (λ)/(m−m0) against FP (λ)/m0 are shown in Figure 4.1 to compare with those

of the LRT methods. From Figure 4.1, we see that, for dataset 1 and 2, LASSO-MLR has

comparable FDRs and areas under the ROC curves with the statistical testing methods; all

of the four methods perform similarly; the reason that the LRT tests applied to ZMP appear

a little bit better the LRT tests applied to the true model ZINB is that the fittings of ZINB

for a few OTUs that are truly related to X(1) failed to converge. Therefore, The number of

not converging OTUs that are truly related to X(1) in ZINB is less than ZMP model. Hence,

these features were not counted as being selected. For dataset 3, the LRT tests applied to

ZINB are better than the other three methods. For dataset 4, all of the four methods do not

work well because both of the count and zero signal levels are very small. In summary, the

feature selection performances of the LASSO-MLR methods are comparable to those of the

statistical testing methods in the synthetic datasets with pretty large count signal levels.

The feature selection performance shown in Figure 4.1 only indicates the goodness of

the orderings of the features in light of their relationships with the phenotype variable. In

practice, we also require a trustable method to determine the threshold (the cutoff t for

p-values and the shrinkage parameter λ for LASSO) for retaining a feature subset. For

statistical testing methods, the choice of t is often guided by the q-values, and for LASSO

the choice of λ is guided by the predictive metrics, for example choosing the λ giving the

best predictive metrics. We will discuss these two issues.

Calculating q-value is a method for estimating actual FDRs given only p-values. The

methods for computing q-values are reviewed in Section 2.2.3. We use the R function

p.adjust from the package stats to convert p-values into q-values. p.adjust has a few

options for computing q-values. We chose the conservative method called “BH” [27]. As

discussed in Section 2.2.3, the BH method estimates the proportion of unrelated OTUs by

1. Therefore, the BH method is expected to slightly over-estimate the true FDRs. Figure
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Figure 4.2: Comparison of actual FDRs and q-values for the likelihood ratio tests.
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(b) Dataset 1, ZMP
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(c) Dataset 1, NB
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(d) Dataset 2, ZINB
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(e) Dataset 2, ZMP
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(f) Dataset 2, NB
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(g) Dataset 3, ZINB
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(h) Dataset 3, ZMP
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(i) Dataset 3, NB
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(j) Dataset 4, ZINB
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(k) Dataset 4, ZMP
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(l) Dataset 4, NB
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4.2 displays the actual FDRs and q-values against the number of selected features in four

datasets. We can see that when the true model (ZINB) is used, the q-values are very close

to the actual FDRs. However, when the wrong models (ZMP, NB) are fitted to the datasets,

there are huge gaps between the actual FDRs and q-values, and typically the q-values are

greatly smaller than the actual FDRs. In particular, for dataset 4 in which the relation-

ship between OTUs and the phenotype is very weak, the q-values based on ZMP and NB

models are nearly 0 whereas the actual FDRs are nearly 1. These results show that when

wrong models are chosen, the resulting q-values are tremendously misleading for choosing

the p-value cutoff and the actual FDRs are greatly underestimated.

For LASSO-MLR, the choice of λ is guided by predictive metrics. In practice, we can use

LOOCV with only the training dataset to estimate the predictive metrics, which is described

in Section 2.3.2. For assessing the performance of LOOCV, we compute the actual predictive

metrics using the test dataset. Figure 4.3 displays the AMLPs, and the ERs obtained with

LOOCV and the test dataset. We see a close matching of the LOOCV and actual out-of-

sample predictive metrics. This indicates that LOOCV predictive metrics provide honest

measures of the predictivity of the features selected by LASSO. Therefore, the LOOCV

predictive metrics are good guidance for choosing cutoffs (shrinkage parameter λ) in selecting

features.

In addition to guide the choice of λ, the predictive metrics are also good indicators of

the difficulty level in predicting the phenotype with selected OTUs. To demonstrate this, we

show the baseline ERs and AMLPs using green lines in the plots of Figure 4.3, and display

the R2, the percentage of the reduction of ER or AMLP from those in the null model with

no predictor, on the right y-axes. The R2 is a good indicator of the predictivity of selected

features for the phenotype. For example, the maximum R2 values using the optimal λ for

dataset 1 and 2 are larger than those for dataset 3 and 4. Such relative predictive metrics

indicate that the phenotype in dataset 1 and 2 is more predictable than the phenotype in

dataset 3 and 4. In particular, the R2 for dataset 4 is near zero, which indicates that there

are very weak relationships between the OTUs and the phenotype. This is the true situation

in our data generating process; see Section 3.1.
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Figure 4.3: The LOOCV and the out-of-sample predictive metrics of LASSO.
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(b) Dataset 1, AMLP
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(c) Dataset 2, ER

−8 −6 −4 −2

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

log(lambda)

ER
 fo

r L
AS

SO

ER for LASSO
459 434 405 354 275 99 40 14 0

Number of Retained Features

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0

R2out−of−sample test
loocv

(d) Dataset 2, AMLP
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(e) Dataset 3, ER
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(f) Dataset 3, AMLP
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(g) Dataset 4, ER
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(h) Dataset 4, AMLP

−9 −8 −7 −6 −5 −4 −3

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

log(lambda)

AM
LP

AMLP for LASSO
906 880 860 827 806 782 744 720 658 588 388 75 0

Number of Retained Features

0
−0

.1
−0

.2
−0

.3
−0

.4
−0

.5
−0

.6
−0

.7
−0

.8
−0

.9
−1

−1
.1

R2out−of−sample test
loocv

25



4.2 Results of analyzing the gut microbiome data

In this section, we apply the LRT testing methods based on three GLMMs and the LASSO-

MLR method to the human gut microbiome dataset released by [10]. The description of the

dataset is summarized in Section 3.2. The sample size n is 1098. We chose to select OTUs

that can predict the variable ethnicity. The ethnicity has five levels: JewAsh, JewOth,

JewSep, JewUnk and White, with frequencies being 0.096, 0.015, 0.042, 0.011 and 0.836.

There are a total of m = 144 OTUs at genus level. We fit three GLMM models (ZINB,

ZMP, and NB) to each OTU (feature) by considering three covariates, “ethnicity”, “sex”

and “age”. We conduct the likelihood ratio test to each OTU to see whether it is affected

by the ethnicity. The q-values of these three models are shown in Figure 4.4b. We see that

the FDR for the top 20 OTUs is nearly 0. However, the small FDR only indicates that they

are related to the ethnicity with a great chance, but does not indicate the strength of the

association. The small FDR results from the small p-values, which are probably due to the

large sample size (n = 1098), rather than due to the sharp difference of the proportions of

these OTUs across the five ethnic groups. The predictive analysis looks at how much the

ethnicity can be predicted by the OTUs, hence, can quantify the degree of the differentiation

of the proportions of the top OTUs across the five ethnic groups. We conducted this analysis

by applying LASSO-MLR to this dataset using LOOCV. Figures 4.4c and 4.4d shows the

error rates and AMLPs for 100 values of λ. The best predictive metrics are reached by a

subset of about 120 (out of 144) OTUs. However, the optimal predictive metrics are very close

to the baseline error rates and AMLPs as shown by the green lines. The R2 for the optimal

error rates and AMLPs are about 20.99% and 16.37% respectively, which indicates that the

predictivity of the 120 OTUs for the ethnicity is pretty low. In summary, the proportions of

the top 120 OTUs are indeed differentiated across the five ethnic groups, but the differences

are very small. This example shows that the selected features with small q-values may not

be highly predictive to a phenotype, or maybe there are other factors we have to measure.
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Figure 4.4: Results of analyzing a gut microbiome data.
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5. Conclusions

In this thesis, we conducted empirical studies using synthetic datasets and a real dataset

to investigate the feature selection performance of statistical testing and LASSO methods

for zero-inflated microbiome data. Our studies with synthetic datasets show that LASSO is

comparable with the likelihood ratio test applied to the true data generating model. It is

reasonable that LASSO performs slightly worse than the likelihood ratio test applied to the

true data generating model since the multinomial logistic regression model is not the true

model for such datasets. However, the performance of LASSO is still remarkable especially

when the signals on counts are large enough. The cross-validatory predictive metrics for

LASSO provide honest measures of the predictability of the response variable by the features.

Therefore, they are useful for choosing reasonable cutoffs in feature selection and are useful

to indicate the predictivity of the selected features. On the other hand, for statistical testing

methods, when the model is not correctly specified, the q-values (estimated FDR) greatly

underestimate the actual false discovery rate. In such cases, the q-values are tremendously

misleading for choosing reasonable cutoffs in selecting features. Furthermore, our studies of

these two methods in a real dataset show that small q-values do not necessarily imply high

predictivity of selected OTUs. In conclusion, if the model is correctly specified, statistical

testing methods perform well for selecting features in microbiome data, otherwise incorrect

conclusions is likely to be drawn. Therefore, a serious model checking is required when using

statistical testing methods. Unfortunately, model checking is rarely conducted in real data

analysis. Predictive analysis with LASSO is recommended to supplement statistical testing

methods for selecting features and for measuring the predictivity of the selected features.
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(a) Dataset 1, ZINB
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(b) Dataset 1, ZMP
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(c) Dataset 1, NB
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Figure A.1: Ordered log p-values from LRT applied to GLMMs. Rows from top to
bottom are results for the four simulation datasets with large count and zero, large
count and small zero, small count and large zero, and small count and zero signals,
respectively.
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(b) Dataset 1, ZMP

Histogram of p−value for NB

p−value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0
60

0

(c) Dataset 1, NBHistogram of p−value for ZINB
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(d) Dataset 2, ZINB

Histogram of p−value for ZMP

p−value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

(e) Dataset 2, ZMP
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(f) Dataset 2, NBHistogram of p−value for ZINB
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(g) Dataset 3, ZINB
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(h) Dataset 3, ZMP
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(i) Dataset 3, NBHistogram of p−value for ZINB
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(k) Dataset 4, ZMP
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(l) Dataset 4, NB

Figure A.2: Histogram of p-value from LR Test. Rows from top to bottom are results
for the four simulation datasets with large count and zero, large count and small zero,
small count and large zero, and small count and zero signals, respectively.
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(b) Dataset2, FPR
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(c) Dataset3, FPR
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(d) Dataset4, FPR

Figure A.3: Comparison of FPR curves between statistical testing and LASSO under
four different zero and count signal situations.
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(b) Dataset2, Sensitivity
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(c) Dataset3, Sensitivity

1 2 5 10 20 50 100 200 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

Number of Retained Features

ZINB
ZMP
NB
LASSO

(d) Dataset4, Sensitivity

Figure A.4: Comparison of sensitivity curves between statistical testing and LASSO
under four different zero and count signal situations.
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Appendix B

R Code

B.1 R Code for Generating A Dataset from ZINB

## parameter settings for simulation

n <- 5000

otu.num <- 3000

#count signal (high low)

level.count=c(1, 0.0001)

#zero signal (high low)

level.zero=c(1, 0.0001)

############################################

sig_factor1 = level.count[1]

sig_factor1.zero = level.zero[1]

home <- "/home/xiw378/canola/lassoglmm/sim1"

############################################

library (MASS)

l1=10

l2=2

l3=2

l4=10

l5=2

meanT <- 30

sig_factor2=0.2

sig_factor3=0.2

sig_factor4=0.2

sig_factor5=0.2

betafactor0=1

sig_factor2.zero=2

sig_factor3.zero=2

sig_factor4.zero=2

sig_factor5.zero=2

betafactor0s=-0.2
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theta.nb=2

signals <- rbinom(otu.num, size=1, p = 0.03)

indicator.signals <- which(signals==1)

## simulated functions for independent variables and one otu

simulate_x<-function(n,l1,l2,l3,l4,l5, meanT)

{

factorA<-as.factor(sample(c(1:l1),n,replace=TRUE))

factorB<-as.factor(sample(c(1:l2),n,replace=TRUE))

factorC<-as.factor(sample(c(1:l3),n,replace=TRUE))

factorD<-as.factor(sample(c(1:l4),n,replace=TRUE))

factorE<-as.factor(sample(c(1:l5),n,replace=TRUE))

#meanT is the lambda

logn<-log(rpois(n, meanT))

data.frame(logn,factorA,factorB,factorC,factorD,factorE)

}

simulate_one_otu.zinb<-function(sig_factor1, sig_factor2, sig_factor3,

sig_factor4, sig_factor5, betafactor0,

sig_factor1.zero, sig_factor2.zero,

sig_factor3.zero, sig_factor4.zero,

sig_factor5.zero, betafactor0s, theta.nb,

signals)

{

# negative binomial

if(signals==0) sig_factor1 = sig_factor1.zero = 0

betafactor1<-rnorm(l1,sd=sig_factor1)

betafactor2<-rnorm(l2,sd=sig_factor2)

betafactor3<-rnorm(l3,sd=sig_factor3)

betafactor4<-rnorm(l4,sd=sig_factor4)

betafactor5<-rnorm(l5,sd=sig_factor5)

mu.nb <-exp(independent.variables[,"logn"]+betafactor0

+betafactor1[independent.variables[,"factorA"]]

+betafactor2[independent.variables[,"factorB"]]

+betafactor3[independent.variables[,"factorC"]]

+betafactor4[independent.variables[,"factorD"]]

+betafactor5[independent.variables[,"factorE"]])

# bernoulli

betafactor1s<-rnorm(l1,sd=sig_factor1.zero)

betafactor2s<-rnorm(l2,sd=sig_factor2.zero)

betafactor3s<-rnorm(l3,sd=sig_factor3.zero)

betafactor4s<-rnorm(l4,sd=sig_factor4.zero)

39



betafactor5s<-rnorm(l5,sd=sig_factor5.zero)

mu.b <- exp(betafactor0s+betafactor1s[independent.variables[,"factorA"]]

+ betafactor2s[independent.variables[,"factorB"]]

+ betafactor3s[independent.variables[,"factorC"]]

+ betafactor4s[independent.variables[,"factorD"]]

+betafactor5s[independent.variables[,"factorE"]])

pzero <- mu.b / (1 + mu.b) # binomial probabilities

manyzero <- TRUE

while (manyzero == TRUE){

y.zinb <- (runif(n) > pzero)

is.counts <- which(y.zinb ==1 )

manyzero <- FALSE

# Simulate the negative binomial data

y.nb <- rnegbin(n = length(is.counts),

mu = mu.nb[is.counts],

theta = theta.nb)

y.zinb[is.counts] <- y.nb

}

y.zinb

}

## simulate fixed and random variables

independent.variables <- data.frame(matrix (0, n, 6))

independent.variables <- simulate_x(n,l1,l2,l3,l4,l5,meanT)

## simulate otus

otus.zinb <- data.frame(matrix (0, n, otu.num))

for(i in 1:otu.num)

{

otus.zinb[,i] <- simulate_one_otu.zinb(sig_factor1, sig_factor2,

sig_factor3, sig_factor4,

sig_factor5, betafactor0,

sig_factor1.zero, sig_factor2.zero,

sig_factor3.zero, sig_factor4.zero,

sig_factor5.zero, betafactor0s,

theta.nb, signals[i])

}
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## calculate the Total Reads and genarate one dataset

TotalRead <- rowSums(otus.zinb)

logTR <- log(TotalRead)

dataset <- data.frame(independent.variables, otus.zinb, TotalRead, logTR)

index.factors <- t(as.matrix(sapply(colnames(independent.variables[-1]),

grep,colnames(dataset))))

index.otus <- match(colnames(otus.zinb),colnames(dataset))

one_dataset <- list(dataset = dataset, n = n , otu.num = otu.num,

l1 = l1, l2 = l2, l3 = l3, l4 = l4, l5 = l5,

meanT = meanT, sig_factor1 = sig_factor1,

sig_factor2 = sig_factor2, sig_factor3 = sig_factor3,

sig_factor4 = sig_factor4, sig_factor5 = sig_factor5,

betafactor0 = betafactor0,

sig_factor1.zero = sig_factor1.zero,

sig_factor2.zero = sig_factor2.zero,

sig_factor3.zero = sig_factor3.zero,

sig_factor4.zero = sig_factor4.zero,

sig_factor5.zero = sig_factor5.zero,

betafactor0s = betafactor0s, theta.nb = theta.nb,

signals = signals,

indicator.signals = indicator.signals,

index.factors = index.factors, index.otus = index.otus,

sig_factor1.zero)

save(one_dataset, file=paste0(home, ’/’, ’one_dataset.Rdata’))

B.2 R Code for Fitting ZINB, ZMP, NB and LASSO

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"

home <- "/home/xiw378/canola/lassoglmm/sim1"

setwd(home)

method <- "zinb"

logpdir <- paste0(home, ’/’, method, "out", ’/’, "logp")

plotsdir <- paste0(home, ’/’, method,"out", ’/’, "plots")

dir.create(logpdir,recursive = TRUE)

dir.create(plotsdir,recursive = TRUE)
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library(glmmTMB)

source(paste0(sourcedir, ’/’,’lrtest.R’))

if(!exists("ifold"))

{

ifold <- 1

}

j <- ifold

load(paste0(home, ’/’, ’one_dataset.Rdata’))

ntr <- 500

data.glmm <-one_dataset$dataset[1:ntr,]

data.glmm$y <- data.glmm[, paste0("X", j)]

## Zero-inflated negative binomial model

zinb <- glmmTMB( y ~ factorA+factorB+factorC

+(1|factorD)+(1|factorE), data=data.glmm,

zi= ~ factorA+factorB+factorC

+(1|factorD)+(1|factorE),

family = nbinom2)

zinb0 <- glmmTMB( y ~ factorB+factorC

+(1|factorD)+(1|factorE), data=data.glmm,

zi= ~ factorB+factorC+(1|factorD)+(1|factorE),

family = nbinom2)

#log p_value for each otu j

log.p.zinb <- lrtest.zi.model(zinb0,zinb)$log.pvalue

## output for log.pvalue

file.remove(paste0(logpdir, ’/’, ’log.p.zinb’, j , ’.txt’))

cat (log.p.zinb, file = paste0(logpdir, ’/’, ’log.p.zinb’, j , ’.txt’))

#####################################################

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"

home <- "/home/xiw378/canola/lassoglmm/sim1"

setwd(home)

method <- "zmp"

logpdir <- paste0(home, ’/’, method, "out", ’/’, "logp")

plotsdir <- paste0(home, ’/’, method,"out", ’/’, "plots")

dir.create(logpdir,recursive = TRUE)

dir.create(plotsdir,recursive = TRUE)

library(glmmTMB)
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source(paste0(sourcedir, ’/’,’lrtest.R’))

######################

if(!exists("ifold"))

{

ifold <- 1

}

j <- ifold

load(paste0(home, ’/’, ’one_dataset.Rdata’))

ntr <- 500

data.glmm <-one_dataset$dataset[1:ntr,]

data.glmm$y <- data.glmm[, paste0("X", j)]

#glm

#logistic

hurdle.l<-glmmTMB((y>0)~factorA+factorB+factorC

+(1|factorD)+(1|factorE),data=data.glmm,

ziformula =~0,family=binomial())

hurdle.l0<-glmmTMB((y>0)~factorB+factorC

+(1|factorD)+(1|factorE),data=data.glmm,

ziformula =~0,family=binomial())

#poisson

hurdle.poisson <- glm(y ~ factorA+factorB+factorC+factorD

+factorE+offset(logn),

family = "poisson",

data = subset(data.glmm,y>0))

hurdle.poisson0 <- glm(y ~ factorB+factorC+factorD+factorE

+offset(logn),

family = "poisson",

data = subset(data.glmm,y>0))

log.p.zmp <- lrtest.hurdle(hurdle.l0, hurdle.poisson0,

hurdle.l, hurdle.poisson)$log.pvalue

## output

file.remove(paste0(logpdir, ’/’, ’log.p.zmp’, j , ’.txt’))

cat (log.p.zmp, file = paste0(logpdir, ’/’, ’log.p.zmp’, j , ’.txt’))

#####################################################

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"

home <- "/home/xiw378/canola/lassoglmm/sim1"

setwd(home)
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method <- "nb"

logpdir <- paste0(home, ’/’, method, "out", ’/’, "logp")

plotsdir <- paste0(home, ’/’, method,"out", ’/’, "plots")

dir.create(logpdir,recursive = TRUE)

dir.create(plotsdir,recursive = TRUE)

library(glmmTMB)

source(paste0(sourcedir, ’/’,’lrtest.R’))

if(!exists("ifold"))

{

ifold <- 1

}

j <- ifold

load(paste0(home, ’/’, ’one_dataset.Rdata’))

ntr <- 500

data.glmm <-one_dataset$dataset[1:ntr,]

data.glmm$y <- data.glmm[, paste0("X", j)]

nb <- glmmTMB( y ~ factorA+factorB+factorC

+(1|factorD)+(1|factorE), data=data.glmm,

family = nbinom2)

nb0 <- glmmTMB( y ~ factorB+factorC+(1|factorD)+(1|factorE), data=data.glmm,

family = nbinom2)

log.p.nb <- lrtest.zi.model(nb0,nb)$log.pvalue

## output for log.pvalue

file.remove(paste0(logpdir, ’/’, ’log.p.nb’, j , ’.txt’))

cat (log.p.nb, file = paste0(logpdir, ’/’, ’log.p.nb’, j , ’.txt’))

#####################################################

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"

home <- "/home/xiw378/canola/lassoglmm/sim1"

setwd(home)

method <- "lasso"

plotsdir <- paste0(home, ’/’, method,"out", ’/’, "plots")

dir.create(plotsdir,recursive = TRUE)
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library(glmnet)

#load the dataset

load(paste0(home, ’/’, ’one_dataset.Rdata’))

source(paste0(sourcedir, ’/’,’fun for lasso.R’))

source(paste0(sourcedir, ’/’,’dataprocess_for_lasso.R’))

#model.matrix for lasso

X <- model.matrix(factorA~., data.lasso)[,-1]

y <- data.lasso$factorA

#num of samples for the train model and the prediction

ntr <- 300

X_tr <- X[1:ntr,]

y_tr <- y[1:ntr]

## fit lasso with the lambda and predictions

lasso.tr <- glmnet (x = X_tr, y= y_tr, nlambda=200, lambda.min.ratio= 1E-8,

family = "multinomial")

probs_pred_lasso.tr <- predict(lasso.tr, newx = X[(ntr+1):one_dataset$n,],

type = "response")

#save the lambda for loocv.lasso

file.remove(paste0(home, ’/’, method, ’out’, ’/’, ’lambda’, ’.txt’))

cat (lasso.tr$lambda, file =

paste0(home, ’/’, method, ’out’, ’/’, ’lambda’, ’.txt’))

#evaluate the performance for train model

tab_sel.lasso.tr <- summary.fsel.lasso

(lasso.tr, one_dataset$signals, cutoff=0)

eval.sel.lasso.tr <- as.data.frame

(t(sapply (tab_sel.lasso.tr, eval.tab.sel)))

eval.sel.lasso.tr$cutoff <- lasso.tr$lambda

#plots for results

pdf(file=paste0(plotsdir, ’/’, ’Number-of-Returned-Features.pdf’))

plot (log(lasso.tr$lambda), eval.sel.lasso.tr$nsel,

xlim = range(log(lasso.tr$lambda)),

xlab="log(lambda)", ylab="Number of Retained Features",

main = "Number of Returned Features")

dev.off()

pdf(file=paste0(plotsdir, ’/’, ’FDR for LASSO.pdf’))

plot (eval.sel.lasso.tr$nsel,eval.sel.lasso.tr$fdr, log = "x",
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xlab="number of returned features", ylab="fdr",

main = "FDR for LASSO")

grid(ny = 10, nx =20)

dev.off()

pdf(file=paste0(plotsdir, ’/’, ’Sensitivity for LASSO.pdf’))

par (mar = c(4,4,2,4))

plot (eval.sel.lasso.tr$nsel, eval.sel.lasso.tr$sensitivity,

xlab="number of returned features", ylab="sensitivity",

main="Sensitivity for LASSO")

par (new = TRUE)

plot (eval.sel.lasso.tr$nsel, eval.sel.lasso.tr$TP,

axes = F, xlab = "", ylab = "")

axis(side = 4);mtext(side = 4, line = 3, text = "True Positive")

grid(ny = 10, nx =20)

dev.off()

pdf(file=paste0(plotsdir, ’/’, ’FPR for LASSO.pdf’))

par (mar = c(4,4,2,4))

plot (eval.sel.lasso.tr$nsel, 1-eval.sel.lasso.tr$specificity,

xlab="number of returned features", ylab="FPR", main="FPR for LASSO")

par (new = TRUE)

plot (eval.sel.lasso.tr$nsel, eval.sel.lasso.tr$FP,

axes = F, xlab = "", ylab = "")

axis(side = 4);mtext(side = 4, line = 3, text = "False Positive")

grid(ny = 10, nx =20)

dev.off()

pdf(file=paste0(plotsdir, ’/’, ’ROC for LASSO.pdf’))

plot (1- eval.sel.lasso.tr$specificity, eval.sel.lasso.tr$sensitivity,

type = "b", xlab="FPR", ylab="sensitivity",

main="ROC for LASSO") ## roc

grid(ny = 10, nx =20)

dev.off()

B.3 R Code for feature Selection and LOOCV for

LASSO

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode"

home <- "/home/xiw378/canola/lassoglmm/sim1"

setwd(home)
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##

plotscomdir <- paste0(home, ’/’, "comparisons")

dir.create(plotscomdir,recursive = TRUE)

method <- c("zinb","zmp","nb", "lasso")

label<- c("ZINB", "ZMP", "NB", "LASSO")

load(paste0(home, ’/’, ’one_dataset.Rdata’))

source(paste0(sourcedir, ’/’, ’generators’, ’/’, ’fun for lasso.R’))

source(paste0(sourcedir, ’/’, ’evaluation’, ’/’, ’evalp.R’))

#get all the log(p)

log.p <- matrix(NA, one_dataset$otu.num, length(method)-1)

for(i in 1 : (length(method)-1))

{

logpdir <- paste0(home, ’/’, method[i], "out", ’/’, "logp")

log.p[,i] <- extract.p(logpdir, method[i], one_dataset$otu.num)

}

#compute the confusion matrix for all the glmm models

model.eval <- as.list(1:length(method))

for(i in 1 : (length(method)-1))

{

plotsdir <- paste0(home, ’/’, method[i],"out", ’/’, "plots")

model.eval[[i]] <- evaluate.one.model

(plotsdir, method[i], label[i], log.p[,i],

one_dataset$signals, num.cutoff = 400)

}

#add to the lasso results

model.eval[[length(method)]] <- eval.sel.lasso.tr

names(model.eval) <- paste(method)

#comparison

plotscomdir <- paste0(home, ’/’, "comparisons")

plots.4methods <- compare.4methods(plotscomdir, model.eval,

method[1], method[2], method[3], method[4])

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"

home <- "/home/xiw378/canola/lassoglmm/sim1"

setwd(home)

method <- "lasso"
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probs_preddir <- paste0(home, ’/’, method,"out", ’/’, "probs_pred")

dir.create(probs_preddir,recursive = TRUE)

library(glmnet)

if(!exists("ifold"))

{

ifold <- 1

}

k <- ifold

#load the dataset and the lambda

load(paste0(home, ’/’, ’one_dataset.Rdata’))

lambda <- scan(paste0(home, ’/’, method, ’out’, ’/’, ’lambda’, ’.txt’))

#####################################################

source(paste0(sourcedir, ’/’,’dataprocess_for_lasso.R’))

#model.matrix for lasso

X <- model.matrix(factorA~., data.lasso)[,-1]

y <- data.lasso$factorA

#num of samples for the train model and the prediction

ntr <- 300

X_tr <- X[1:ntr,]

y_tr <- y[1:ntr]

# leave one out cross validation and predictions

probs_pred_lasso <- data.frame (matrix(0, one_dataset$l1, length(lambda)))

# fit the model

lasso.cvfit <- glmnet (x = X_tr[-k,], y=y_tr[-k], lambda=lambda,

family = "multinomial")

# make predictions

probs_pred_lasso <- predict(lasso.cvfit, newx = t(X_tr[k,]),

type = "response")[1,,]

## output

file.remove(paste0(probs_preddir, ’/’, ’probs_pred_lasso’, k, ’.txt’))

cat (probs_pred_lasso, file = paste0(probs_preddir, ’/’,

’probs_pred_lasso’, k, ’.txt’))

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"

home <- "/home/xiw378/canola/lassoglmm/sim1"

setwd(home)

method <- "lasso"

probs_preddir <- paste0(home, ’/’, method,"out", ’/’, "probs_pred")

plotsdir <- paste0(home, ’/’, method,"out", ’/’, "plots")
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source(paste0(sourcedir, ’/’,’compred.r’))

#load the lambda

lambda <- scan(paste0(home, ’/’, method, ’out’, ’/’, ’lambda’, ’.txt’))

probs_pred_lasso.cvfit <- array(0, dim =

c(ntr, one_dataset$l1, length(lambda)))

for(k in 1:ntr)

{

prob0 <- scan(paste0(probs_preddir, ’/’, ’probs_pred_lasso’, k, ’.txt’))

prob <- matrix (prob0, one_dataset$l1, length(lambda))

probs_pred_lasso.cvfit[k,,] <- prob

}

#calculate the ER & AMLP

amlp.tr = er.tr = amlp.cvfit = er.cvfit = rep(0, length(lambda))

for(l in 1:length(lambda))

{

amlp.tr[l] <- evaluate_pred(probs_pred_lasso.tr[,,l],

y[(ntr+1):one_dataset$n])$amlp

er.tr[l] <- evaluate_pred(probs_pred_lasso.tr[,,l],

y[(ntr+1):one_dataset$n])$er

amlp.cvfit[l] <- evaluate_pred(probs_pred_lasso.cvfit[,,l], y_tr)$amlp

er.cvfit[l] <- evaluate_pred(probs_pred_lasso.cvfit[,,l], y_tr)$er

}

loglambda <- log(lambda)

#plots for results of ER & AMLP

pdf(file=paste0(plotsdir, ’/’, ’ER-for-LASSO.pdf’))

par(mar = c(4, 4, 2.5, 1))

plot (loglambda, er.tr, lwd=4, type = "l", lty = 1,

ylim = range(er.tr, er.cvfit),

xlab="log(lambda)", ylab="ER for LASSO")

points (loglambda, er.cvfit, type = "l", lty = 3, col = 2, lwd=8)

title("ER for LASSO", line = 1.5)

#double axis

sequence <- seq(1,length(lambda), by=8)

xtick2 <- loglambda[sequence]

xlabel2 <- eval.sel.lasso.tr$nsel[sequence]

axis(side = 3, padj = 1,

at = xtick2 , label = xlabel2 )

mtext("Number of Retained Features", side = 3, line = -1)
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legend("center", c("out-of-sample test", "loocv"), col = c(1, 2),

text.col = "black", lty = c(1, 3))

abline(h = (one_dataset$l1-1)/one_dataset$l1, col = 3, lty = 2, lwd=4)

abline(h = seq(0, 1, by=0.05), col = "grey", lty = 2)

dev.off()

##AMLP

pdf(file=paste0(plotsdir, ’/’, ’AMLP-for-LASSO.pdf’))

par(mar = c(4, 4, 2.5, 1))

plot (loglambda, amlp.tr, lwd=4, type = "l", lty = 1,

ylim = range(amlp.tr, amlp.cvfit),

xlab="log(lambda)", ylab="AMLP")

points (loglambda, amlp.cvfit, type = "l", lty = 3, col = 2, lwd=8)

title("AMLP for LASSO", line = 1.5)

#double axis

sequence <- seq(1,length(lambda), by=8)

xtick2 <- loglambda[sequence]

xlabel2 <- eval.sel.lasso.tr$nsel[sequence]

axis(side = 3, padj = 1,

at = xtick2 , label = xlabel2 )

mtext("Number of Retained Features", side = 3, line = -1.2)

legend("center", c("out-of-sample test", "loocv"), col = c(1, 2),

text.col = "black", lty = c(1, 3))

abline(h = log(one_dataset$l1), col = 3, lty = 2, lwd=4)

#abline(h = seq(0, 1, by=0.05), col = "black", lty = 2)

dev.off()

B.4 R Code for Some General Functions in Use

##lrtest for zmp

lrtest.hurdle <- function (M0_C, M0_Z, M1_C,M1_Z)

{

loglike0_C <- logLik(M0_C)

loglike0_Z <- logLik(M0_Z)

loglike1_C <- logLik(M1_C)

loglike1_Z <- logLik(M1_Z)

loglike0 <- loglike0_C + loglike0_Z

loglike1 <- loglike1_C + loglike1_Z
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df0 <- attr(loglike0_C, "df") + attr(loglike0_Z, "df")

df1 <- attr(loglike1_C, "df") + attr(loglike1_Z, "df")

df <- df1 - df0

SS <- as.numeric(2*(loglike1 - loglike0))

list (SS = SS, df=df, log.pvalue=

pchisq (SS, df, lower.tail = FALSE, log.p = TRUE))

}

##lrtest for zi model

lrtest.zi.model <- function(M0,M1)

{

loglike0 <- logLik(M0)

loglike1 <- logLik(M1)

df0 <- attr(loglike0, "df")

df1 <- attr(loglike1, "df")

df <- df1 - df0

SS <- as.numeric(2*(loglike1 - loglike0))

list (SS = SS, df=df, log.pvalue=

pchisq (SS, df, lower.tail = FALSE, log.p = TRUE))

}

## transformations

trans <- function (x) asin (sqrt(x))

#trans <- function (x) asin (2*x - 1)

#trans <- function (x) asin (x)

a <- 0

otu_trans_ra <- trans((one_dataset$dataset[,one_dataset$index.otus]+a)

/(one_dataset$dataset$TotalRead))

data.lasso <- data.frame(one_dataset$dataset[,one_dataset$index.factors],

otu_trans_ra)

#####################################################

library ("glmnet")

library ("rda")

#####################################################

summary.fsel.lasso <- function(lassofit, signals, cutoff)

{

betas <- coef(lassofit)

nlambda <- length(lassofit$lambda)

num.features <- length(signals)

num.allvars <- dim(betas[[1]])[[1]]

num.fixedvars <- num.allvars - num.features
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G <- length (betas)

mbetas <- array(0, dim = c(G, num.allvars, nlambda),

dimnames = list(names(betas),

rownames(betas[[G]]),

colnames(betas[[G]])

)

)

for (g in 1:G)

{

mbetas[g,,] <- as.matrix(betas[[g]])

}

SD.beta <- apply (mbetas, c(2,3), sd )

sel <- (SD.beta > cutoff)*1

tab_sel <- apply (sel[-(1:num.fixedvars), ], 2, table01, signals)

tab_sel

}

#####################################################

# tab_sel1 <- apply (sel[-(1:num.fixedvars), ], 2, table, truesignal)

#####################################################

table01 <- function (sel, signals)

{

table01 <- data.frame(matrix (0, 2,2))

rownames(table01) <- paste0("sel", c("0", "1"))

colnames(table01) <- paste0("true", c("0", "1"))

table01[1,1] <- sum ((sel==0) * (signals==0))

table01[1,2] <- sum ((sel==0) * (signals==1))

table01[2,1] <- sum ((sel==1) * (signals==0))

table01[2,2] <- sum ((sel==1) * (signals==1))

table01

}

#####################################################

eval.tab.sel <- function (tab_sel)

{

nsel <- sum (tab_sel[2,])

TP <- tab_sel[2,2]

FP <- tab_sel[2,1]

fdr <- tab_sel[2,1]/ nsel

sensitivity <- tab_sel[2,2]/ sum (tab_sel[,2])
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specificity <- tab_sel[1,1] / sum (tab_sel[,1])

c(fdr = fdr, sensitivity = sensitivity,

specificity=specificity, nsel = nsel,

TP=TP, FP=FP)

}

# function to calculate the retained feature for lasso

summary.nsel.lasso <- function(lassofit, otu.num, cutoff)

{

betas <- coef(lassofit)

nlambda <- length(lassofit$lambda)

num.features <- otu.num

num.allvars <- dim(betas[[1]])[[1]]

num.fixedvars <- num.allvars - num.features

G <- length (betas)

mbetas <- array(0, dim = c(G, num.allvars, nlambda),

dimnames = list(names(betas),

rownames(betas[[G]]),

colnames(betas[[G]])

)

)

for (g in 1:G)

{

mbetas[g,,] <- as.matrix(betas[[g]])

}

SD.beta <- apply (mbetas, c(2,3), sd )

sel <- (SD.beta > cutoff)*1

nsel <- apply (sel[-(1:num.fixedvars), ], 2, sum)

#nsel <- apply (sel[-(1:num.fixedvars), ], 2, function(x) sum (x == 1))

nsel

}

#####################################################

#function to extract log p_value

extract.p <- function(logpdir, method, otu.num)

{

#extract the log p_values

log.p0 = rep(NA, otu.num)
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for(i in 1:otu.num)

{

fn.log.p <- paste0(logpdir, ’/’, ’log.p.’, method, i, ’.txt’)

if (file.exists(fn.log.p))

{

log.p0[i] <- scan(fn.log.p)

}

else

{

cat (fn.log.p, "does not exsit\n")

}

}

log.p0

}

#####################################################

#function to feature selection with each cutoff

fs.log.p <- function(log.p0,cutoff)

{

if(log.p0 <= cutoff) {log.p.fs=1;} else {log.p.fs=0;}

}

#####################################################

#function to process log p_value, evaluate the model and draw the plots

evaluate.one.model <- function(plotsdir, method, label,

log.p0, signals, num.cutoff)

{

#save the num of NA’s

num.na <- sum(is.na(log.p0))

##use 1 instead all the NA’s

log.p0[which(is.na(log.p0) == TRUE)] <- 0

#use all the means for each two adjacent p_values as cutoffs

order.log.p0 <- order(log.p0)

log.p0.mean <- zoo::rollmean(log.p0[order.log.p0], 2)

cutoff <- log.p0.mean[1:num.cutoff]

#calculate all the confusion matrixs for each cutoff

tab_sel.model = as.list (1:length(cutoff))

for(i in 1:length (cutoff))

{

fs.model <- unlist(lapply(log.p0, fs.log.p, cutoff[i]))

tab_sel.model[[i]] <- table01(fs.model,signals)
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}

#evaluate the confusion matrixs for the model

eval.sel.model <- as.data.frame(t(sapply (tab_sel.model, eval.tab.sel)))

##calculate the estimated fdr for the model

estimated.fdr <- p.adjust(exp(log.p0[order(log.p0)]),

method = "fdr")[1:length(cutoff)]

eval.sel.model$estimated.fdr <- estimated.fdr

eval.sel.model$cutoff <- cutoff

eval.sel.model$num.na <- num.na

# plots for p_value

pdf(file=paste0(plotsdir, ’/’, ’log(p) for ’, method,’.pdf’))

plot(-log.p0[order.log.p0], col = (signals + 1)[order.log.p0], lwd=4,

pch = c(3,4)[(signals + 1)[order.log.p0]],

log = "x", ylab="-log(pvalue)")

dev.off()

pdf(file=paste0(plotsdir, ’/’, ’p_value for ’, method,’.pdf’))

hist (exp(log.p0[log.p0<0]), breaks = seq(0,1, length=20),

xlab="pvalue", main="Histogram of pvalue")

dev.off()

##plot of true fdr and estimated fdr

pdf(file=paste0(plotsdir, ’/’, ’true vs estimated fdr for ’,

method,’.pdf’))

par(mar = c(4, 4, 2, 1))

plot(eval.sel.model$nsel, eval.sel.model$fdr, log = "x",

type = "l", lty = 1, col = 1, lwd=4,

xlim = range(na.omit(c(eval.sel.model$nsel))),

ylim = range(na.omit(c(eval.sel.model$fdr,

eval.sel.model$estimated.fdr))),

xlab="Number of Retained Features", ylab="False Discovery Rate",

main = paste0(’False Discovery Rate for ’, label))

points(eval.sel.model$nsel, eval.sel.model$estimated.fdr,

type = "l", lty = 3, col = 2, lwd=4)

legend("topleft", c("Empirical FDR", "Q-value"), col = c(1, 2),

text.col = "black", lty = c(1, 3))

dev.off()

#feature selection
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pdf(file=paste0(plotsdir, ’/’, ’feature selection for ’, method,’.pdf’))

plot(eval.sel.model$cutoff,eval.sel.model$nsel,

xlab="cutoff", ylab="number of returned features",

main = paste0(’feature selection for ’, label))

grid(ny = 10, nx =20)

dev.off()

#FDR

pdf(file=paste0(plotsdir, ’/’, ’FDR for ’, method,’.pdf’))

plot(eval.sel.model$nsel,eval.sel.model$fdr, log = "x",

type = "l", lty = 1, col = 1,

xlab="Number of Retained Features", ylab="FDR",

main = paste0(’FDR for ’, label))

grid(ny = 10, nx =20)

dev.off()

#Sensitivity

pdf(file=paste0(plotsdir, ’/’, ’Sensitivity for ’, method,’.pdf’))

par (mar = c(4,4,2,4))

plot (eval.sel.model$nsel,eval.sel.model$sensitivity,

xlab="Number of Retained Features", ylab="Sensitivity",

main = paste0(’Sensitivity for ’, label))

par (new = TRUE)

plot (eval.sel.model$nsel, eval.sel.model$TP,

axes = F, xlab = "", ylab = "")

axis(side = 4);mtext(side = 4, line = 3, text = "True Positive")

grid(ny = 10, nx =20)

dev.off()

#FPR

pdf(file=paste0(plotsdir, ’/’, ’FPR for ’, method,’.pdf’))

par (mar = c(4,4,2,1))

plot (eval.sel.model$nsel,1-eval.sel.model$specificity,

xlab="Number of Retained Features", ylab="FPR",

main = paste0(’FPR for ’, label))

par (new = TRUE)

plot (eval.sel.model$nsel, eval.sel.model$FP,

axes = F, xlab = "", ylab = "")

axis(side = 4);mtext(side = 4, line = 3, text = "False Positive")

grid(ny = 10, nx =20)

dev.off()

#ROC

pdf(file=paste0(plotsdir, ’/’, ’ROC for ’, method,’.pdf’))

plot (1- eval.sel.model$specificity,eval.sel.model$sensitivity,
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type = "b",

xlab="FPR", ylab="Sensitivity", main = paste0(’ROC for ’, label))

grid(ny = 10, nx =20)

dev.off()

eval.sel.model

}

#####################################################

#function to compare all the methods

compare.4methods <- function(plotscomdir, eval.one.model,

method1, method2, method3, method4)

{

#FDR

pdf(file=paste0(plotscomdir, ’/’, ’FDR for ’,

’ZINB, ZMP, NB and LASSO’, ’.pdf’))

par(mar = c(4, 4, 2, 1))

#make the plot

plot(eval.one.model[[method1]]$nsel,eval.one.model[[method1]]$fdr, lwd=4,

type = "l", col = 1, lty = 1, log = "x",

xlab="Number of Retained Features", ylab="",

ylim =range(na.omit(c(eval.one.model[[method1]]$fdr,

eval.one.model[[method2]]$fdr,

eval.one.model[[method3]]$fdr, eval.one.model[[method4]]$fdr))),

main=paste0(’False Discovery Rate’))

points(eval.one.model[[method2]]$nsel,eval.one.model[[method2]]$fdr,

lwd=4, type="l", col=2, lty = 2)

points(eval.one.model[[method3]]$nsel,eval.one.model[[method3]]$fdr,

lwd=4, type="l", col=3, lty = 3)

points(eval.one.model[[method4]]$nsel,eval.one.model[[method4]]$fdr,

lwd=4, type="l", col=4, lty = 4)

legend("bottomright", toupper(c(method1, method2, method3, method4)),

col = c(1,2,3,4), text.col = "black", lty = c(1,2,3,4))

dev.off()

#Sensitivity

pdf(file=paste0(plotscomdir, ’/’, ’Sensitivity for ’,

’ZINB, ZMP, NB and LASSO’, ’.pdf’))

par(mar = c(4, 4, 2, 1))
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#make the plot

plot(eval.one.model[[method1]]$nsel,eval.one.model[[method1]]$sensitivity,

lwd=4, type = "l", lty = 1, col = 1, log = "x",

xlab="Number of Retained Features", ylab="",

ylim = range(0,1),

main=paste0(’Sensitivity’))

points(eval.one.model[[method2]]$nsel,

eval.one.model[[method2]]$sensitivity,

lwd=4, type="l", col=2, lty = 2)

points(eval.one.model[[method3]]$nsel,

eval.one.model[[method3]]$sensitivity,

lwd=4, type="l", col=3, lty = 3)

points(eval.one.model[[method4]]$nsel,

eval.one.model[[method4]]$sensitivity,

lwd=4, type="l", col=4, lty = 4)

legend("topleft", toupper(c(method1, method2, method3, method4)),

col = c(1,2,3,4), text.col = "black", lty = c(1,2,3,4))

dev.off()

#FPR

pdf(file=paste0(plotscomdir, ’/’, ’FPR for ’, ’ZINB, ZMP, NB and LASSO’,

’.pdf’))

par(mar = c(4, 4, 2, 1))

#make the plot

plot(eval.one.model[[method1]]$nsel,

1-eval.one.model[[method1]]$specificity,

lwd=4, type = "l", lty = 1, col = 1, log = "x",

xlab="Number of Retained Features", ylab="",

main=paste0(’FPR’))

points(eval.one.model[[method2]]$nsel,

1-eval.one.model[[method2]]$specificity,

lwd=4, type="l", col=2, lty = 2)

points(eval.one.model[[method3]]$nsel,

1-eval.one.model[[method3]]$specificity,

lwd=4, type="l", col=3, lty = 3)

points(eval.one.model[[method4]]$nsel,
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1-eval.one.model[[method4]]$specificity,

lwd=4, type="l", col=4, lty = 4)

legend("topleft", toupper(c(method1, method2, method3, method4)),

col = c(1,2,3,4),

text.col = "black", lty = c(1,2,3,4))

dev.off()

#ROC

pdf(file=paste0(plotscomdir, ’/’, ’ROC for ’,

’ZINB, ZMP, NB and LASSO’, ’.pdf’))

par(mar = c(4, 4, 2, 1))

xlim =range(na.omit(c(1-eval.one.model[[method1]]$specificity,

1-eval.one.model[[method2]]$specificity,

1-eval.one.model[[method3]]$specificity,

1-eval.one.model[[method4]]$specificity)))

ylim =range(na.omit(c(eval.one.model[[method1]]$sensitivity,

eval.one.model[[method2]]$sensitivity,

eval.one.model[[method3]]$sensitivity,

eval.one.model[[method4]]$sensitivity)))

print (ylim)

#make the plot

plot(1- eval.one.model[[method1]]$specificity,

eval.one.model[[method1]]$sensitivity, lwd=4,

type = "l", lty = 1, col = 1,

xlab="FPR", ylab="Sensitivity",

xlim = xlim,

ylim = ylim,

main=paste0(’ROC’))

points(1- eval.one.model[[method2]]$specificity,

eval.one.model[[method2]]$sensitivity, lwd=4,

type="l", col=2, lty = 2)

points(1- eval.one.model[[method3]]$specificity,

eval.one.model[[method3]]$sensitivity, lwd=4,

type="l", col=3, lty = 3)

points(1- eval.one.model[[method4]]$specificity,

eval.one.model[[method4]]$sensitivity, lwd=4,

type="l", col=4, lty = 4)
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legend("bottomright", toupper(c(method1, method2, method3, method4)),

col = c(1,2,3,4),

text.col = "black", lty = c(1,2,3,4))

# , cex=0.8, border="black",

# bty = "n", inset = c(0, 0), adj=0.15, text.width=0.15,

x.intersp=2,

# lwd=4, seg.len=7)

dev.off()

}

#####################################################

evaluate_pred <- function (probs_pred, y, caseid = names (y),

showplot = FALSE)

{

if (is.factor(y)) y <- as.numeric (y)

if (is.null (caseid)) caseid <- 1:length (y)

C <- ncol (probs_pred)

values_pred <- apply (probs_pred, 1, which.max)

table_eval <- data.frame (caseid, y, probs_pred, 1 * (values_pred != y))

colnames (table_eval) <- c("Case ID", "True Label",

paste ("Pred. Prob", 1:C), "Wrong?")

eval_tab_pred (table_eval, showplot = showplot)

}

eval_tab_pred <- function (table_eval, showplot = TRUE, ...)

{

if (is.character (table_eval))

{

table_eval <- as.matrix (read.table (table_eval))

}

C <- ncol (table_eval) - 3

colnames (table_eval) <- c("Case ID", "True Label",

paste ("Pred. Prob", 1:C), "Wrong?")

probs_pred <- table_eval [, 2+(1:C)]

y <- table_eval[,2]

probs_at_truelabels <- probs_attrue_bplr (probs_pred, y)

which.wrong <- which (table_eval[,C+3] == 1)

n <- nrow (table_eval)

amlp <- - mean (log (probs_at_truelabels))

60



no_errors <- sum (table_eval[, C+3])

er <- no_errors/n

yl <- y; if (C == 2) yl[y==2] <- 3

plotargs <- list (...)

if (is.null (plotargs$ylab))

plotargs$ylab <- "Predictive Probability at True Label"

if (is.null (plotargs$xlab)) plotargs$xlab <- "Case Index"

if (is.null (plotargs$ylim)) plotargs$ylim <- c(0,1)

if (is.null (plotargs$pch)) plotargs$pch <- yl

if (showplot)

{

plotargs$x <- probs_at_truelabels

do.call (plot, plotargs)

if (C == 2) abline (h = 0.5)

abline (h = 0.1,lty = 2)

title (main = sprintf ("AMLP = %5.3f, Error Rate = %4.2f%% (%d/%d)",

amlp, er*100, no_errors, n),

cex = 0.8, line = 0.5)

if (no_errors > 0) {

text (which.wrong, probs_at_truelabels[which.wrong],

labels = which.wrong,

srt = 90, adj = - 0.4, cex = 0.9, col = "red")

}

}

list (probs_at_truelabels = probs_at_truelabels, table_eval = table_eval,

amlp = amlp, er = er, which.wrong = which.wrong )

}

B.5 R Code for Real Data analysis

########################clean the data######################

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"

home <- "/home/xiw378/canola/lassoglmm/realdata/ethnicity"

setwd(home)
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method <- "lasso"

plotsdir <- paste0(home, ’/’, method,"out", ’/’, "plots")

dir.create(plotsdir,recursive = TRUE)

library(glmnet)

#load the dataset and replace blank with "NA’s"

realdata=read.csv(file="/home/xiw378/canola/data/OTU_NG_Ethnicity.csv",

header = T, stringsAsFactors = F,

na.strings=c("","NA"))

#Convert to Factors

realdata$Age <- factor(realdata$Age, levels=sort(unique(realdata$Age)))

realdata$Sex <- factor(realdata$Sex, levels=sort(unique(realdata$Sex)))

realdata$Ethnicity <- factor(realdata$Ethnicity,

levels=sort(unique(realdata$Ethnicity)))

#delete the replicated samples(if any);

#find and delete all the samples with "NA’s"

summary(realdata$Age)

summary(realdata$Sex)

summary(realdata$Ethnicity)

realdata=unique(realdata)

realdata[which(is.na(realdata), arr.ind = T), 146:148]

realdata<-na.omit(realdata)

##delete the samples with only one obsvervation in ethnicity in excel

##and save as "OTU_NG_Ethnicity.csv

n <- dim(realdata)[1]

independent.variables <- data.frame (realdata[,146:148])

# extract OTU data

otus = realdata[, 2:(ncol(realdata)-3)]

otu.num <- dim(otus)[2]

TotalRead = rowSums(otus)

logTR <- log(TotalRead)

dataset <- data.frame(independent.variables, otus, TotalRead, logTR)

index.factors <- t(as.matrix(sapply(colnames(independent.variables),
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grep,colnames(dataset))))

index.otus <- match(colnames(otus),colnames(dataset))

one_dataset <- list(dataset = dataset, n = n, otu.num = otu.num,

l1 = length(unique(realdata$Ethnicity)),

index.factors = index.factors, index.otus = index.otus)

save(one_dataset, file=paste0(home, ’/’, ’one_dataset.Rdata’))

########################fit the Lasso######################

load(paste0(home, ’/’, ’one_dataset.Rdata’))

source(paste0(sourcedir, ’/’,’fun for lasso.R’))

source(paste0(sourcedir, ’/’,’dataprocess_for_lasso.R’))

#model.matrix for lasso

X <- model.matrix(Ethnicity~., data.lasso)[,-1]

y <- data.lasso$Ethnicity

#num of samples for the train model and the prediction

ntr <- one_dataset$n

X_tr <- X[1:ntr,]

y_tr <- y[1:ntr]

## fit lasso with the lambda and predictions

lasso.tr <- glmnet (x = X_tr, y= y_tr, nlambda=200,

family = "multinomial")

probs_pred_lasso.tr <- predict(lasso.tr, newx = X[1:one_dataset$n,],

type = "response")

#evaluate the performance for train model

lasso.nsel <- summary.nsel.lasso(lasso.tr, one_dataset$otu.num, cutoff=0)

#save the nsel for lasso.tr

file.remove(paste0(home, ’/’, method, ’out’, ’/’, ’lasso.nsel’, ’.txt’))

cat (lasso.nsel, file = paste0(home, ’/’, method, ’out’, ’/’,

’lasso.nsel’, ’.txt’))

#save the lambda for loocv.lasso

file.remove(paste0(home, ’/’, method, ’out’, ’/’, ’lambda’, ’.txt’))

cat (lasso.tr$lambda, file = paste0(home, ’/’, method, ’out’, ’/’,

’lambda’, ’.txt’))

plot(lasso.tr, xvar="lambda", label=TRUE)
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plot(lasso.tr, xvar="norm", label=TRUE)

plot(lasso.tr, xvar="dev", label=TRUE)

#save the ’probs_pred_lasso.tr’ for plotting

file.remove(paste0(home, ’/’, method, ’out’, ’/’,

’probs_pred_lasso.tr’, ’.Rdata’))

save(probs_pred_lasso.tr, file = paste0(home, ’/’, method, ’out’, ’/’,

’probs_pred_lasso.tr’, ’.Rdata’))

########################Loocv for Lasso######################

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"

home <- "/home/xiw378/canola/lassoglmm/realdata/ethnicity"

setwd(home)

method <- "lasso"

probs_preddir <- paste0(home, ’/’, method,"out", ’/’, "probs_pred")

dir.create(probs_preddir,recursive = TRUE)

library(glmnet)

# irep <- 1 # this line will be added by qsubR with 1 taking 1,2,...

if (!exists("irep")) irep <- 1

#load the dataset and the lambda

load(paste0(home, ’/’, ’one_dataset.Rdata’))

lambda <- scan(paste0(home, ’/’, method, ’out’, ’/’, ’lambda’, ’.txt’))

source(paste0(sourcedir, ’/’,’dataprocess_for_lasso.R’))

#model.matrix for lasso

X <- model.matrix(Ethnicity~., data.lasso)[,-1]

y <- data.lasso$Ethnicity

#num of samples for the train model and the prediction

ntr <- one_dataset$n

X_tr <- X[1:ntr,]

y_tr <- y[1:ntr]

# leave one out cross validation and predictions

probs_pred_lasso <- data.frame (matrix(0, one_dataset$l1, length(lambda)))

# fit the model

lasso.cvfit <- glmnet (x = X_tr[-irep,], y=y_tr[-irep], lambda=lambda,

family = "multinomial")
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# make predictions

probs_pred_lasso <- predict(lasso.cvfit, newx = t(X_tr[irep,]),

type = "response")[1,,]

## output

file.remove(paste0(probs_preddir, ’/’, ’probs_pred_lasso’, irep, ’.txt’))

cat (probs_pred_lasso, file = paste0(probs_preddir, ’/’, ’probs_pred_lasso’,

irep, ’.txt’))

########################Compute the ER and AMLP##############

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"

home <- "/home/xiw378/canola/lassoglmm/realdata/ethnicity"

setwd(home)

method <- "lasso"

probs_preddir <- paste0(home, ’/’, method,"out", ’/’, "probs_pred")

plotsdir <- paste0(home, ’/’, method,"out", ’/’, "plots")

source(paste0(sourcedir, ’/’,’compred.r’))

#load the dataset

load(paste0(home, ’/’, ’one_dataset.Rdata’))

source(paste0(sourcedir, ’/’,’fun for lasso.R’))

source(paste0(sourcedir, ’/’,’dataprocess_for_lasso.R’))

#model.matrix for lasso

X <- model.matrix(Ethnicity~., data.lasso)[,-1]

y <- data.lasso$Ethnicity

#num of samples for the train model and the prediction

ntr <- one_dataset$n

X_tr <- X[1:ntr,]

y_tr <- y[1:ntr]

#load ’probs_pred_lasso.tr’ , the lambda and the nsel for plotting

load (paste0(home, ’/’, method, ’out’, ’/’, ’probs_pred_lasso.tr’,

’.Rdata’))

lambda <- scan(paste0(home, ’/’, method, ’out’, ’/’, ’lambda’, ’.txt’))

lasso.nsel <- scan(paste0(home, ’/’, method, ’out’, ’/’, ’lasso.nsel’,

’.txt’))

probs_pred_lasso.cvfit <- array(0, dim = c(ntr, one_dataset$l1,

length(lambda)))

for(k in 1:ntr)
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{

fn <- paste0(probs_preddir, ’/’, ’probs_pred_lasso’, k, ’.txt’)

if (file.exists(fn))

{

prob0 <- scan(paste0(probs_preddir, ’/’, ’probs_pred_lasso’, k, ’.txt’))

prob <- matrix (prob0, one_dataset$l1, length(lambda))

probs_pred_lasso.cvfit[k,,] <- prob

}

else

{

cat (fn, "does not exsit\n")

}

}

#calculate the ER & AMLP

amlp.tr = er.tr = amlp.cvfit = er.cvfit = rep(0, length(lambda))

for(l in 1:length(lambda))

{

amlp.tr[l] <- evaluate_pred(probs_pred_lasso.tr[,,l],

y[1:one_dataset$n])$amlp

er.tr[l] <- evaluate_pred(probs_pred_lasso.tr[,,l], y[1:one_dataset$n])$er

amlp.cvfit[l] <- evaluate_pred(probs_pred_lasso.cvfit[,,l], y_tr)$amlp

er.cvfit[l] <- evaluate_pred(probs_pred_lasso.cvfit[,,l], y_tr)$er

}

loglambda <- log(lambda)

## calculate expected amlp (entropy)

freq.eth <- table(data.lasso$Ethnicity)/nrow (data.lasso)

ex.amlp.enth <- -sum(freq.eth*log(freq.eth)); ex.amlp.enth

## expected error rate is the minority frequency

## (as we can always predict with mode)

ex.er.enth <- 1-max(freq.eth)

#plots for results of ER & AMLP

pdf(file=paste0(plotsdir, ’/’, ’ER-for-LASSO.pdf’))

par(mar = c(4, 4, 2.5, 1))
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plot (loglambda, er.tr, lwd=4, type = "l", lty = 1,

ylim = range(er.tr, er.cvfit),

xlab="log(lambda)", ylab="ER for LASSO")

points (loglambda, er.cvfit, type = "l", lty = 3, col = 2, lwd=8)

title("ER for LASSO", line = 1.5)

#double axis

sequence <- seq(1,length(lambda), by=8)

xtick2 <- loglambda[sequence]

xlabel2 <- lasso.nsel[sequence]

axis(side = 3, padj = 1,

at = xtick2 , label = xlabel2 )

mtext("Number of Retained Features", side = 3, line = -1)

legend("right", c("training", "loocv"), col = c(1, 2),

text.col = "black", lty = c(1, 3))

abline(h = ex.er.enth, col = 3, lty = 2, lwd=4)

abline(h = seq(0, 1, by=0.05), col = "grey", lty = 2)

dev.off()

##AMLP

pdf(file=paste0(plotsdir, ’/’, ’AMLP-for-LASSO.pdf’))

par(mar = c(4, 4, 2.5, 1))

plot (loglambda, amlp.tr, lwd=4, type = "l", lty = 1,

ylim = range(amlp.tr, amlp.cvfit),

xlab="log(lambda)", ylab="AMLP")

points (loglambda, amlp.cvfit, type = "l", lty = 3, col = 2, lwd=8)

title("AMLP for LASSO", line = 1.5)

#double axis

sequence <- seq(1,length(lambda), by=8)

xtick2 <- loglambda[sequence]

xlabel2 <- lasso.nsel[sequence]

axis(side = 3, padj = 1,

at = xtick2 , label = xlabel2 )

mtext("Number of Retained Features", side = 3, line = -1.2)

legend("right", c("training ", "loocv"), col = c(1, 2),

text.col = "black", lty = c(1, 3))

abline(h = ex.amlp.enth, col = 3, lty = 2, lwd=4)

#abline(h = seq(0, 1, by=0.05), col = "black", lty = 2)

dev.off()

########################Fit ZINB#############################

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"
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home <- "/home/xiw378/canola/lassoglmm/realdata/ethnicity"

setwd(home)

method <- "zinb"

logpdir <- paste0(home, ’/’, method, "out", ’/’, "logp")

plotsdir <- paste0(home, ’/’, method,"out", ’/’, "plots")

dir.create(logpdir,recursive = TRUE)

dir.create(plotsdir,recursive = TRUE)

library(glmmTMB)

source(paste0(sourcedir, ’/’,’lrtest.R’))

if (!exists("irep")) irep <- 1

load(paste0(home, ’/’, ’one_dataset.Rdata’))

ntr <- one_dataset$n

data.glmm <-one_dataset$dataset[1:ntr,]

data.glmm$y <- data.glmm[, one_dataset$index.otus[irep]]

## Zero-inflated negative binomial model

zinb <- glmmTMB( y ~ Ethnicity+Sex+(1|Age), data=data.glmm,

zi= ~ Ethnicity+Sex+(1|Age),

family = nbinom2)

zinb0 <- glmmTMB( y ~ Sex+(1|Age), data=data.glmm,

zi= ~ Sex+(1|Age),

family = nbinom2)

#log p_value for each otu j

log.p.zinb <- lrtest.zi.model(zinb0,zinb)$log.pvalue

## output for log.pvalue

file.remove(paste0(logpdir, ’/’, ’log.p.zinb’, irep , ’.txt’))

cat (log.p.zinb, file = paste0(logpdir, ’/’, ’log.p.zinb’, irep , ’.txt’))

########################Fit ZMP##############################

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"

home <- "/home/xiw378/canola/lassoglmm//realdata/ethnicity"

setwd(home)
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method <- "zmp"

logpdir <- paste0(home, ’/’, method, "out", ’/’, "logp")

plotsdir <- paste0(home, ’/’, method,"out", ’/’, "plots")

dir.create(logpdir,recursive = TRUE)

dir.create(plotsdir,recursive = TRUE)

library(glmmTMB)

source(paste0(sourcedir, ’/’,’lrtest.R’))

######################

if (!exists("irep")) irep <- 1

load(paste0(home, ’/’, ’one_dataset.Rdata’))

ntr <- one_dataset$n

data.glmm <-one_dataset$dataset[1:ntr,]

data.glmm$y <- data.glmm[, one_dataset$index.otus[irep]]

#glm

#logistic

hurdle.l<-glmmTMB((y>0)~Ethnicity+Sex+(1|Age),data=data.glmm,

ziformula =~0,family=binomial())

hurdle.l0<-glmmTMB((y>0)~Sex+(1|Age),data=data.glmm,

ziformula =~0,family=binomial())

#poisson

hurdle.poisson <- glm(y ~ Ethnicity+Sex+Age+offset(logTR),

family = "poisson",

data = subset(data.glmm,y>0))

hurdle.poisson0 <- glm(y ~ Ethnicity+Sex+Age+offset(logTR),

family = "poisson",

data = subset(data.glmm,y>0))

log.p.zmp <- lrtest.hurdle(hurdle.l0, hurdle.poisson0, hurdle.l,

hurdle.poisson)$log.pvalue

## output

file.remove(paste0(logpdir, ’/’, ’log.p.zmp’, irep , ’.txt’))

cat (log.p.zmp, file = paste0(logpdir, ’/’, ’log.p.zmp’, irep , ’.txt’))

########################Fit NB###############################
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sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode/generators"

home <- "/home/xiw378/canola/lassoglmm/realdata/ethnicity"

setwd(home)

method <- "nb"

logpdir <- paste0(home, ’/’, method, "out", ’/’, "logp")

plotsdir <- paste0(home, ’/’, method,"out", ’/’, "plots")

dir.create(logpdir,recursive = TRUE)

dir.create(plotsdir,recursive = TRUE)

library(glmmTMB)

source(paste0(sourcedir, ’/’,’lrtest.R’))

if (!exists("irep")) irep <- 1

load(paste0(home, ’/’, ’one_dataset.Rdata’))

ntr <- one_dataset$n

data.glmm <-one_dataset$dataset[1:ntr,]

data.glmm$y <- data.glmm[, one_dataset$index.otus[irep]]

nb <- glmmTMB( y ~ Ethnicity+Sex+(1|Age), data=data.glmm,

family = nbinom2)

nb0 <- glmmTMB( y ~ Sex+(1|Age), data=data.glmm,

family = nbinom2)

log.p.nb <- lrtest.zi.model(nb0,nb)$log.pvalue

## output for log.pvalue

file.remove(paste0(logpdir, ’/’, ’log.p.nb’, irep , ’.txt’))

cat (log.p.nb, file = paste0(logpdir, ’/’, ’log.p.nb’, irep , ’.txt’))

########################Plot the p_value and q_value#########

sourcedir <- "/home/xiw378/canola/lassoglmm/Rcode"

home <- "/home/xiw378/canola/lassoglmm/realdata/ethnicity"

setwd(home)

##

plotscomdir <- paste0(home, ’/’, "comparisons")

dir.create(plotscomdir,recursive = TRUE)
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method <- c("zinb","zmp","nb", "lasso")

label<- c("ZINB", "ZMP", "NB", "LASSO")

load(paste0(home, ’/’, ’one_dataset.Rdata’))

source(paste0(sourcedir, ’/’, ’generators’, ’/’, ’fun for lasso.R’))

source(paste0(sourcedir, ’/’, ’evaluation’, ’/’, ’evalp.R’))

#get all the log(p)

log.p <- matrix(NA, one_dataset$otu.num, length(method)-1)

order.log.p <- matrix(NA, one_dataset$otu.num, length(method)-1)

num.cutoff = 143

model.eval <- as.list(1:length(method))

for(i in 1 : (length(method)-1))

{

logpdir <- paste0(home, ’/’, method[i], "out", ’/’, "logp")

log.p[,i] <- extract.p(logpdir, method[i], one_dataset$otu.num)

#save the num of NA’s

num.na <- sum(is.na(log.p[,i]))

##use 1 instead all the NA’s

log.p[,i][which(is.na(log.p[,i]) == TRUE)] <- 0

#use all the means for each two adjacent p_values as cutoffs

order.log.p0 <- order(log.p[,i])

order.log.p[,i] <- log.p[,i][order.log.p0]

log.p0.mean <- zoo::rollmean(order.log.p[,i], 2)

cutoff <- log.p0.mean[1:num.cutoff]

##calculate the estimated fdr for the model

estimated.fdr <- p.adjust(exp(order.log.p[,i]),

method = "fdr")[1:length(cutoff)]

eval.sel.model <- list(estimated.fdr= NA, cutoff= NA, num.na= NA)

eval.sel.model$estimated.fdr <- estimated.fdr

eval.sel.model$cutoff <- cutoff

eval.sel.model$num.na <- num.na

model.eval[[i]] <- eval.sel.model

plotsdir <- paste0(home, ’/’, method[i],"out", ’/’, "plots")
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#Histogram of p-value

pdf(file=paste0(plotsdir, ’/’, ’p_value-for-’, method[i],’.pdf’))

hist (exp(log.p[,i][log.p[,i]<0]), breaks = seq(0,1, length=20),

xlab="p-value",

main= paste0(’Histogram of p-value for ’, label[i]))

dev.off()

}

#comparison

plotscomdir <- paste0(home, ’/’, "comparisons")

#log(p-value)

pdf(file=paste0(plotscomdir, ’/’, ’-log(p-value)-for-’,

’ZINB-ZMP-and-NB’, ’.pdf’))

par(mar = c(4, 4, 2, 1))

#make the plot

plot(-order.log.p[,1],

lwd=4,

type = "p", col = 1, pch = 1, log = "x",

xlab="Number of Retained Features",

ylab="",

ylim = range(na.omit(c(-order.log.p[,1],-order.log.p[,2],

-order.log.p[,3]))),

main = paste0(’-log(p-value) for ZINB, ZMP and NB’)

)

points(-order.log.p[,2], lwd=4,

type="p", col=2, pch = 2)

points(-order.log.p[,3], lwd=4,

type="p", col=3, pch = 3)

legend("right", toupper(c(method[1], method[2], method[3])),

col = c(1,2,3), text.col = "black", pch = c(1,2,3))

dev.off()

##q-value#################################################

pdf(file=paste0(plotscomdir, ’/’, ’q-value-for-’,

’ZINB-ZMP-and-NB’, ’.pdf’))

par(mar = c(4, 4, 2, 1))
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#make the plot

plot(model.eval[[1]]$estimated.fdr,

lwd=4,

type = "l", col = 1, lty = 1, log = "x",

xlab="Number of Retained Features", ylab="",

ylim = range(na.omit(c(model.eval[[1]]$estimated.fdr,

model.eval[[2]]$estimated.fdr,

model.eval[[3]]$estimated.fdr))),

main = paste0(’q-value for ZINB, ZMP and NB’)

)

points(model.eval[[2]]$estimated.fdr, lwd=4,

type="l", col=2, lty = 2)

points(model.eval[[3]]$estimated.fdr, lwd=4,

type="l", col=3, lty = 3)

legend("topleft", toupper(c(method[1], method[2], method[3])),

col = c(1,2,3), text.col = "black", lty = c(1,2,3))

dev.off()
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