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Abstract

Traditional residuals for diagnosing accelerated failure time models in survival analysis,

such as Cox-Snell, martingale and deviance residuals, have been widely used. However, ex-

amining those residuals are often only made visually, which can be subjective. Therefore,

lack of objective measure of examining model adequacy has been a long-standing issue that

needs to be addressed for survival analysis. In this thesis, a new type of residual is proposed

called Normal-transformed Randomized Survival Probability (NRSP) residual. A compre-

hensive review of the traditional residuals including Cox Snell and deviance residuals is firstly

presented highlighting their disadvantages for examining model adequacy. We then introduce

NRSP residual. Simulation studies were conducted to compare the performance of NRSP

residuals with the traditional residuals. Our simulation studies demonstrated that NRSP

residuals are approximately normally distributed when the fitted model is correctly speci-

fied, and has great statistical power in detecting model inadequacies. We also apply NRSP

residuals to a real dataset to check the goodness-of-fit of three plausible models.
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1. Introduction

Examining model adequacy is a critical step in model building to ensure the validity of

the statistical inference. Model checking and assessing the overall goodness of fit (GOF) are

typically based on residuals. Residuals for survival models are different from the residuals for

generalized linear models, due to censored observations, which makes model diagnostics very

difficult. Therefore, visual inspection of residuals should be supplemented by a numerical

goodness-of-fit test to detect inadequacies of a fitted model [1].

Cox-Snell[2], martingale [3], and deviance [4] residuals have often been used to diagnose

survival models. Of those, Cox-Snell residuals are most widely used in the analysis of survival

data. Cox-Snell residual is defined as the negative logarithms of the estimated survivor

function for an individual with the observed survival time. It is proven that if a model fits

observed data well without censoring, Cox-Snell residuals are distributed exponentially with

unit mean. If the observed survival time for an individual is censored, the corresponding

Cox-Snell residual is also censored. Cox-Snell residual is therefore quite dissimilar to those

of residuals used in linear regression analysis in the sense that they cannot be negative and

consequently are not symmetrically distributed around zero [1]. To assess model fit, Cox-

Snell residuals are commonly plotted against values of negative logarithms of the estimated

survivor function. A straight line with unit slope and zero intercept indicates that model fits

a dataset well. Using this criterion, a model is evaluated both with respect to its graphics and

goodness of fit. Sometimes, the Kolmogorov-Smirnov (KS) [5] goodness of fit test may be

used to evaluate if Cox-Snell residuals follow a unit exponential distribution, but Kolmogorov-

Smirnov test is poorly calibrated in AFT models [6]. An index plot of martingale and deviance

residuals may be used to highlight individuals whose survival time is not well fitted by survival

model [1]. Moreover, the common deficiency among all of these residuals are not sensitive

to the violation of the survival model [7]. Therefore, it is difficult to determine whether a

model effectively fits a dataset by using these traditional residuals. Martingale residual is a

slight modification of Cox-Snell residual and is defined as the difference between the negative
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logarithms of the estimated survivor function assigned to an individual with the observed

survival time and its observed status. Martingale residuals take values between negative

infinite and unity, with the residual for censored observations being negative. They are not

symmetrically distributed, even when the model effectively fits the data [7]. Transforming

martingale residual to achieve a more normal shaped distribution is helpful, and one such

transformation is motivated by the deviance residuals found in generalized linear models

literature [3]. The deviance residuals are much more symmetrically distributed around zero

when the fitted model is appropriate. These traditional residuals have been proposed for use

to diagnose the accelerated failure time (AFT) models in survival analysis.

In this thesis, a novel residual called Normal-transformed Randomized Survival Proba-

bility (NRSP) is proposed for diagnosing AFT models. The key idea of NRSP residual is to

randomize the survival probability for censored observations into a uniform random number.

NRSP residuals are computationally easy because the only information needed for computing

them is survival function of the response variable. More specifically, it only requires invert-

ing fitted survival function for each response variable and finding the corresponding standard

normal quantile. For an event data, NRSP residuals are defined by taking the probit trans-

formation of the survival function of the response variable in the AFT model. As a result,

NRSP residuals are exactly normal under the true model when the parameters are known.

We propose examining normality of the NRSP residuals based on Shaprio-Wilk (SW) test as

the overall goodness-of-fit (GOF) test. The RSP residual uses the concept of randomization

in randomized quantile residuals [8] [9] which is defined for diagnosing models for discrete

response variables.

The purpose of this thesis is to demonstrate how to diagnose the AFT models in survival

analysis using the NRSP residuals. Two simulation scenarios are considered including (1)

misspecification of distribution assumption of survival time and (2) misidentification of func-

tional form of covariate effect. Our simulation studies show that NRSP residuals are normal

distributed under the true model, and in GOF tests, probabilities of rejecting the true model

(type 1 error rates) are close to the nominal level 0.05, and powers of rejecting the wrong

models are generally high. The research demonstrates the superiority of NRSP residuals

when detecting model inadequacy as well as their insensitivity to the rate of censorship in

2



contrast to the traditional residuals.
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2. Methodology

2.1 A brief introduction to survival analysis

Survival time is the duration from time origin till time of the event of interest. There are

three requirements to determine survival time: (i) A time origin must be unambiguously

defined, (ii) a scale for measuring the passage of time must be agreed and (iii) the definition

of event of interest must be entirely clear.

Censoring is an important issue in survival analysis, representing a particular type of

missing data. There are three types of censoring: 1) right censoring, 2) left censoring, and

3) interval censoring. Right censoring refers to the scenario when the event occurs after the

observed survival time (follow up time); for example, event of interest occurs after the end

of the study loss to follow-up during study period, or withdrawal from the study due of any

reason. Left censoring occurs if the event of interest occurs before a time point, but do not

know when it exactly happened. In this case the actual survival time is less than the observed

censoring time. Yet another type of censoring is interval censoring, the event occurs within

an interval of time. The most commonly encountered form of censoring is right censoring,

which will be the focus of this thesis.

The actual survival time of an individual, t, can be regarded as the observed value of a

random variable, T , that can take on any non-negative value. Let C denote the censoring

time, that is, the time beyond which the study subject cannot be observed. The survival

time starts at time origin and continues until the event of interest X or a censoring time

C, whichever comes first. T = min(X;C) is the follow-up time, and δ = I(X 6 C) is an

indicator for status at the end of follow-up, The observed data are denoted by (T ; δ). The

survival function is defined as the probability that the survival time is greater or equal to t,

S(t) = P (T > t), (2.1)

For continuous time T (only consider continuous survival time in this thesis), the cumulative

4



density function (CDF) and the probability density function (PDF) of T are:

F (t) = 1− S(t), (2.2)

f(t) = F ′(t) = −S ′(t), (2.3)

The hazard function gives the instantaneous failure rate at t given that the individual has

survived up to time t,

h(t) = lim
∆T→0

P (t ≤ T ≤ t+ ∆T |T > t)

∆T
, (2.4)

The relationship between h(t) and S(t) is given by:

h(t) =
f(t)

S(t)
= −∂ logS(t)

∂t
, (2.5)

S(t) = exp

(
−
∫ t

0

h(w)dw

)
= exp(−H(t)), (2.6)

where H(t) =
∫ t

0
h(w)dw is called cumulative hazard function, which can be derived from

survival function by H(t) = − logS(t) . From equation (2.1) the PDF of T can be written

as

f(t) = h(t)S(t) = h(t) exp

(
−
∫ t

0

h(w)dw

)
, (2.7)

If one of these functions is known, the other two are determined. One of these functions can be

chosen as the basis of statistical analysis according to the particular situations. These three

functions give mathematically equivalent specification of the distributions of the survival

time t.

There are three approaches for regression in survival analysis:

• Non-parametric regression

• Semi-parametric regression

• Parametric regression

This thesis focuses on parametric regression models, i.e., accelerated failure time (AFT)

models [1, 10].
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2.2 Accelerated failure time regression model

The AFT model is one type of survival models commonly used in practice, in which ex-

planatory variables measured on an individual are assumed to act multiplicatively on the

time-scale [1].

Let X = (X1, X2, ..., Xp) be the set of covariates. The survival function based on an AFT

model is written as S(t|X) = S0( t
exp{η(X)}), where S0(t) is the baseline survival function and

exp(η(X)) is an “acceleration factor” that is a ratio of survival times corresponding to any

fixed value of S(t). The acceleration factor is given according to the formula exp(η(X)) =

exp(a1X1 + a2X2 + ...+ apXp).

In AFT model, the explanatory variables impact on survival by a time invariant factor,

the acceleration factor. That is, the covariate effects are assumed to be constant and mul-

tiplicative on the time scale. According to the relationship of survival function and hazard

function, the hazard function for an individual with covariates X1, X2, ..., Xp is given by

h(t) = exp(−η(X))h0(
t

exp(η(X))
), (2.8)

The corresponding log-linear form of the AFT model with respect to time is given by

log Ti = µ+ a1X1i + a2X2i + ...+ apXpi + σεi, (2.9)

where µ denotes the intercept, σ is scale parameter and εi is a random variable, assumed

to follow certain particular distribution. a1, · · · , ap represent the effects of the covariates on

the survival time. Positive values indicate that the survival time increases with increasing

values of the explanatory variable, and vice versa. For each distribution of εi, there is a

corresponding distribution for Ti and the AFT models are named for the distribution of Ti

rather than the distribution of εi or log Ti [1, 11–13]. Table 2.1 shows the distributions for

commonly used parametric survival time and the associated error term for AFT models.

The survival and hazard functions for an AFT model are given by

Si(t) = Sεi(
log t− µ− a1X1i − ...− apXpi

σ
), (2.10)

hi(t) =
1

σt
hεi(

log t− µ− a1X1i − ...− apXpi

σ
). (2.11)
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Table 2.1: Distributions for commonly used parametric survival time and the associ-
ated error term for AFT models.

Distribution of Ti Distribution of εi

Exponential Extreme value(one parameter)

Weibull Extreme value(two parameters)/Gumbel

Log-logistic Logistic

Log-normal Normal

2.2.1 Weibull AFT regression model

Suppose survival time Ti has a Weibull distribution W (λ, γ) with scale parameter λ and

shape parameter γ, the baseline survival function and baseline hazard function in a Weibull

regression model are given by

S0(t) = exp(−(λt)γ) (2.12)

h0(t) = λγtγ−1 (2.13)

According to the equation (2.8), the hazard function for ith individual is :

hi(t) = λγ(t)γ−1 exp(−(a1X1i + a2X2i + ...+ apXpi))
γ (2.14)

where ηi = a1X1i+a2X2i+...+apXpi is the linear component of the model, in which Xji is the

value of the jth explanatory variable, Xj, j = 1, 2, ..., p for the ith individual i = 1, 2, ..., n [1].

The AFT representation of the survival function and hazard function for a Weibull regression

model can be derived as follows. According to the equation (2.6), the AFT representation of

the survival function of a Weibull model is given by

Si(t) = exp{− exp{ log t− µ− a1X1i − a2X2i − ...− apXpi

σ
}} (2.15)

Based on equations (2.1) and (2.9), the AFT version of hazard function of a Weibull model

is

hi(t) =
1

σ
t
1
σ
−1 exp

(
−µ− a1X1i − ...− apXpi

σ

)
(2.16)
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2.2.2 Log-normal AFT regression model

If survival times are assumed to have a log-normal distribution, the baseline survival function

and baseline hazard function are given by

S0(t) = 1− Φ(
log t− µ

σ
) (2.17)

h0(t) =
φ( log t

σ
)

σt[1− Φ( log t
σ

)]
(2.18)

where φ and Φ are PDF and CDF of the standard normal distribution, µ and σ are unknown

parameters. Under the AFT model, the survival function and hazard function for the ith

individual are given by

Si(t) = S0(exp(−ηi)t) = 1− Φ(
log t− ηi − µ

σ
) (2.19)

hi(t) =
1

σt

1√
2π

exp(log t− ηi − µ)

1− Φ(log t− ηi − µ)
(2.20)

where ηi = a1X1i+a2X2i+ ...+apXpi is the linear combination of the values of p explanatory

variables for the ith individual. Therefore,

log(Ti)∼N(µ+ ηi, σ) (2.21)

The log-normal distribution model has AFT property [1, 7].

2.3 Traditional residuals for checking models

2.3.1 Pearson residuals

Naive form of residual to adopt in AFT modelling is a standardized residual by applying

Pearson’s residuals [14] to log(ti) defined by

rsi =
log ti − µ̂− α̂1x1i − α̂2x2i − ...− α̂pxpi

σ̂
(2.22)

where ti is the observed survival time of the ith individual, and µ̂, σ̂, α̂j, j = 1, 2, ..., p, are

the estimated parameters in the fitted AFT model [1].
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2.3.2 Cox-Snell residuals

The Cox-Snell residuals are the estimated values of the negative logarithms of the survivor

function for the ith individual with the observed survival time ti [1, 2, 7].The estimated

survivor function for the ith individual, is given by

Ŝi(t) = Sε(
log ti − µ̂− α̂1x1i − α̂2x2i − ...− α̂pxpi

σ̂
) (2.23)

where Sε(ε) is the survivor function of ε in the AFT model, α̂j is the estimated coefficient

of xji and µ̂, σ̂ are the estimated values of µ and σ. The Cox-Snell residuals for parametric

model are defined by

rci = Ĥi(ti) = − log Ŝi(ti) (2.24)

Later, when we want to distinguish this original Cox-Snell residual with other variants of

Cox-Snell residual, we will refer to it as ”Unmodified Cox-Snell (UCS) residual”. The main

property of the UCS residual is that if the model fits the data and there is no censored times,

rci follows a standard exponential distribution, rci∼ exp(1) with the PDF is f(rci ) = exp(−rci ).

Hence, a straight line in graphing with unit slope and zero intercept indicates that the model

fit data well, and only using this criterion are evaluated both graphically and goodness of fit.

A rci for the censored observations is

rci = Ĥ(t∗i ) = − log Ŝ(t∗i ) (2.25)

where t∗i is the right censoring time of the ith individual. If the model is truly fitted the

cumulative hazard function of unit exponential distribution increases linearly with time, so

the greater the value of survival time, the grater the value of the UCS residuals. Hence,

the residual for the ith individual at the actual (unknown) failure time will be greater than

the residual evaluated at the observed censored survival time. To count for underestimation

of the UCS residuals for the censored observations, the following modification of the UCS

residuals was proposed to make the residuals for censored observations compatible with a

positive constant ∆ for the uncensored observations, which can be called the excess residual

[1]. Since rci has a unit exponential distribution, the excess residual will also have a unit

exponential distribution. The expected value of ∆ is therefore unity the censored observation,
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that is

rc′i =

 rci uncensored observations,

rci + ∆ censored observations.

(2.26)

According to the equations (2.26), We will refer these residuals with ∆ = 1 as “Modified

Cox-Snell (MCS) residual”; to be more explicit, MCS residuals can be expressed as:

rc′i =

 rci = − log Ŝ(ti) uncensored observations,

rci + 1 = − log Ŝ(t∗i ) + 1 censored observations.

(2.27)

where ti is event time and t∗i is the right censoring time of the ith individual. If the random

survival time ti is event time of the ith individual, it has survival function Si(ti). If the random

survival time t∗i is the right censoring time of the ith individual, it has survival function S(t∗i ).

According to the equation (2.27), rc′i = − log Ŝ(t∗i ) + 1 = − log Ŝ(t∗i ) + log e = − log
(
Ŝ(t∗i )

e

)
.

This is equivalent to modify the survival function at t∗i as follows:

S ′i(ti) =

 Si(ti) uncensored observations,

Si(t
∗
i )

e
censored observations.

(2.28)

Based on the MCS residuals, modified survival probability could be transformed to normal.

We name this type of residual as Normal-transformed modified survival probability (NMSP)

residual, which is defined as

rc∗i = Φ−1(S ′i(ti)). (2.29)

2.3.3 Martingale residuals

The martingale residuals [3] provide a measure of the difference between the number of

predicted of death by the model, and the number of observed failure in the interval (0, ti),

which is either 1 or 0. The martingale residuals are defined by

rMi = δi − rci (2.30)

where δi is the event indicator for the ith observation, so that δi is unity if that observation

is an event and zero if censored, and rci is the Cox-Snell residual. The martingale residuals

for a parametric AFT model sum to zero, but are not symmetrically distributed about zero

[1].
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2.3.4 Deviance residuals

The deviance residuals [4, 15] can be regarded as an attempt to make the martingale residuals

symmetrically distributed about zero, and are defined by

rDi = sgn(rMi )[−2(rMi + δi log
(
δi − rMi

)
)]

1
2 (2.31)

where rMi is the martingale residual for the ith individual, the function sgn(.) is the sign

function [1].

2.4 Problems with traditional residuals

In practice, analyzing traditional residuals of AFT models mostly relies on visual judgement.

According to the extensive studies [1, 7], Cox-Snell residuals tend to have low power for

detecting model misspecification. In addition, none of martingale and deviance residuals

follows a particular distribution, although they are asymptotically distributed normally if

there is no censored times [16]. When censoring occurs, there is not a clearly defined null

distributions [1, 3, 4]. This implies that no objective criterion to test model inadequacy and

the overall GOF test using KS test is not well-calibrated [6].

2.4.1 Illustrative examples for Cox-Snell residuals and deviance

residuals

For Cox-Snell residual, if the model fits the data well, rci follows an unit exponential distri-

bution with density function f(rci ) = exp(−rci ). Let S(rci ) denote the survival function of the

Cox-Snell residual then

S(rci ) = exp(−rci ) (2.32)

which implies that

H(rci ) = − logS(rci ) = rci . (2.33)

Let Ŝ(rci ) denote the Kaplan-Meier estimate of S(rci ), a plot of rci against − log Ŝ(rci ) is

expected to show a straight line with zero intercept and unit slope.
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Martingale residuals are not symmetrically distributed around zero even when the fitted

model is true, in fact they are approximately exponentially distributed [7] and they take

value in the interval (−∞, 1). This makes plots based on these residuals difficult to interpret.

To overcome this deficiency, Therneau et al. introduced deviance residuals which are much

more symmetrically distributed around zero when the fitted model is appropriate, however

they are not necessarily sum to zero. Deviance residuals are asymptotically normal [3]. An

index plot of the deviance residuals can be used to identify individuals whose survival time

is not well fitted by the model, such observation may be termed outliers. Plot of deviance

residuals against covariates, to see if covariate effects are appropriately modeled.

2.4.2 Example 1: Assessing distributional assumption for survival

time

Firstly, we will provide an illustrative example to assess distributional assumption using

traditional diagnosis tools. The true model is a Weibull regression and a wrong model is the

Lognormal regression. The survival data simulation consists of two parts, simulating real

life times from Weibull distribution T ∗i ∼W (γ, λ) where the shape parameter γ is set as 1.74

and the scale parameter λ is set as 1. The censored time is simulated from an exponential

distribution Ci∼ exp(θ) where the parameter θ = 0.22 is chosen to yield a specified percentage

of censorship [17–19]. The coding of the survival status of an individual, is denoted as a

binary indicator, di such that zero denotes a censored observation and one denotes an event

observation, the di equal to one if T ∗i < Ci and di is zero if T ∗i ≥ Ci. The time period in

which an individual is in the study is known as the observed time T . The observed survival

time Ti is T ∗i if di = 1, and Ti is Ci if di = 0.

We consider a dichotomized covariate x∼Bern(p) from Bernoulli distribution, where p =

0.5. We simulate data from a Weibull regression model: log(Ti) = β0 + β1x + εi with the

Weibull distribution where εi has standard extreme value distribution, and set β0 = 2, β1 = 1

with size n = 800 and censorship c = 80% samples. Then, we fit the Weibull and Lognormal

AFT regression models to the simulated data.

The panels of the first row of Figure 2.1 display the Cox-Snell residuals rci against
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− log Ŝ(rci ) under true and wrong AFT models. Under the true model, a portion of plotted

points are not on a straight line, which is difficult to determine whether it has approximately

unit slope; similarly, under the wrong model, more than half of plotted points are not on

a straight line, which has not approximately unit slope. Both plots indicate that the two

models fail to fit the data adequately, and the right of plot is worser than the left one. The

panels the second row of Figure 2.1 display the index plots of deviance residuals for true and

wrong models. Under the true model, all the residuals of censored data are below zero and

the most of residuals of event data are randomly scattered between -2 and 3. Similarly, under

the wrong model, all of the residuals for the censored data are below zero and the residuals of

event data are randomly scattered with residual bounded between -1 and 4. Both residuals

again fail to distinguish true and wrong models.

2.4.3 Example 2: Assessing functional form of covariate effect for

survival time

In this section, we will provide an illustrative example to assess the functional form of co-

variate effect using traditional diagnosis tools. The response variable is simulated from a

Weibull AFT regression model log(Ti) = β0 + β1f(x) + εi. Then, a wrong model assuming

log(Ti) = β0 +β1x+ εi is considered. The data simulation is same as section 2.4.2 with differ-

ent parameter values: Weibull distribution T ∗i ∼W (γ, λ) where the shape parameter γ is set

as 1.8 and the scale parameter λ is set as 1, and exponential distribution Ci∼ exp(θ) where

the parameter θ = 2.6 chosen to yield a specified percentage of censorship. We simulate a

covariate x∼ Uniform (0, 3π
2

) from a uniform distribution, and f(x) = sin(2x). The value of

coefficients set β0 = 2, β1 = 5 with size n = 800 and censorship c = 80%.

The panels of the first row of Figure 2.2 display plots of Cox-Snell residuals rci against

− log Ŝ(rci ) under true and wrong models. Under the true model, a portion of plotted points

are not on a straight line, which is difficult to determine whether it has approximately unit

slope; under the wrong model, most of points are not on a straight line. The panels of the

second row of Figure 2.2 display plots of deviance residuals against covariates under true and

wrong models. Under the true model, the residuals of event data are randomly scattered

13



and the residuals of censor data are clustered between -1 and 0; under the wrong model,

the deviance residuals clearly indicate a sin function trend. As a result, it is challenging to

differentiate true and wrong models based on either Cox-Snell or deviance residuals.
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Figure 2.1: Unmodified Cox-Snell (UCS) residuals and deviance residuals for the true
model (left panel) and the wrong model (right panel) for the first example in section
2.4.2. The green triangles correspond to the event times and the red circles correspond
to the censored times.
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Figure 2.2: Unmodified Cox-Snell (UCS) residuals and deviance residuals for the true
model (left panel) and the wrong model (right panel) for the second example in section
2.4.3. The green triangles correspond to the event times and the red circles correspond
to the censored times.
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3. Normal-transformed Randomized Survival

Probability residual

3.1 Definition of Normal-transformed Randomized Sur-

vival Probability (NRSP) residual

The key idea of NRSP residual is to randomize the survival probability for censored observa-

tions into a uniform random number between 0 and Si(t
∗
i ). The innovation of in our method

is to replace the e in the MCS residual to be a random number from unif [0,1]. Let S(Ti)

be the survival function if the random survival time Ti has survival function Si(Ti), then

S∗i (Ti;ui) is defined as follows:

S∗(Ti;ui) =

 Si(T
∗
i ) T ∗i < Ci(Ti is event time)

uiSi(Ci) T ∗i ≥ Ci(Ti is censore time)

(3.1)

where ui is a uniform random variable on (0, 1]. Then, the NRSP residuals are defined as

qi = q(Ti;ui) = Φ−1(S∗(Ti;ui)) (3.2)

where Φ() is the cumulative distribution function (CDF) of a standard normal distribution.

As it can be seen from the definition, the NRSP residual has a straightforward definition

for all distributions. The only information that is necessary for computing NRSP residual of

AFT models is knowing the cumulative incidence function or survival function of the survival

time variable, which is a great advantage over, for instance, deviance residuals which requires

derivation of the saturated model or Cox-Snell residuals which is not necessarily exponentially

distributed with unit mean for censored observations.
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3.2 Illustrative example

To demonstrate the idea of Randomized Survival Probability (RSP) for diagnosing AFT

model, an illustrative example is presented in this section. The scenario of the illustrative

example is similar to the example presented in section 2.4.2, in which the survival times

are simulated from a Weibull regression model with the parameter set as γ = 1.784 and

the censoring times are simulated from an exponential distribution with parameter set as

θ = 0.08, at sample size of 2000 and the percentage of censoring is about 50 %. For the

ease of visualization, we randomly sampled a subset of 400 data points from the simulated

sample.

The key idea of RSP can be conveyed graphically such that the survival probability for the

events should fall along a theoretical survival line, and the censor data should be randomized

into a uniform distribution from 0 to 1 between the discontinuity gap of survival function

in the survival curve. Now suppose the data are simulated from Weibull AFT regression

models. Overall, the random numbers converted with S∗ are uniformly distributed on (0,1]

under the true model. As depicted in the first row of Figure 3.1, S∗i (Ti;ui) is uniformly

distributed between 0 and 1. However, under the log-normal AFT regression model, S∗i (Ti;ui)

is concentrated on middle from the second row of Figure 3.1, indicating that S∗i (Ti;ui) is not

uniformly distributed.

On the other hand, both of the event data and censor data should be on the theoretical

survival line in survival curve for the unmodified survival probability. As depicted in Figure

3.2, survival probability is not uniformly distributed between 0 and 1 under the true and

wrong models. Under the modified survival probability, the survival probabilities of the event

data are still on the theoretical survival line, but the survival probabilities of the censored

data are devide by e. Figure 3.3 shows that survival probability is not uniformly distributed

between 0 and 1 under both the true and wrong models.
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Figure 3.1: RSP for the true model (first row) and the wrong model (second row).
The left panels are randomized survival functions and right panels are the randomized
histogram of RSPs .
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Figure 3.2: Unmodified survival probability (USP) for the true model (first row) and
the wrong model (second row). The left panels are survival functions and right panels
are the histogram of USPs.
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Figure 3.3: Modified survival probability (MSP) for the true model (first row) and
the wrong model (second row). The left panels are survival functions and right panels
are the histogram of MSPs.
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4. Simulation studies

In this Chapter, we will investigate the performance of NRSP residuals by comparing

them with NMSP and deviance residuals via simulation studies. The simulation consists of

two scenarios by assessing (1) the distributional assumption for the survival response variable

and (2) the functional form of covariate effect. For each simulation setting, the performance

of NRSP, NMSP and deviance residuals are compared for identifying model misspecification.

The Shapiro-Wilk (SW) test and Kolmogorov–Smirnov (KS) test for testing normality of

residuals are the GOF test used in the current study. Then, the GOFs are assessed based on

a comparison with the mis-specified models using NRSP, NMSP and deviance residuals. This

experiment is replicated by simulating 1000 datasets from the true model simultaneously to

assess the performance of overall GOF test by testing the normality of the residuals. The

histogram of normality test p-values are presented for comparing the performance of various

types of residuals. Furthermore, to gain more insights of the finite-sample performance, a

power analysis is performed by setting the sample sizes n = 100, 200, 400, 600, 800, 1000 and

the percentage of censorship c = 20%, 50%, 80%. The null and alternative hypotheses are

defined as H0: the model fits the data well versus Ha: the model does not fit the data well.

Under each simulation scenario, the type I error rate and statistical power are examined.

The type I error rate is defined as the probability of rejecting the true model under the true

model. The statistical power is defined as the probability of rejecting a wrong model. Ideally,

a desirable GOF test should give a type I error close to the nominal level while providing

high statistical power. We also compare the model selection performance of NRSP with

Akaike’s information criterion (AIC) [1]. The smaller the value of AIC, the better the model.

Based on the AIC values from the 1000 replicated samples, the percentage of the difference

value greater than 4 [20] and the mean of the difference value are calculated to measure the

differences between the two models for each setting.
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4.1 Assessing distributional assumption for a survival

model

In this simulation setting, we will assess the power of NRSP residual in detecting misspecifi-

cation of distributional assumption of survival time in comparison with traditional residuals,

where the survival data are generated in a similar way as the illustrative example presented

in section 2.4.2. The sample of size is set as n = 800 and the parameter of the exponential

distribution is set as θ = 0.08 and the shape parameter of Weibull distribution is set as

γ = 1.784. The parameters are selected to give a percentage of censorship c equal to 50%.

For the simulated dataset, the true and wrong models are fitted and then different types of

residuals are computed. To examine the normality of the NRSP, NMSP and deviance resid-

uals, the quantile-quantile (QQ) plots are presented. We further presented the GOF tests,

i.e., the SW and KS tests to test the normality of the residuals. Moreover, power analysis is

conducted by varying the percentage of censoring at various sample size for a more in-depth

investigation of the proposed method.

4.1.1 Results of a single simulation scenario

In this Section, the performance of the NRSP residuals with respect to detecting distribu-

tional assumption is evaluated based on a single dataset. The panels of the first column of

Figure 4.1 display the NRSP residuals against the fitted values under the true (Weibull) and

wrong (Log-normal) models. Under the true model, NRSP residuals are randomly scattered

without exhibiting any pattern and the standardized residuals are mostly within -3 to 3.

Conversely, under the wrong model, NRSP residuals are clustered in the middle with residu-

als scattered mostly in [-2,4]. The panels in the second column of Figure 4.1 present the QQ

plots of the NRSP residuals under the true and wrong models. Under the true model, the

points in the QQ plot align almost perfectly on the diagonal line. Under the wrong model,

however, the points deviate from the diagonal line in both the upper and lower tails. To

examine the sensitivity of the overall GOF due to randomization, the current study repli-

cates this experiment by simulating 1000 datasets from the true model and then we apply
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the SW and KS tests to evaluate the normality of the NRSP residuals. The panels in the

third column of Figure 4.1 presents the histograms of 1000 SW p-values under the true and

wrong models. The p-values of the SW test for the NRSP residuals under the true model are

uniformly distributed, indicating the well-calibration of this overall GOF test. In contrast,

under the wrong model, the p-values of the SW test for the NRSP residuals are concentrated

around zero, implying that the wrong model will be rejected most of times at a small nominal

threshold, such as 0.05. Thus, the overall GOF test via the SW test for the NRSP residuals

confirms the great power in detecting the wrong model. The panels in the fourth column of

Figure 4.1 present the histograms of 1000 KS p-values under the true and wrong models. The

p-values of the KS test for the NRSP residuals are skewed right from 0 to 1 under the true

model, which indicates the KS test is too conservative in rejecting the true model. Similarly,

the p-values of the KS test for the NRSP residuals are highly skewed left under the wrong

model; this indicates KS test is too conservative in rejecting the wrong model.

The current research also demonstrates that the performance of the NMSP and deviance

residuals with regard to their ability to detect distributional assumptions in linearity covariate

effects is evaluated based on a single dataset. The panels of the first column of Figure 4.2 and

Figure 4.3 display the NMSP and the deviance residuals against the fitted values under the

true (Weibull) and wrong (Log-normal) models. Under the true model, the NMSP residuals

of the event data are randomly scattered and do not exhibit any pattern, and the residuals

of the censor data are clustered between -1 and 0 with residual bounded in [-2,3]. Similarly,

under the wrong model, the NMSP residuals of the event data are randomly scattered and

do not exhibit any pattern; however, a few outliers and the residuals of the censor data are

clustered between -1 and 0 with residual bounded in [-2,5]. Meanwhile, deviance residuals

of the censored data are below zero and the residuals of event data are randomly scattered

under both of the true and wrong models. The QQ plots for the NMSP and deviance residuals

are depicted in the panels of the second column of Figure 4.2 and Figure 4.3. The NMSP

and deviance residuals do not follow a normal distribution under either the true or wrong

models, which indicates that the NMSP and deviance residuals fail to correctly diagnose the

true model. We also simulated 1000 datasets from the true model, The SW test and KS test

are applied to evaluate the normality of the NMSP and deviance residuals. The panels in the
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third and fourth columns of Figure 4.2 and Figure 4.3 indicate both of the SW p-values and

KS p-values are all concentrated around zero under the true and wrong models, implying that

all of the true and wrong models will be rejected most of times at a small nominal threshold,

such as 0.05. Therefore, the NMSP and deviance residuals fail to distinguish models.
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Figure 4.1: Performance of the NRSP residuals in detecting distributional assumption of a sample dataset of size n = 800
and a percentage of censorship c = 50%. The panels in the first row present the NRSP residuals for the true model: Weibull
distribution. The panels in the second row present the NRSP residuals for the wrong model: Log-normal distribution.
The first two columns display the scatter plots and QQ plots of the NRSP residuals, respectively. The third and fourth
columns present the histograms of the SW and KS p-values for the NRSP residuals over 1000 randomly generated datasets
from the true model. The green triangles correspond to the event times and the red circles correspond to the censored
times.
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Figure 4.2: Performance of the NMSP residuals in detecting distributional assumption of a sample dataset of size n
= 800 and a percentage of censorship c = 50%. The panels in the first row present the NMSP residuals for the true
model: Weibull distribution. The panels in the second row present the NMSP residuals for the wrong model: Log-normal
distribution. The first two columns display the scatter plots and QQ plots of the NMSP residuals, respectively. The
third and fourth columns present the histograms of the SW and KS p-values for the NMSP residuals over 1000 randomly
generated datasets from the true model. The green triangles correspond to the event times and the red circles correspond
to the censored times.
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Residual plot
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Figure 4.3: Performance of the deviance residuals in detecting distributional assumption of a sample dataset of size n
= 800 and a percentage of censorship c = 50%. The panels in the first row present the deviance residuals for the true
model: Weibull distribution. The panels in the second row present the deviance residuals for the wrong model: Log-normal
distribution. The first two columns display the scatter plots and QQ plots of the deviance residuals, respectively. The
third and fourth columns present the histograms of the SW and KS p-values for the deviance residuals over 1000 randomly
generated datasets from the true model. The green triangles correspond to the event times and the red circles correspond
to the censored times.
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4.1.2 Power analysis

To further evaluate the performance the NRSP residuals, power analysis is performed by

setting the sample sizes at n = 100, 200, 400, 600, 800, 1000 and the percentage of censorship

c = 20%, 50% and 80%. We examine the probability of rejecting the true model (type I

errors) and the probability of rejecting the wrong model (statistical power). As shown in

Figure 4.4, the type I errors are consistently retained at a nominal level 0.05 for all scenarios

based on the SW p-values for the NRSP residuals. In contrast, the type I errors for the SW

tests for NMSP and deviance residuals are significantly above 0.05 as their SW p-values are

incorrectly distributed near 0 when the true model is fitted. Thus, these results indicate the

superior performance of SW test for NRSP residuals as the GOF test for model checking

as compared to traditional survival residuals. The first row of Figure 4.5 indicates that the

type I errors of the KS test are consistently lower than nominal level 0.05 for all scenarios,

moreover, a portion of scenarios give SW p-values for NRSP residuals close to zeros. This

provides further evidence that KS test is too conservative. In contrast, the type I errors for

the KS tests for the NMSP and deviance residuals are significantly above 0.05. Furthermore,

Figure 4.4 demonstrate that the NRSP residuals, the NMSP and deviance residuals have

high statistical power. Although significantly high power results are obtained for all of

residuals, the high type I errors make the GOF test based on SW test is impractical and

undesirable. The second row of Figure 4.5 indicates that the statistical power of KS test

for the NRSP residuals under wrong model are between 0 to 0.05 when sample size is small,

or the percentage of censorship is larger, which means KS test does not reject some wrong

models.
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Figure 4.4: Comparison of the type I errors and powers of the SW tests for the NRSP, NMSP, and deviance residuals.
Response variable is simulated from the true model at varying sample sizes of n = 100, 200, 400, 600, 800 and 1000, and
the percentage of censorship c = 20% (black circles), 50% (red triangles) and 80% (green crosses). True model: Weibull
model. Wrong model: Log-normal model.
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Figure 4.5: Comparison of the type I errors and powers of the KS tests for the NRSP, NMSP, and deviance residuals.
Response variable is simulated from the true model at varying sample sizes of n = 100, 200, 400, 600, 800 and 1000, and
the percentage of censorship c = 20% (black circles), 50% (red triangles) and 80% (green crosses). True model: Weibull
model. Wrong model: Log-normal model.
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Figure 4.6: AIC for true model (Weibull regression) and wrong model (Log-normal
regression) at varying sample sizes of n = 100, 200, 400, 600, 800 and 1000, and the
percentage of censorship c = 20% (black circles), 50% (red triangles) and 80% (green
crosses).

4.1.3 Model comparisons

To confirm the performance of the proposed residual diagnosis tool in comparison with tra-

ditional residuals in survival analysis, we further compare the true and wrong models based

on AIC in all the simulation settings. The percentage of the difference value of AIC greater

than 4 [20], and the mean of the difference value of AIC are between the true and wrong

models based on 1000 replicated samples. Figure 4.6 presents the percentage of the difference

value as greater than 4, which increases with the increased the sample size and decreased

censorship.

4.2 Assessing functional form of the covariate effect

We simulated a dataset of size n = 800, and adjusted the parameter of exponential distribu-

tion θ = 0.024 so that a percentage of censorship was c = 50%. Models with two different

functional forms are diagnosed by NRSP, NMSP and deviance residuals. To examine the

normality of different residuals, QQ plots are presented, and we further presented histogram
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the p-values of the normality tests, i.e., of SW and KS tests. The power analysis and the

AIC also be used to confirm the consistency of results. The same approach was implemented

to investigate the performance of the NRSP and the NMSP and deviance residuals with

respect to their ability to assess the functional form of the covariate effect under the same

distribution assumption in survival model. The simulation survival data and the model fit

the data are same in second illustrative example in section 2.4.3.

4.2.1 Results of a single simulation scenario

The performance of the NRSP residuals with respect to their ability to detect the functional

form of the covariate effect is evaluated based on a single simulated dataset. The panels of

the first column of Figure 4.7 display the NRSP residuals against the covariate under the

true and wrong models. The NRSP residuals confirms that the true model fits the data well

with residuals randomly scattered without exhibiting any pattern and being bound mostly

between -3 and 3; whereas, the wrong model does not fit the data well as residuals are

scattered as a sin functional trend. The panels of the second column of Figure 4.7 present

the QQ plots of the NRSP residuals under the true and wrong models. Under the true model,

the QQ plot almost perfectly aligns with the diagonal line, but under the wrong model, the

QQ plot deviates from the diagonal line in the upper tail. The p-values of SW test and KS

test based on the 1000 repeated samples, as displayed in the panels in the third column of

Figure 4.7 and the fourth column of Figure 4.7. The third column presents the p-values of

the SW test for the NRSP residuals under the true model, which are uniformly distributed,

indicating the effective calibration of this overall GOF test. In contrast, the p-values of the

SW test for the NRSP residuals are distributed around zero under the wrong model, implying

that the wrong model will be rejected most of times at a small nominal threshold, such as

0.05. Thus, the overall GOF test via the SW test for the NRSP residuals confirms its ability

to detect wrong model. The fourth column presents the p-values of the KS test for the NRSP

residuals, which are right skewed from 0 to 1 under the true model; this indicates KS test is

too conservative in rejecting the true model, though the KS p-values under the wrong model

are distributed around 0.

The performance of the NMSP and deviance residuals with respect to their ability to
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detect the functional form of the covariate effect firstly was evaluated based on a single

simulation setting. The panels of the first column of Figure 4.8 and Figure 4.9 display the

NMSP and the deviance residuals against the covariate under the true and wrong models,

respectively. Under the true model, the NMSP and deviance residuals of the event data are

randomly scattered, and the residuals of the censor data are clustered between -1 and 0.

Under the wrong model, the NMSP and deviance residuals clearly indicate a sin function

trend. The QQ plots for the NMSP and deviance residuals are depicted in the panels of the

second column of Figure 4.8 and Figure 4.9, which show that the points deviate from the

diagonal line under both the true and wrong models. Hence, NMSP and deviance residuals

fail to correctly diagnose the true model. The panels in the third and fourth columns of

Figure 4.8 and Figure 4.9 are based on the repeated samples and demonstrate the SW p-

values and KS p-values are all mostly distributed around 0 under both true and wrong models.

Therefore, the NMSP and deviance residuals fail to distinguish models.
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Figure 4.7: Performance of the NRSP residuals in detecting distributional assumption of a sample dataset of size n =
800 and a percentage of censorship c = 50%. The panels in the first row present the NRSP residuals for the true model:
a Weibull AFT regression model log(Ti) = β0 + β1f(x) + εi. The panels in the second row present the NRSP residuals
for the wrong model: a Weibull AFT regression model log(Ti) = β0 + β1x + εi. The first two columns display the scatter
plots and QQ plots of the NRSP residuals, respectively. The third and fourth columns present the histograms of the SW
and KS p-values for the NRSP residuals over 1000 randomly generated datasets from the true model. The green triangles
correspond to the event times and the red circles correspond to the censored times.
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Figure 4.8: Performance of the NMSP residuals in detecting distributional assumption of a sample dataset of size n =
800 and a percentage of censorship c = 50%. The panels in the first row present the NMSP residuals for the true model:
a Weibull AFT regression model log(Ti) = β0 + β1f(x) + εi. The panels in the second row present the NMSP residuals
for the wrong model: a Weibull AFT regression model log(Ti) = β0 + β1x + εi. The first two columns display the scatter
plots and QQ plots of the NMSP residuals, respectively. The third and fourth columns present the histograms of the SW
and KS p-values for the NMSP residuals over 1000 randomly generated datasets from the true model. The green triangles
correspond to the event times and the red circles correspond to the censored times.
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Figure 4.9: Performance of the deviance residuals in detecting distributional assumption of a sample dataset of size n =
800 and a percentage of censorship c = 50%. The panels in the first row present the deviance residuals for the true model:
a Weibull AFT regression model log(Ti) = β0 + β1f(x) + εi. The panels in the second row present the deviance residuals
for the wrong model: a Weibull AFT regression model log(Ti) = β0 + β1x + εi. The first two columns display the scatter
plots and QQ plots of the deviance residuals, respectively. The third and fourth columns present the histograms of the
SW and KS p-values for the deviance residuals over 1000 randomly generated datasets from the true model. The green
triangles correspond to the event times and the red circles correspond to the censored times.
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4.2.2 Power analysis

To evaluate the finite-sample performance of the SW test for the NRSP residuals as the

overall model diagnosis tool, power analysis is performed by setting the sample sizes at

n = 100, 200, 400, 600, 800, 1000 and the percentage of censorship at c = 20%, 50% and 80%.

As shown in Figure 4.10, type I errors of the SW test for the NRSP residuals remain at the

nominal level 0.05 for all scenarios. In contrast, the type I errors of the SW tests for the

NMSP and deviance residuals are substantially higher than the 0.05 norminal level. Figure

4.10 also shows that statistical power at all scenarios for the NRSP, the NMSP and deviance

residuals, which indicates that the NMSP and deviance residuals always reject both the wrong

model and the true model all the time. As compared to the NMSP and deviance residuals,

NRSP residuals is more superior with regard to its ability to identify the true model across

all the considered sample sizes and percentage of censorship. To investigate the behavior of

KS test for all of these residuals, the first column of Figure 4.11 indicates that the type I

errors of the KS test for NRSP residuals are consistently lower than nominal level 0.05 for

all scenarios, moreover, some of values are mostly close to zero under the true models. The

statistical power of KS test for the NRSP residuals under wrong models are between 0 to 0.05

when sample size is small, or the percentage of censorship is larger. The type I errors and

statistical power of the KS tests at all scenarios are above 0.05 in the NMSP and deviance

residuals in the second and third column of Figure 4.11. This provides further evidence the

unsatisfactory performance of the KS test.
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Figure 4.10: Comparison of the type I errors and powers of the SW tests for the NRSP, NMSP, and deviance residuals.
Response variable is simulated from the true model at varying sample sizes of n = 100, 200, 400, 600, 800 and 1000, and
the percentage of censorship c = 20% (black circles), 50% (red triangles) and 80% (green crosses). True model: a Weibull
AFT regression model log(Ti) = β0 +β1f(x) + εi. Wrong model: a Weibull AFT regression model log(Ti) = β0 +β1x+ εi.
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Figure 4.11: Comparison of the type I errors and powers of the KS tests for the NRSP, NMSP, and deviance residuals.
Response variable is simulated from the true model at varying sample sizes of n = 100, 200, 400, 600, 800 and 1000, and
the percentage of censorship c = 20% (black circles), 50% (red triangles) and 80% (green crosses). True model: a Weibull
AFT regression model log(Ti) = β0 +β1f(x) + εi. Wrong model: a Weibull AFT regression model log(Ti) = β0 +β1x+ εi.
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Figure 4.12: AIC for true model (Weibull model log(Ti) = β0 +β1f(x)+εi) and wrong
model (Weibull model log(Ti) = β0 + β1x+ εi) at varying sample sizes of n = 100, 200,
400, 600, 800 and 1000, and the percentage of censorship c = 20% (black circles), 50%
(red triangles) and 80% (green crosses).

4.2.3 Model comparisons

To confirm the performance of the proposed residual diagnosis tool in comparison with tra-

ditional residuals in survival analysis, we further compare the true and wrong models base d

on AIC in all the simulation settings. Figure 4.12 shows that the percentage of the difference

value of AIC greater than 4 between the wrong and true models based on 1000 replicated

samples. In all of the scenarios, the results are greater than 4 [20], which further confirms

the current study’s findings.
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5. Real data analysis

In this Chapter, we will introduce a real application on the recurrence-free survival in

breast cancer patients dataset [1], and apply the NRSP residual to examine the GOF of AFT

models. A cohort study of breast cancer in a large number of hospitals was carried out by the

German Breast Cancer Study Group to compare three cycles of chemotherapy with six cycles,

and also to investigate the effect of additional hormonal treatment consisting of a daily dose of

30 mg of tamoxifen over two years [21]. The patients in the study had primary histologically

proven non-metastatic node-positive breast cancer who had been treated with mastectomy.

The response variable of interest is recurrence-free survival, which is the time from entry to

the study until a recurrence of the cancer or death. Earlier analyses of the data had shown

that recurrence-free survival was not affected by the number of cycles of chemotherapy, and so

only the factor associated with whether or not a patient received tamoxifen is included in this

example. In addition to this treatment factor, data were available on patient age, menopausal

status, size and grade of the tumour, number of positive lymph nodes, progesterone and

oestrogen receptor status. The data in this example relate to data from 41 centres and 686

patients with 56.5% censorship [22]. The variables in this dataset are presented in Table 5.1.

In this study, Weibull, Log-logistic and Lognormal AFT models with all of variables listed

in Table 5.1 included as covariates are fitted to the recurrence-free survival in breast cancer

dataset. We will firstly present the results based on the traditional residuals. Figure 5.1

displays residuals rci against − log Ŝ(rci ) under Weibull, Lognormal and Log-logistic AFT

models. Under the Weibull and Lognormal models, a portion of plotted points deviate from

the straight line. Similarly, under the Log-logistic model, most of the plotted points are not

on a straight line. As a result, it is very challenging to distinguish which model fits the data

most effectively, especially between the Weibull and Lognormal models, though the plot of

Log-logistic model seems the least problematic. Moreover, there are no statistics tests with

which this can be ascertained.

The NRSP residual is applied to examine the GOF of the Weibull, Log-logistic, and
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Table 5.1: Variable definitions in the breast cancer study.

Variable Definition

Time Recurrence-free survival time (days)

Status Event indicator (0 = censored, 1 = relapse or death)

Treat Hormonal treatment (0 = no tamoxifen, 1 = tamoxifen)

Age Patient age (years)

Men Menopausal status (1 = premenopausal, 2 = postmenopausal)

Size Tumour size (mm)

Grade Tumour grade (1, 2, 3)

Nodes Number of positive lymph nodes

Prog Progesterone receptor status (femtomoles)

Oest Oestrogen receptor status, (femtomoles)

Lognormal AFT models for the dataset. The panels in the first column of Figure 5.2 present

the scatter plots of the NRSP residuals versus the fitted values for each model. The Lognormal

model fits the dataset fairly well with residuals ranging between -3 and 3, as well as a random

pattern present. In contrast, the Weibull model does not fit the dataset well with residuals

ranging between -4 and 2. In addition, the Log-logistic model has residuals ranging between

-3 and 3 with most points clustered between -2 and 2. The QQ plots of the NRSP residuals

as presented in the panels of the second column of Figure 5.2, illustrate the inadequate fits

of the Weibull and Log-logistic models. However, Lognormal model fits satisfactory to the

data with almost all the points falling along the diagonal line.

One concern of using the NRSP residual method is the fluctuation in the residuals in-

troduced. This is caused by the randomization of the survival probability for the censored

observations. To determine impact of uncertainty due to randomization, 1000 realizations of

the NRSP residuals are generated for the exact same dataset. The panels in the third column

of Figure 5.2 display the histograms of 1000 replicated p-values of the SW tests. The p-values

of the SW test for the NRSP residuals for the fitted Lognormal model varied between 0 and

1 with about 92.2% of the p-values being above 0.05. This confirms the adequacy of the Log-
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Figure 5.1: Cox-Snell residuals for Weibull, Log-logistic, and Lognormal models. The
green triangles correspond to the event times and the red circles correspond to the
censored times.

normal model. In contrast, under the Weibull and Log-logistic models, the p-values of the

SW test for the NRSP residuals are concentrated around zero, confirming the inadequacies

of both Weibull and Log-logistic models. Hence, randomization does not compromise much

the statistical power of the NRSP residuals in this application.

The performance of the NMSP and deviance residuals with regard to detecting the

Weibull, Log-logistic, and Lognormal AFT models for the breast cancer data analysis are

also evaluated. The panels of the first column of Figures 5.3 and Figures 5.4 display the

NMSP and deviance residuals against the fitted values. Under all the models, the NMSP

residuals of event data are randomly scattered with residual bounded in [-1,3]. However, the

residuals of censor data are clustered around -1 with residual bounded in [-2,0]. The deviance

residuals perform very similarly as the NMSP residuals, with the results showing that there

is no significant difference among the models. The QQ plots for the NMSP and deviance

residuals are depicted in the panels of the second columns of Figures 5.3 and Figures 5.4.

The NMSP and deviance residuals do not follow a normal distribution under all of models,

and fail to diagnose the true model. Similarly, by the SW tests, the p-values for the NMSP

and deviance residuals are very small, implying that all of models will be rejected at a small

nominal threshold. Therefore, the NMSP and deviance residuals fail to distinguish models.

Table 5.2 contains the estimated regression coefficients, the corresponding standard errors

and p-values for the covariates effects the Weibull, Lognormal, and Log-logistic models. The
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Figure 5.2: NRSP residuals for the Weibull, Log-logistic, and Lognormal AFT models
fitted to the breast cancer patients dataset. The panels in the first two columns present
the scatter plots and QQ plots of the NRSP residuals versus the fitted values, respec-
tively. The green triangles correspond to the event times and the red circles correspond
to the censored times. The third column presents the frequencies of the p-values of the
SW normality test for 1000 replicated NRSP residuals.
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Figure 5.3: NMSP residuals for the Weibull, Log-logistic, and Lognormal AFT models
fitted to the breast cancer patients dataset. The panels in the first two columns present
the scatter plots and QQ plots of the NMSP residuals versus the fitted values, respec-
tively. The green triangles correspond to the event times and the red circles correspond
to the censored times.
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Figure 5.4: Deviance residuals for the Weibull, Log-logistic, and Lognormal AFT
models fitted to the breast cancer patients dataset. The panels in the first two columns
present the scatter plots and QQ plots of the deviance residuals versus the fitted values,
respectively. The green triangles correspond to the event times and the red circles
correspond to the censored times.
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findings indicate that the choice of model distribution has a significant impact on estimating

covariate effects. Table 5.3 displays the value of AIC statistic for the fitted Weibull, Log-

normal, and Log-logistic models. Lognormal model yields the lowest AIC and therefore it

provides a better fit to this data as compared to other models. Moreover, by repeatedly 1000

p-values of the SW test for NRSP residual, Table 5.3 shows the percentage of times that the

p-values are less than 0.05 for all of three models. The results clearly demonstrate that the

Lognormal model is a better model with only 7.8% of the p-values less than 0.05 for this

application.

Table 5.2: Parameter estimates of the Weibull, log-normal and log-logistic models in
Breast Cancer Study.

Weibull Log-normal Log-logistic

Covariates Estimate SE P-value Estimate SE P-value Estimate SE P-value

Treat 0.261 0.093 0.005 0.309 0.097 0.002 0.321 0.097 0.001

Age 0.007 0.007 0.304 0.013 0.007 0.070 0.013 0.007 0.062

Men -0.202 0.131 0.123 -0.260 0.143 0.070 -0.289 0.143 0.043

Size -0.006 0.003 0.044 -0.006 0.003 0.052 -0.007 0.003 0.037

Grade -0.211 0.076 0.006 -0.256 0.082 0.002 -0.230 0.082 0.005

Nodes -0.039 0.005 <0.001 -0.051 0.008 <0.001 -0.052 0.008 <0.001

Prog 0.002 0.001 <0.001 0.001 <0.001 <0.001 0.002 <0.001 <0.001

Oest <0.001 <0.001 0.635 <0.001 <0.001 0.886 <0.001 <0.001 0.862

Table 5.3: Percentages of P-values smaller than 0.05 for the SW test of the NRSP
residuals and AIC comparisons for Weibull, Log-normal and Log-logistic models in the
breast cancer data analysis.

Model fit Weibull Log-normal Log-logistic

NRSP 100% 7.8% 99.3%

AIC 5182 5140 5154
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6. Conclusion and future work

In this thesis, we proposed NRSP residual of diagnosing AFT models in survival anal-

ysis and computationally justified the normality of the proposed residual and compared its

performance with the traditional residuals, including the Cox-Snell residuals and deviance

residuals, through simulation studies and a real data application. This thesis reinforces that

the traditional residuals are not well-calibrated and fail to assist in model diagnosis. However,

NRSP residuals are well-calibrated and can be used for a wide range of distributions. It is

computationally demonstrated that NRSP residuals are normally distributed, aside from the

variability in the estimation of the parameters. This provides a unified way of simply plotting

the NRSP residuals against predicted values or the covariates as well as their QQ-plots for

visually checking the model adequacy. Meanwhile, according to the GOF test, the probabil-

ities of rejecting the true model (type 1 error rates) are close to the nominal level 0.05, and

the powers of rejecting the wrong models are high when the sample size of events is relatively

large and the departure from the true model is not marginal. Another significant advantage

of NRSP residuals over the traditional ones is their simple definition, which only requires

knowing the CDF of the response variable. In conclusion, NRSP residual is an excellent tool

that can be used to compare and diagnose AFT models in survival analysis.

For further study, random effects can be added in the AFT models. In the multicenter

clinical trial, model center variation could then be added using a random effect, and there

would be interest in investigating the performance NRSP residuals in different distributions

[1]. Furthermore, Cox proportional hazard model is a very widely used survival model, as

the baseline function can take on any forms. We will extend NRSP residuals to diagnose Cox

proportional hazard models with and without random effects in the near future.
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