
Package ‘BPHO’ documentation
of

February 22, 2008

Version 1.2-3

Title Bayesian Prediction with High-order Interactions

Author Longhai Li <longhai@math.usask.ca>

Maintainer Longhai Li <longhai@math.usask.ca>

Depends R (>= 2.5.1)

Description This software is used in two situations. The first is to predict the next outcome based on
the previous states of a discrete sequence. The second is to classify a discrete response based on
a number of discreate covariates. In both situations, we use Bayesian logistic regression models
that consider the high-order interactions. The time arising from using high-order interactions is
reduced greatly by our compression technique that represents a group of original parameters as a
single one in MCMC step. In this version, we use log-normal prior for the hyperparameters.
When it is used for the second situation — classification, we consider the full set of interaction
patterns up to a specified order.

License GPL (>=2)

URL http://www.r-project.org, http://math.usask.ca/~longhai

R topics documented:

comp_train_pred . 2
compression . 7
training . 9
prediction . 12
gendata . 14

Index 16

1

http://www.r-project.org
http://math.usask.ca/~longhai

2 comp_train_pred

comp_train_pred User-level functions for compressing parameters, training the models
with MCMC, and making predictions for test cases

Description

The function comp_train_pred can be used for three tasks: compressing parameter, training
the models with MCMC, and making prediction for test cases. When new_compression=1,
it compresses parameters based on training cases and the information about parameter compres-
sion is written to the binary file ptn_file. When new_compression=0, it uses the exist-
ing ptn_file. When iters_mc > 0, it trains the models with Markov chain Monte Carlo
and the Markov chain iterations are written to the binary file mc_file. The methods of writing
to and reading from the files ptn_file and mc_file can be found from the documentations
compression and training. When iters_pred > 0, it predicts the responses of test
cases and the result is written to the file pred_file and also returned as a value of this function.

The function cv_comp_train_pred is a short-cut function for performing cross-validation with
the function comp_train_pred.

The argument is_sequence=1 indicates that a sequence prediction model is fitted to the data,
and is_sequence=1 indicates that a general classification model based on discrete predictor
variables is fitted.

Usage

comp_train_pred(
################## specify data information ####################
test_x,train_x,train_y,no_cls=c(),nos_fth=c(),
################## specify for compression ######################
is_sequence=1,order,ptn_file=".ptn.log",
new_compression=1,do_comp=1,
###################### specify for priors ######################
alpha=1,sigma_precisions=c(),log_sigma_modes=c(),
################# specify for mc sampling #######################
mc_file=".mc.log",start_over=FALSE,iters_mc=200,iters_bt=10,
iters_sgm=50,w_bt=10,w_sgm=0.5,m_bt=50,ini_log_sigmas=c(),
################### specify for prediction ######################
pred_file=c(),iter_b = 100,forward = 1,iters_pred = 100)

cv_comp_train_pred(
###################### Specify data,order,no_fold ###############
no_fold=10,train_x,train_y,no_cls=c(),nos_fth=c(),
#################### specify for compressing#####################
is_sequence=1,order,ptn_file=".ptn.log",
new_compression=1,do_comp=1,
###################### specify for priors ######################
alpha=1,sigma_precisions=c(),log_sigma_modes=c(),
################# specify for mc sampling #######################

comp_train_pred 3

mc_file=".mc.log",iters_mc=200,iters_bt=10,iters_sgm=50,
w_bt=10,w_sgm=0.5,m_bt=50,ini_log_sigmas=c(),
################### specify for prediction ######################
pred_file = c(),iter_b = 100,forward = 1,iters_pred = 100)

Arguments

test_x Discrete features (also called inputs,covariates,independent variables, explana-
tory variables, predictor variables) of test data on which the predictions are
based. The row is subject and the columns are inputs, which are coded with
1,2,..., with 0 reserved to represent that this input is not considered in a pattern.
When the sequence prediction models are fitted, it is assumed that the first col-
umn is the state closest to the response. For example, a sequence ‘x1,x2,x3,x4’
is saved in test_x as ‘x4,x3,x2,x1’, for predicting the response ‘x5’.

train_x Discrete features of training data of the same format as test_x.

train_y Discrete response of training data, a vector with length equal to the row of
train_x. Assumed to be coded with 1,2,... no_cls .

no_cls the number of possibilities (classes) of the response, default to the maximum
value in train_y.

nos_fth a vector, with each element storing the number of possibilities (classes) of each
feature, default to the maximum value of each feature.

is_sequence is_sequence=1 indicates that sequence prediction models are fitted to the
data, and is_sequence=0 indicates that general classification models based
on discrete predictor variables are fitted.

no_fold Number of folders in cross-validation.

order the order of interactions considered, default to the total number of features, i.e.
ncol(train_x).

ptn_file a character string, the name of the binary file to which the compression result is
written. The method of writing to and reading from ptn_file can be found
from the documentation for compression.

new_compression
new_compression=1 indicates removing the old file ptn_file if it exists
and doing the compression once again. new_compression=0 indicates us-
ing the old file ptn_file without doing compression once again. Note that
when new_compression=0, the specification related to training cases does
not take effect.

do_comp do_comp=1 indicates doing compression, and do_comp=0 indicates using
original parametrization. This is used only to make comparison. In practice, we
definitely recommend using our compression technique to reduce the number of
parameters.

alpha alpha=1 indicates that Cauchy prior is used, alpha=2 indicates that Gaus-
sian prior is used.

sigma_precisions, log_sigma_modes
two vectors of length order+1, whose meanings are interpreted as follows: the
Gaussian distribution with location log_sigma_modes[o] and standard de-
viation 1/sigmas_precisions[o] is the prior distribution for logarithm

4 comp_train_pred

of ‘sigmas[o]’, which is the hyperparameter (scale parameter of Gaussian dis-
tribution or Cauchy distribution) for the regression coefficients (i.e. ‘beta’s)
associated with the interactions of order ‘o’

mc_file A character string, the name of the binary file to which Markov chain is written.
The method of writing to and reading from mc_file can be found from the
documentation for training.

start_over start_over=TRUE indicates that the existing file mc_file is deleted before
a Markov chain sampling starts, otherwise the Markov chain will continue from
the last iteration stored in mc_file.

iters_mc,iters_bt,iters_sgm
iters_mc iterations of super-transition will be run. Each super-transition
consists of iters_bt iterations of updating ‘beta’s, and for each updating
of ‘beta’s, the hyperparameters ‘log(sigma)’s are updated iters_sgm times.
When iters_mc=0, no Markov chain sampling will be run and other argu-
ments related to Markov chain sampling take no effect.

w_bt,w_sgm, m_bt
w_bt is the amount of stepping-out in updating ‘beta’ with slice sampling.
w_sgm is the standard deviation of Gaussian distribution, which is used as
the proposal distribution for updating ‘log(sigma)’ with Metropolis sampling.
m_bt is the maximum number of stepping-out in slice sampling for updating
‘beta’

ini_log_sigmas
Initial values of ‘log(sigma)’, default to log_sigma_modes.

pred_file A character string, the name of the file to which the prediction result is written.
If pred_file=c(), the prediction result is printed out on screen (or sent to
standard output).

iter_b, forward, iters_pred
Starting from iter_b, one of every forward Markov chain samples, with the
number of total samples being <= iters_pred and the maximum usable in
the file mc_file, is used to make prediction.

Value

times The time in second for, as this order, compressing parameters, training the
model, predicting for test cases

pred_result a data frame with first no_cls columns being the predictive probability and the
next column being the predicted response value is returned.

files Three character strings: the 1st is the name of the file storing compression
information, the 2nd is the name of the file storing Markov chain, and the
3rd one is the name of the file containing the detailed prediction result, i.e.,
pred_result

Author(s)

Longhai Li, http://math.usask.ca/~longhai

http://math.usask.ca/~longhai

comp_train_pred 5

References

http://math.usask.ca/~longhai/doc/seqpred/seqpred.abstract.html

See Also

gendata,compression,training,prediction

Examples

loading package
library("BPHO",lib.loc="~/rlib")

###
########this is a demonstration of using the whole package##########
###

generate data from a hidden Markov model
data_hmm <- gen_hmm(200,10,8,2,0.8,0.8)

compressing parameters, training model, making prediction
comp_train_pred(

################## specify data information ################
test_x=data_hmm$X[1:100,],train_x=data_hmm$X[-(1:100),],
train_y=data_hmm$y[-(1:100)],no_cls=2,nos_fth=rep(2,10),
################## specify for compression ##################
is_sequence=1,order=4,ptn_file=".ptn_file.log",
new_compression=1,do_comp=1,
###################### specify for priors ##################
alpha=1,sigma_precisions=c(),log_sigma_modes=c(),
################# specify for mc sampling ###################
mc_file=".mc_file.log",start_over=TRUE,iters_mc=100,
iters_bt=1,iters_sgm=2,w_bt=5,w_sgm=0.5,
m_bt=50,ini_log_sigmas=c(),
################## specify for prediction ###################
pred_file=".pred_file.csv",iter_b = 10,forward = 1,
iters_pred = 90)

display summary information about compression
display_ptn(ptn_file=".ptn_file.log")

display the pattern information for group 1 and group 2
display_ptn(ptn_file=".ptn_file.log",gid=c(1,2))

display the general information of Markov chain sampling
display_mc(mc_file=".mc_file.log")

read Markov chain values of log-likelihood from ".mc_file.log"
read_mc(group="lprobs",ix=0,mc_file=".mc_file.log",

iter_b=0,forward=1,n=100)

particularly read `betas' by specifying the group and class id
read_betas(mc_file=".mc_file.log",ix_g=5,ix_cls=2,

http://math.usask.ca/~longhai/doc/seqpred/seqpred.abstract.html

6 comp_train_pred

iter_b=0,forward=1,n=100)

display the information on the pattern related to a `beta'
display_a_beta(mc_file=".mc_file.log",

ptn_file=".ptn_file.log",id_beta=5)

calculate the medians of samples of each 'beta'
calc_medians_betas(mc_file=".mc_file.log",iter_b=10,forward=1,n=90)

evaluate prediction with true values of the response
evaluate_prediction(

test_y=data_hmm$y[1:100],
pred_result=read.csv(".pred_file.csv"),
file_eval_details="eval_details")

#perform cross-validation with training data only
cv_comp_train_pred(

################## specify data information ################
no_fold=2,train_x=data_hmm$X[-(1:100),],
train_y=data_hmm$y[-(1:100)],no_cls=2,nos_fth=rep(2,10),
################## specify for compression ##################
is_sequence=1,order=4,ptn_file=".ptn_file.log",
new_compression=1,do_comp=1,
###################### specify for priors ##################
alpha=1,sigma_precisions=c(),log_sigma_modes=c(),
################# specify for mc sampling ###################
mc_file=".mc_file.log",iters_mc=100,
iters_bt=1,iters_sgm=2,w_bt=5,w_sgm=0.5,
m_bt=50,ini_log_sigmas=c(),
################## specify for prediction ###################
pred_file=".pred_file.csv",iter_b = 10,forward = 1,
iters_pred = 90)

###
###

generating a classification data
data_class <- gen_bin_ho(200,3,3,1,c(0.3,0.2,0.1),c(2,2,2),0)

compressing parameters, training model, making prediction
comp_train_pred(

################## specify data information ################
test_x=data_class$X[1:100,],train_x=data_class$X[-(1:100),],
train_y=data_class$y[-(1:100)],no_cls=3,nos_fth=rep(3,3),
################## specify for compression ##################
is_sequence=0,order=3,ptn_file=".ptn_file.log",
new_compression=1,do_comp=1,
###################### specify for priors ##################
alpha=1,sigma_precisions=c(),log_sigma_modes=c(),
################# specify for mc sampling ###################
mc_file=".mc_file.log",start_over=TRUE,iters_mc=100,
iters_bt=1,iters_sgm=2,w_bt=5,w_sgm=0.5,
m_bt=50,ini_log_sigmas=c(),

compression 7

################## specify for prediction ###################
pred_file=".pred_file.csv",iter_b = 10,forward = 1,
iters_pred = 90)

display summary information about compression
display_ptn(ptn_file=".ptn_file.log")

display the pattern information for group 1 and group 2
display_ptn(ptn_file=".ptn_file.log",gid=c(1,2))

display the general information of Markov chain sampling
display_mc(mc_file=".mc_file.log")

read Markov chain values of log-likelihood from ".mc_file.log"
read_mc(group="lprobs",ix=0,mc_file=".mc_file.log",

iter_b=0,forward=1,n=100)

particularly read `betas' by specifying the group and class id
read_betas(mc_file=".mc_file.log",ix_g=5,ix_cls=2,

iter_b=0,forward=1,n=100)

display the information on the pattern related to a `beta'
display_a_beta(mc_file=".mc_file.log",ptn_file=".ptn_file.log",

id_beta=5)

calculate the medians of samples of each 'beta'
calc_medians_betas(mc_file=".mc_file.log",iter_b=10,forward=1,n=90)

evaluate prediction with true values of the response
evaluate_prediction(

test_y=data_class$y[1:100],
pred_result=read.csv(".pred_file.csv"),
file_eval_details="eval_details")

compression Functions related to parameter compression

Description

The function compress groups the patterns in a way such that the interaction patterns in a group
are expressed by the same training cases. In training the models with MCMC, we need to use
only one parameter for each group, which represents the sum of all the parameters in this group.
The original parameters are seemly compressed. A large amount of training time is saved by this
compression techniques.

The result of this grouping is saved in a binary file in a way such that it can be retrieved as a linked
list in C, with each node consisting of a description (an integer vector of fixed length) of the group
of patterns and the indice (an integer vector of varying length, with 0 for the first training case) of
training cases expressing this group of patterns. This file is needed to train the models with MCMC
and to predict the responses of test cases using the function comp_train_pred.

8 compression

The function display_ptn displays the summary information about this compression, such as
the number of groups and total number of patterns expressed by the training cases. When gids is
nonempty, it also displays the detailed information about the groups specified by gids, such as the
pattern description and the indice of training cases associated with this group.

Usage

compress(features,nos_fth=c(),no_cases_ign=0,
ptn_file=".ptn_file.log",quiet=1,
do_comp=1,sequence=1,order=ncol(features))

display_ptn(ptn_file, gids=c())

Arguments

features Discrete features (also called features,covariates,independent variables, explana-
tory variables, predictor variables) of training data on which the predictions are
based. The row is subject and the columns are inputs, which are coded with
1,2,..., with 0 reserved to represent that this input is not considered in a pattern.
When the sequence prediction models are fitted, it is assumed that the first col-
umn is the state closest to the response. For example, a sequence ‘x1,x2,x3,x4’
is saved in test_x as ‘x4,x3,x2,x1’, for predicting the response ‘x5’.

nos_fth a vector, with each element storing the number of possibilities (classes) of each
feature, default to the maximum value of each feature.

order the order of interactions considered, default to the total number of features, i.e.
ncol(features).

ptn_file a character string, the name of the binary file to which the compression result is
written.

do_comp do_comp=1 indicates doing compression, and do_comp=0 indicates using
original parametrization. This is used only to make comparison. In practice, we
definitely recommend using our compression technique to reduce the number of
parameters.

sequence sequence=1 indicates that sequence prediction models are fitted to the data,
and sequence=0 indicates that general classification models based on discrete
predictor variables are fitted.

gids an integer vector, containing the indice of groups whose information you want
to display, with 0 for the first group.

no_cases_ign When the number of training cases for a pattern is no more than no_cases_ign,
this pattern will be ignored, default to 0, i.e. considering all interactions. So far
there is no other justification to set it a value greater than 0, except that it can
reduce the number of groups.

quiet If quiet=0, some messages during compression are printed on screen for mon-
itor the compression, if quiet=1 the function works silently.

Value

The function compress returns no value. Instead, it saves the result of com-
pression in the file ptn_file.

training 9

The function display_ptn returns a vector of 6 numbers. Their meanings
are as follows: is.sequence – indictor whether a sequence model is fit-
ted,order – the maximum order of interactions considered, #groups – the
number of groups found, #patterns – the number of interaction patterns ex-
pressed by the training cases,#cases – the number of training cases,
#features – the number of features.

When gids is nonempty, it also displays the details about the queried groups.
The information printed on screen for each group is read as follows. Under
superpatterns, it displays a compact description of the pattern group, which
is in a special format defined in the references associated with this software.
Under expression, it displays the indice of training cases that express this
group of patterns. Under sigmas, it displays the number of patterns with a
certain order, starting from order 0. This information is needed to compute the
width parameter of the regression coeficient associated with this group from the
values of hyperparameters ‘sigma’s.

See Also

comp_train_pred, training, prediction

Examples

generate features
features <- gen_X(50,5,2)

compressing the parameter based on 'features'
compress(features,nos_fth=rep(2,5),no_cases_ign=0,

ptn_file=".ptn_file.log",quiet=1,do_comp=1,
sequence=1,order=4)

display the summary information in the file ".ptn_file.log"
display_ptn(".ptn_file.log")

display the information for group #2 and #3
display_ptn(".ptn_file.log",gids=c(2,3))

training Functions related to Markov chain sampling

Description

The models are trained with Markov chain Monte Carlo (MCMC) methods. Slice sampling is used
to update ‘beta’s, the regression coefficients for groups, and Metropolis sampling with Gaussian
proposal is used to update ‘log(sigma)’, where ‘sigma’ is the width parameter of the prior for ‘beta’.

The function training carries out the Markov chain sampling, saving the Markov chain samples
in a binary file mc_file.

10 training

The function display_mc displays the summary information in the file mc_file.

The function read_mc reads the Markov chain samples from the file mc_file at given iterations.

The function read_betas is based on the function read_mc. It specifically reads the ‘beta’ for
given group and class identities.

The function display_a_beta displays both the pattern information for the group associated
with the ‘beta’ specified by id_beta, and also return the full Markov chain samples of this ‘beta’.

The function calc_medians_betas returns the medians of the Markov chain samples for all
‘beta’s at specified iterations. This function is for discovering important interaction patterns. An
interaction pattern with large absolute medians is highly suspected to be an important pattern for
predicting the response.

Usage

display_mc(mc_file)
read_mc(group,ix, mc_file,iter_b,forward,n,quiet=1)
read_betas(mc_file,ix_g,ix_cls,iter_b,forward,n,quiet=1)
display_a_beta(mc_file,ptn_file, id_beta)
training(mc_file,ptn_file, train_y,no_cls,

alpha,sigma_precisions,log_sigma_modes,ini_log_sigmas,
iters_mc,iters_bt,iters_sgm,
w_bt,w_sgm,m_bt)

Arguments

mc_file A character string, the name of the binary file to which Markov chain is written.

group A character string giving the group name of values.
It can be one of ’lprobs’,lsigmas’,’betas’, ’evals’.
Group ’lprobs’ contains: the values of log probabilities of data given the values
of ‘beta’s (identified by ix=0), the value of log prior of ’beta’s given ‘sigma’s
(identified by ix=1), the value of log prior of ’log(sigma)’s (identified by ix=2),
and the value of log posterior (identified by ix=3), which is the sum of the pre-
vious three values.
Group ’lsigmas’ contains: the values of hyperparameters ’log(sigma)’, with ix
indicating the order, starting from 0.
Group ’betas’ contains: the values of ’betas’, with ix indicating the index of
‘beta’. The ‘beta’s in each iteration is placed as that the no_cls values of
‘beta’s for pattern group ‘i’ are followed by the next no_cls values for pattern
group ’i+1’. The smallest index is 0.
Group ‘evals’ contains: the average times of evaluating the posterior distribu-
tion in updating each ‘beta’ using slice sampling (identified by ix=0), and the
average rejection rate of updating each ‘log(sigma)’ with Metropolis sampling
(identified by ix=1).

ix index of parameters inside each group, as discussed for group above.

ix_g index of pattern group, starting from 0.

ix_cls index of class, ranging from 1 to no_cls.

training 11

id_beta index of ‘beta’, starting from 0.
iter_b, forward, n

Starting from iter_b, one of every forward Markov chain samples, with
the number of total samples being <= n and the maximum usable in the file
mc_file, is read.

train_y Discrete response of training data. Assumed to be coded with 1,2,... no_cls.

no_cls the number of possibilities (classes) of the response, default to the maximum
value in train_y.

alpha alpha=1 indicates that Cauchy prior is used, alpha=2 indicates that Gaus-
sian prior is used.

sigma_precisions, log_sigma_modes
two vectors of length order+1, whose meanings are interpreted as follows: the
Gaussian distribution with location log_sigma_modes[o] and standard de-
viation 1/sigmas_precisions[o] is the prior for ‘log(sigmas[o])’, which
is the hyperparameter (width parameter of Gaussian distribution or Cauchy dis-
tribution) for the regression coefficients (i.e. ‘beta’s) associated with the inter-
actions of order ‘o’.

ptn_file a character string, the name of the binary file where the compression result is
saved. The method of writing to and reading from ptn_file can be found
from the documentation for compression.

iters_mc,iters_bt,iters_sgm
iters_mc iterations of super-transition will be run. Each super-transition
consists of iters_bt iterations of updating ‘beta’s, and for each updating
of ‘beta’s, the hyperparameters ‘log(sigma)’s are updated iters_sgm times.
When iters_mc=0, no Markov chain sampling will be run and other argu-
ments related to Markov chain sampling take no effect.

w_bt,w_sgm, m_bt
w_bt is the amount of stepping-out in updating ‘beta’ with slice sampling.
w_sgm is the standard deviation of Gaussian distribution, which is used as
the proposal distribution for updating ‘log(sigma)’ with Metropolis sampling.
m_bt is the maximum number of stepping-out in slice sampling for updating
‘beta’.

ini_log_sigmas
Initial values of ‘log(sigma)’, default to log_sigma_mode.

quiet quiet=1 suppresses the messages printed during reading the file mc_file.

Value

The function display_mc returns a vector with names as
#iters,#class,#groups,order,alpha.

The function read_mc returns the Markov chain samples for a variable at spec-
ified iterations.

The function read_betas returns the Markov chain samples for a ‘beta’ at
specified iterations.

12 prediction

The function display_a_beta displays the pattern group information for
the group associated with the queried ‘beta’, and also returns the Markov chain
samples of this ‘beta’. The method of reading the on-screen messages about a
pattern group is documented in compression.

The function calc_medians_betas returns the medians of Markov chain
samples of all ‘beta’s at given iterations.

The function training returns no value. Instead, the Markov chain samples
are written to the binary file mc_file.

See Also

comp_train_pred,compression,prediction

Examples

examples are given in comp_train_pred.

prediction Functions related to prediction

Description

The function predict_bpho predicts the response of test cases.

The function evaluate_prediction evaluates the performance of the prediction in terms of
average minus log probabilities and error rate. The function split_cauchy draws samples from
a Cauchy distribution of two variables constraint to that their sum is fixed.

Usage

predict_bpho(test_x,no_cls,mc_file,ptn_file,iter_b,forward,
iters_pred)

evaluate_prediction(test_y,pred_result,file_eval_details=c())
split_cauchy(n,s, sigma1,sigmasum,debug=1)

Arguments

test_x Discrete features (also called inputs,covariates,independent variables, explana-
tory variables, predictor variables) of test data on which the predictions are
based. The row is subject and the columns are inputs, which are coded with
1,2,..., with 0 reserved to represent that this input is not considered in a pattern.
When the sequence prediction models are fitted, it is assumed that the first col-
umn is the state closest to the response. For example, a sequence ‘x1,x2,x3,x4’
is saved in test_x as ‘x4,x3,x2,x1’, for predicting the response ‘x5’.

test_y Discrete responses of test data, a vector with length equal to the row of test_x.
Assumed to be coded with 1,2,... no_cls.

no_cls the number of possibilities (classes) of the response.

prediction 13

ptn_file a character string, the name of the binary file to which the compression result
is saved. The method of writing to and reading from ptn_file can be found
from the documentation compression.

mc_file A character string, the name of the binary file to which Markov chain is written.
The method of writing to and reading from mc_file can be found from the
documentation training.

iter_b, forward, iters_pred
Starting from iter_b, one of every forward Markov chain samples, with the
number of total samples being <= iters_pred and the maximum usable in
the file mc_file, is used to make prediction.

pred_result the value returned from the function predict_bpho.
file_eval_details

the details of evaluation is sent to the file file_eval_details.

n number of samples one wishes to obtain.

s sum of two Cauchy random variables.

sigma1 scale parameter for the first Cauchy random variable.

sigmasum the sum of scale parameters for two Cauchy random variables.

debug indicator whether you are debugging the C program.

Value

The function predict_bpho returns a data frame, with the first no_cls columns storing the
predictive probabilities for each class, and the last column is the guess for the response by choosing
the label of the class with largest predictive probability.

The function evaluate_prediction returns the following values:

eval_details a data frame. The first column is the true response, the second is the guessed
value by taking the label of class with largest predictive probability, the third
is indicator whether a wrong decision is make, the last column is the predictive
probability at the true class.

error_rate the proportion of wrong prediction.

amll the average of minus log probabilities at true class, i.e. the average of the loga-
rithms of the last column of eval_details.

The function split_cauchy returns a vector of n random numbers.

See Also

comp_train_pred,compression,training

Examples

the function `predict_bpho' is demonstrated with the function
`comp_train_pred' which calls `predict_bpho' inside.

examples of 'evaluate_prediction' can be found from
the documentation for comp_train_pred.

14 gendata

testing the function split_cauchy
split_cauchy(100,10,1,5)

gendata Functions for generating data sets

Description

gen_hmm generates sequences using hidden Markov models. gen_bin_ho generates general
discrete data using logistic models, with high-order interactions considered; the response is binary.
text_to_number converts an English text file into sequence of 1 (special symbols such as space,
symbol),2 (vowl),3 (consonant).

Usage

gen_hmm(n,p,no_h,no_o,prob_h_stay, prob_o_stay)
gen_bin_ho(n,p,order,alpha,sigmas,nos_features,beta0)
text_to_number(p,file)
gen_X(n,p,K)

Arguments

n number of cases.

p number of features, or length of sequence.

K number of possibilities for each feature.

no_h number of states of hidden Markov chain.

no_o number of states of output in hidden Markov model.

prob_h_stay In simulating the hidden Markov chain, a chain will stay in its previous state
with probability prob_h_stay, and move to other states with some minor
probabilities adding up to 1-prob_h_stay.

prob_o_stay In simulating the output state of hidden Markov model, the "output" is equal
to ("hidden state" mod no_o)+1 with probability prob_o_stay and equally
likely other states.

order the order of interactions considered in simulating data from general classifica-
tion models.

alpha alpha=2 indicates that Gaussian distributions are used to generate the “beta"s
and alpha=1 indicates that Cauchy distributions are used.

sigmas hyperparameters in generating "beta"s, a vector of length order.

nos_features number of states for each feature, i.e., the number of possibilities for each fea-
ture. A vector of length p.

beta0 intercept of linear function in generating classification data.

file name of the file containing text file, a character string.

gendata 15

Value

X values of predictors, a matrix. Each row is a case. For sequence, the data for
each case (a row) is placed in the reverse order of time. For example, sequence
"x1,x2,x3" is represented with a row of X: x3,x2,x1. The values of predictor X
are coded by 1,2,3,...,nos_features. The function gen_X generates only
this matrix.

y values of the response, a vector, coded by 1,2,...

betas a matrix of two columns saving the values of “betas" used in generating classi-
fication data. The first column is the absolute identity of this beta, and the 2nd
column is the value. The total number of “betas" is saved in no_betas.

See Also

comp_train_pred

Examples

data_hmm <- gen_hmm(100,10,8,2,0.8,0.8)
data_bin_ho <- gen_bin_ho(100,3,2,1,c(5,2),c(3,3,3),0)
X <- gen_X(100,5,3)

Index

∗Topic classif
comp_train_pred, 1
compression, 7
prediction, 12
training, 9

∗Topic datagen
gendata, 14

begin.BPHO (comp_train_pred), 1

calc_medians_betas (training), 9
comp_train_pred, 1, 7, 9, 12, 13, 15
compress (compression), 7
compression, 2, 3, 5, 7, 11–13
cv_comp_train_pred

(comp_train_pred), 1

display_a_beta (training), 9
display_mc (training), 9
display_ptn (compression), 7

evaluate_prediction (prediction),
12

gen_bin_ho (gendata), 14
gen_hmm (gendata), 14
gen_X (gendata), 14
gendata, 5, 14

predict_bpho (prediction), 12
prediction, 5, 9, 12, 12

read_betas (training), 9
read_mc (training), 9

split_cauchy (prediction), 12

text_to_number (gendata), 14
training, 2, 4, 5, 9, 9, 12, 13

16

	comp_train_pred
	compression
	training
	prediction
	gendata
	Index

