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2 gibbs-metropolis

gibbs-metropolis Gibbs sampling with Metropolis steps and multivariate Metropolis
sampling

Description

The function gibbs_met performs Gibbs sampling with each 1-dimensional distribution sam-
pled with Metropolis update using Gaussian proposal distribution centered at the previous state.
The function met_gaussian updates the whole state with Metropolis method using independent
Gaussian proposal distribution centered at the previous state. The sampling is carried out with-
out considering any special tricks for improving efficiency. The functions are written for routine
applications in moderate-dimensional problems.

Usage

gibbs_met (log_f,p,x0,iters_mc, iters_met, stepsizes_met,

iters_per.iter=1,...)

met_gaussian(log_f,iters, p, x0, stepsizes, iters_per.iter=1l, ...)
Arguments

log_f the log of the density function from which one wants to sample.

P the number of variables to be sampled.

x0 the initial value.

iters_mc, iters
iterations of Gibbs sampling or Metropolis update.

iters_per.iter

for each transition specified by iters or iters_mc, the Markov chain sam-
pling is run iters_per.iter times. This argument is used to avoid saving
the whole Markov chain.

iters_met iterations of Metropolis for each 1-dimensional sampling.

stepsizes_met

a vector of length p, with stepsizes_met [1] being the standard deviation
of Gaussian proposal for updating ’i’th variable.

stepsizes the same as stepsizes_met for the function met_gaussian.

extra arguments needed to compute 1og_f.

Value

a matrix with dim (iters_mc + 1) * por (iters +1) = p is returned, with each row
for an iteration
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Examples

FHAFH A S A
## demonstration by sampling from bivariate normal distributions
FHEHE A H AR A R R R R R

## the function computing the log density function of multivariate normal

#H# x -—— a vector, the p.d.f at x will be computed
## mu ——— the mean vector of multivariate normal distribution
## A —-—— the inverse covariance matrix of multivariate normal distribution

log_pdf_mnormal <- function(x, mu, A)

{
0.5 % (-length (mu) *log (2*pi)+sum(log (svd(A) $d))-sum(t (Ax (x-mu) ) * (x-mu)) )

## sampling from a bivariate normal distribution with correlation 0.1,

## both marginal standard deviations 1, mean vector (0,5)

A <- solve(matrix(c(1,0.1,0.1,1),2,2))

mc_mvn <- gibbs_met (log_f=log_pdf_mnormal,2,x0=c(0,0),iters_mc=1000, iters_met=5,
stepsizes_met=c(0.5,0.5), mu=c(0,5), A = A)

postscript ("mc_mvn_lowcor.eps",width=7, height=8, horiz=FALSE)

par (mfrow=c (2, 2), oma=c(0,0,1,0))

## looking at the trace of Markov chain in the first 100 iterations
plot (mc_mvn[1:100,1],mc_mvn[1:100,2],type="b",pch=20,

main="Markov chain trace of both wvariables")

## looking at the trace of Markov chain for a variable
plot (mc_mvn[,1],type="b",pch=20, main="Markov chain trace of the 1lst variable")

## looking at the QQ plot of the samples for a variable
gagnorm (mc_mvn[-(1:50),1],main="Normal QQ plot of the 1lst variable")

## looking at the ACF of the samples for a variable
acf (mc_mvn[,1],main="ACF plot of the 1lst variable")

title (main="Gibbs sampling for a bivariate normal with correlation 0.1",
outer=TRUE)

dev.off ()

## checking the correlation of samples
cat ("The sample correlation is",cor (mc_mvn[—-(1:50),1],mc_mvn[—-(1:50),2]),"\n")

C R i i i i
## demonstration by sampling from a mixture bivariate normal distribution
FHEH A A A R R R R

## the function computing the log density function of mixture multivariate normal
#H# x -—— a vector, the p.d.f at x will be computed
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## mul,mu2 ——— the mean vectors of multivariate normal distributions
## Al,A2 ——— the inverse covariance matrice of multivariate normal distributions
## mixture proportion is 0.5
log_pdf_twonormal <- function(x, mul, Al, mu2, A2)
{ log_sum_exp(c(log_pdf_mnormal (x,mul,Al),log_pdf_mnormal (x,mu2,A2))
)

log_sum_exp <- function (lx)
{ ml <- max(1lx)
ml + log(sum(exp(lx-ml)))

## set parameters defining a mixture bivariate distribution
Al <- solve(matrix(c(1,0.1,0.1,1),2,2))

A2 <- solve(matrix(c(1,0.1,0.1,1),2,2))

mul <- c(0,0)

mu2 <-c(4,4)

## performing Gibbs sampling

mc_mvn <- gibbs_met (log_f=log_pdf_twonormal,2,x0=c(0,0),iters_mc=4000, iters_met=5,
stepsizes_met=c(0.5,0.5), mul=mul, mu2=mu2,Al=Al,A2=A2)

postscript ("mc_mvn_closemix.eps",width=7,height=8, horiz=FALSE)

par (mfrow=c (2, 2), oma=c(0,0,2,0))

## looking at the trace of Markov chain in the first 100 iterations

plot (mc_mvn([,1],mc_mvn[,2],type="b",pch=20,

main="Markov chain trace of both variables")

## looking at the trace of Markov chain for a variable
plot (mc_mvn[,1],type="b",pch=20, main="Markov chain trace of the 1lst variable")

## looking at the trace of Markov chain for a variable
plot (mc_mvn[,2],type="b",pch=20, main="Markov chain trace of the 2nd variable")

## looking at the ACF of the samples for a variable
acf (mc_mvn[,1],main="ACF plot of the 1lst variable")

title (main="Gibbs sampling for a mixture of two bivariate normal distributions
with locations (0,0) and (4,4)", outer=TRUE)

dev.off ()

## checking the correlation of samples
cat ("The sample correlation is",cor (mc_mvn[-(1:50),1],mc_mvn[—-(1:50),2]),"\n")

FHEE A A A R R R R R R

## Sampling from a mixture bivariate normal distribution with Metropolis method

RS A R A R R R R R R R R R R

## set parameters defining a mixture bivariate distribution
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~

Al <- solve(matrix(c(1,0.1,0.1
A2 <- solve(matrix(c(1,0.1,0.1
mul <- c(0,0)

mu2 <-c(6,6)

1
1),2,2))

~

## performing Gibbs sampling

mc_mvn <- met_gaussian (log_f=log_pdf_twonormal,p=2,x0=c(0,0),iters=4000,
iters_per.iter=10, stepsizes=c(1l,1),
mul=mul, mu2=mu2,Al=Al,A2=A2)

postscript ("mc_mvn_farmix_met.eps",width=7,height=8, horiz=FALSE)
par (mfrow=c (2, 2), oma=c(0,0,2,0))

## looking at the trace of Markov chain in the first 100 iterations
plot (mc_mvn([,1],mc_mvn[,2],type="b",pch=20,

main="Markov chain trace of both variables")

## looking at the trace of Markov chain for a variable
plot (mc_mvn[,1],type="b",pch=20, main="Markov chain trace of the 1lst variable")

## looking at the trace of Markov chain for a variable
plot (mc_mvn[, 2], type="b",pch=20, main="Markov chain trace of the 2nd variable")

## looking at the ACF of the samples for a variable
acf (mc_mvn[,1],main="ACF plot of the 1st variable")

title (main="Sampling with Metropolis method for a mixture of two bivariate normal
distributions with locations (0,0) and (6,6)", outer=TRUE)

dev.off ()

## checking the correlation of samples
cat ("The sample correlation is",cor (mc_mvn[—-(1:50),1],mc_mvn[—-(1:50),2]),"\n")
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