## [1] -18.0000000 -17.5959596 -17.1919192
## [4] -16.7878788 -16.3838384 -15.9797980
## [7] -15.5757576 -15.1717172 -14.7676768
## [10] -14.3636364 -13.9595960 -13.5555556
## [13] -13.1515152 -12.7474747 -12.3434343
## [16] -11.9393939 -11.5353535 -11.1313131
## [19] -10.7272727 -10.3232323 -9.9191919
## [22] -9.5151515 -9.1111111 -8.7070707
## [25] -8.3030303 -7.8989899 -7.4949495
## [28] -7.0909091 -6.6868687 -6.2828283
## [31] -5.8787879 -5.4747475 -5.0707071
## [34] -4.6666667 -4.2626263 -3.8585859
## [37] -3.4545455 -3.0505051 -2.6464646
## [40] -2.2424242 -1.8383838 -1.4343434
## [43] -1.0303030 -0.6262626 -0.2222222
## [46] 0.1818182 0.5858586 0.9898990
## [49] 1.3939394 1.7979798 2.2020202
## [52] 2.6060606 3.0101010 3.4141414
## [55] 3.8181818 4.2222222 4.6262626
## [58] 5.0303030 5.4343434 5.8383838
## [61] 6.2424242 6.6464646 7.0505051
## [64] 7.4545455 7.8585859 8.2626263
## [67] 8.6666667 9.0707071 9.4747475
## [70] 9.8787879 10.2828283 10.6868687
## [73] 11.0909091 11.4949495 11.8989899
## [76] 12.3030303 12.7070707 13.1111111
## [79] 13.5151515 13.9191919 14.3232323
## [82] 14.7272727 15.1313131 15.5353535
## [85] 15.9393939 16.3434343 16.7474747
## [88] 17.1515152 17.5555556 17.9595960
## [91] 18.3636364 18.7676768 19.1717172
## [94] 19.5757576 19.9797980 20.3838384
## [97] 20.7878788 21.1919192 21.5959596
## [100] 22.0000000
## [1] 2.676605e-05 3.685906e-05 5.042761e-05
## [4] 6.854197e-05 9.255692e-05 1.241725e-04
## [7] 1.655030e-04 2.191544e-04 2.883095e-04
## [10] 3.768180e-04 4.892923e-04 6.312033e-04
## [13] 8.089733e-04 1.030062e-03 1.303036e-03
## [16] 1.637621e-03 2.044724e-03 2.536414e-03
## [19] 3.125860e-03 3.827216e-03 4.655439e-03
## [22] 5.626033e-03 6.754730e-03 8.057083e-03
## [25] 9.547985e-03 1.124112e-02 1.314837e-02
## [28] 1.527911e-02 1.763958e-02 2.023217e-02
## [31] 2.305477e-02 2.610017e-02 2.935553e-02
## [34] 3.280201e-02 3.641457e-02 4.016188e-02
## [37] 4.400651e-02 4.790533e-02 5.181015e-02
## [40] 5.566856e-02 5.942500e-02 6.302204e-02
## [43] 6.640180e-02 6.950744e-02 7.228477e-02
## [46] 7.468379e-02 7.666022e-02 7.817679e-02
## [49] 7.920446e-02 7.972336e-02 7.972336e-02
## [52] 7.920446e-02 7.817679e-02 7.666022e-02
## [55] 7.468379e-02 7.228477e-02 6.950744e-02
## [58] 6.640180e-02 6.302204e-02 5.942500e-02
## [61] 5.566856e-02 5.181015e-02 4.790533e-02
## [64] 4.400651e-02 4.016188e-02 3.641457e-02
## [67] 3.280201e-02 2.935553e-02 2.610017e-02
## [70] 2.305477e-02 2.023217e-02 1.763958e-02
## [73] 1.527911e-02 1.314837e-02 1.124112e-02
## [76] 9.547985e-03 8.057083e-03 6.754730e-03
## [79] 5.626033e-03 4.655439e-03 3.827216e-03
## [82] 3.125860e-03 2.536414e-03 2.044724e-03
## [85] 1.637621e-03 1.303036e-03 1.030062e-03
## [88] 8.089733e-04 6.312033e-04 4.892923e-04
## [91] 3.768180e-04 2.883095e-04 2.191544e-04
## [94] 1.655030e-04 1.241725e-04 9.255692e-05
## [97] 6.854197e-05 5.042761e-05 3.685906e-05
## [100] 2.676605e-05
## [1] 0.05479929
## [1] 0.1150697
## [1] 0.5
## [1] 0.8413447
## [1] -9.631739
## [1] -6.2242681 -4.4077578 0.7332645
## [4] 2.0000000 3.2667355 8.4077578
## [7] 10.2242681
x <- seq (-11,4, length = 100)
d1 <- dnorm (x)
d2 <- dnorm (x, mean = -6, sd = 2)
plot (x, d1, type = "l", main = "Two Normal Densities",xaxp = c(-11,4,15))
lines (x, d2, col = "red")
for (z in seq (-1, 1.5, length = 20))
{
arrows (x0 = z, y0 = 0, y1 = dnorm (z), code = 0)
arrows (x0= -6 + z * 2, y0 = 0,
y1 = dnorm (-6 + z * 2, mean = -6, sd = 2),
code = 0, col = "red")
}
abline (h = 0)
look at the equivalence of these numbers
## [1] 0.9331928
## [1] 0.9331928
## [1] 0.1586553
## [1] 0.1586553
n <- 20; p <- 0.4
x <- 0:n
binom.x <- dbinom (x, size = n, p = p)
breaks <- c(x - 0.5, n + 0.5)
hist.binom <- list (breaks = breaks, counts = binom.x)
class (hist.binom) <- "histogram"
plot (hist.binom, main = "Binomial and Normal", xlab = "x")
x.norm <- seq (-0.5, n + 0.5, length = 200)
x.dnorm <- dnorm (x.norm, n*p, sqrt (n * p * (1-p)))
lines (x.norm, x.dnorm, col = "red" )
n <- 30; p <- 0.3
x <- 0:n
binom.x <- dbinom (x, size = n, p = p)
breaks <- c(x - 0.5, n + 0.5)
hist.binom <- list (breaks = breaks, counts = binom.x)
class (hist.binom) <- "histogram"
plot (hist.binom, main = "Binomial and Normal", xlab = "x")
x.norm <- seq (-0.5, n + 0.5, length = 200)
x.dnorm <- dnorm (x.norm, n*p, sqrt (n * p * (1-p)))
lines (x.norm, x.dnorm, col = "red" )
n <- 30; p <- 0.8
x <- 0:n
binom.x <- dbinom (x, size = n, p = p)
breaks <- c(x - 0.5, n + 0.5)
hist.binom <- list (breaks = breaks, counts = binom.x)
class (hist.binom) <- "histogram"
plot (hist.binom, main = "Binomial and Normal", xlab = "x")
x.norm <- seq (-0.5, n + 0.5, length = 200)
x.dnorm <- dnorm (x.norm, n*p, sqrt (n * p * (1-p)))
lines (x.norm, x.dnorm, col = "red" )
n <- 300; p <- 0.8
x <- 0:n
binom.x <- dbinom (x, size = n, p = p)
breaks <- c(x - 0.5, n + 0.5)
hist.binom <- list (breaks = breaks, counts = binom.x)
class (hist.binom) <- "histogram"
plot (hist.binom, main = "Binomial and Normal", xlab = "x")
x.norm <- seq (-0.5, n + 0.5, length = 200)
x.dnorm <- dnorm (x.norm, n*p, sqrt (n * p * (1-p)))
lines (x.norm, x.dnorm, col = "red" )
n<- 30
p <- 0.3
mu <- n * p
sigma <- sqrt(n * p * (1-p))
x <- c(3,3)
sum(dbinom (x[1]:x[2], size = n, p = p))
## [1] 0.007203389
## [1] 0.009413254
## [1] 0.7282572
## [1] 0.7201478
## [1] 0.1529514
## [1] 0.1548158
n<- 30
p <- 0.1
mu <- n * p
sigma <- sqrt(n * p * (1-p))
x <- c(3,3)
sum(dbinom (x[1]:x[2], size = n, p = p))
## [1] 0.2360879
## [1] 0.2390933
## [1] 0.5885597
## [1] 0.6195441
## [1] 1.528083e-05
## [1] 1.152224e-07