Lecture 2

Longhai Li, September 9th, 2021
1
set function
A function the nt assigns a number to a set.

egg.

$Q(A)=$ area under tho curve of $f(x)$.

$$
A=[a, b], \quad Q(A)=\int_{a}^{b} f(\pi) d x
$$

$A=[a, b] \cup[c, d]$

$$
Q(A)=\int_{a}^{b} f(x) d x+\int_{c}^{d} f(x) d x
$$

$$
A=\bigcup_{i=1}^{+\infty} A_{i}, Q(A) \approx \sum_{i=1}^{+\infty} \int_{A_{i}} f(x) d x
$$

Tha P. 3.2.

$$
p(c)+p\left(c^{c}\right)=1
$$

听: $\quad s=c \cup c^{c}$

$$
\left\{\begin{array}{l}
p(s)=1 \\
p\left(c \cup c^{c}\right)=p(c)+p\left(c^{c}\right) \\
1=p(c)+p\left(c^{c}\right)
\end{array}\right.
$$

Thm 1. 3.5

$$
A \cap B=A B
$$

$$
\begin{aligned}
c_{1} \cap c_{2}^{c} c_{1} \cap c_{2} & \left(c_{2} n c_{1}\left(c_{1} \cup c_{2}\right) \dot{v}\left(c_{2} n c_{1}\right)\right. \\
p\left(c_{1} \cup c_{2}\right)= & p\left(c_{1} c_{2}^{c}\right)+p\left(c c_{1} c_{2}\right)+p\left(c_{1}^{c} c_{2}\right) \\
= & p\left(c_{1} c_{2}^{c}\right)+p\left(c_{1} c_{2}\right) \rightarrow p\left(c_{1}\right) \\
& p\left(c_{1}^{c} c_{2}\right)+p\left(c_{1}\left(c_{2}\right) \rightarrow p\left(c_{2}\right)\right. \\
& -p\left(c_{1}\left(c_{2}\right)\right. \\
= & p\left(c_{1}\right)+p\left(c_{2}\right)-p\left(c_{1} c_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
P_{1} & =p\left(c_{1}\right)+P\left(C_{2}\right)+p\left(c_{2}\right) \\
P_{2} & =p\left(c_{1} c_{2}\right)+P\left(c_{2} c_{3}\right)+P\left(c_{1} C_{3}\right) \\
P_{3} & =P\left(c_{1} c_{2} c_{3}\right) \\
P\left(c_{1} \cup c_{2} \cup c_{3}\right) & =P_{1}-P_{2}+P_{3}
\end{aligned}
$$

Continuity of a function

If $x_{i} \forall{ }^{2} x_{0} \lim _{i \rightarrow \infty} x_{i}=x_{0}$

$$
\begin{aligned}
\lim _{i \rightarrow \infty} f\left(x_{i}\right) & =f\left(x_{x_{0}}\right) \\
& =f\left(\lim _{i=} x_{i}\right.
\end{aligned}
$$

$$
=f\left(\lim _{i \rightarrow+\infty} x_{i}\right)
$$

f is cont. at
to

If $x_{i} \uparrow x_{0}$,

$$
\lim _{i \rightarrow+\infty} f\left(x_{i}\right)=f\left(x_{0}\right)
$$

If $x_{i} \searrow x_{0}$

$$
\lim _{i \rightarrow+\infty} f\left(x_{i}\right) \neq f\left(x_{0}\right)
$$

Axiom3 of prob: Continury of prat c_{1}, c_{2}, \ldots mutually exclusive

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{+\infty} C_{i}\right)=\sum_{i=1}^{+\infty} P\left(C_{i}\right) \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& c_{1} \subseteq c_{2} \subseteq c_{3} \subseteq \\
& \operatorname{tim}_{i \rightarrow+\infty} p\left(c_{i}\right)=p\left(\lim _{i \rightarrow+\infty} c_{i}\right)
\end{aligned}
$$

\square_{4}^{\prime}
proiff:

$$
\begin{aligned}
& c_{1} \subseteq C_{2} \subseteq \cdots \\
& \lim _{i \rightarrow+\infty} C_{i} \\
& =\varliminf_{i=1} C_{i} \\
& \therefore P\left(\lim _{i \rightarrow+\infty} C_{i}\right) \\
& =\lim _{i \rightarrow+\infty} P\left(C_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Lim} c_{r}=\cup^{+\infty} c_{i}=c_{1} \dot{U} c_{2} c_{1}^{c} \dot{U} c_{3} c_{2}^{c} \dot{U} \ldots \\
& P\left(\bigcup_{i=1}^{+\infty} C_{i}\right)=\sum_{i=1}^{+\infty} \frac{P\left(C_{i} C_{i-1}^{c}\right)}{R_{R}}, C_{0}=\phi \\
& P\left(\lim _{i \rightarrow+\infty} C_{i}\right)=\sum_{i=1}^{+\infty} P\left(C_{i} C_{i}^{R_{i}} c_{1-1}^{U_{R}}\right) \\
& \neq \lim _{i \rightarrow+\infty} P\left(C_{i}\right)
\end{aligned}
$$

Boole's iner tratioy

$$
P\left(\bigcup_{i=1}^{+\infty} A_{i}\right)^{i n} \leq \sum_{i=1}^{+\infty} P\left(A_{i}\right)
$$

calcel sub-adelitiving.
pf:

$$
\begin{aligned}
& C_{i}=\bigcup_{k=1}^{i} A_{k} \\
& C_{i} \bigcup_{i=1}^{+\infty} C_{i}=\bigcup_{i=1}^{+\infty} A_{i} A_{3}
\end{aligned}
$$

$O_{a_{2}} \ldots \quad p\left(A_{1} \cup \cdots \cdot A_{0}\right)$

$$
\begin{aligned}
& \text { so, } P\left(\prod_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow+\infty} p\left(c_{i}\right) \\
& \leqslant \lim _{i \rightarrow+\infty} \sum_{k=1}^{i} p\left(A_{k}\right)=\sum_{k=1}^{+\infty} p\left(A_{k}\right)
\end{aligned}
$$

