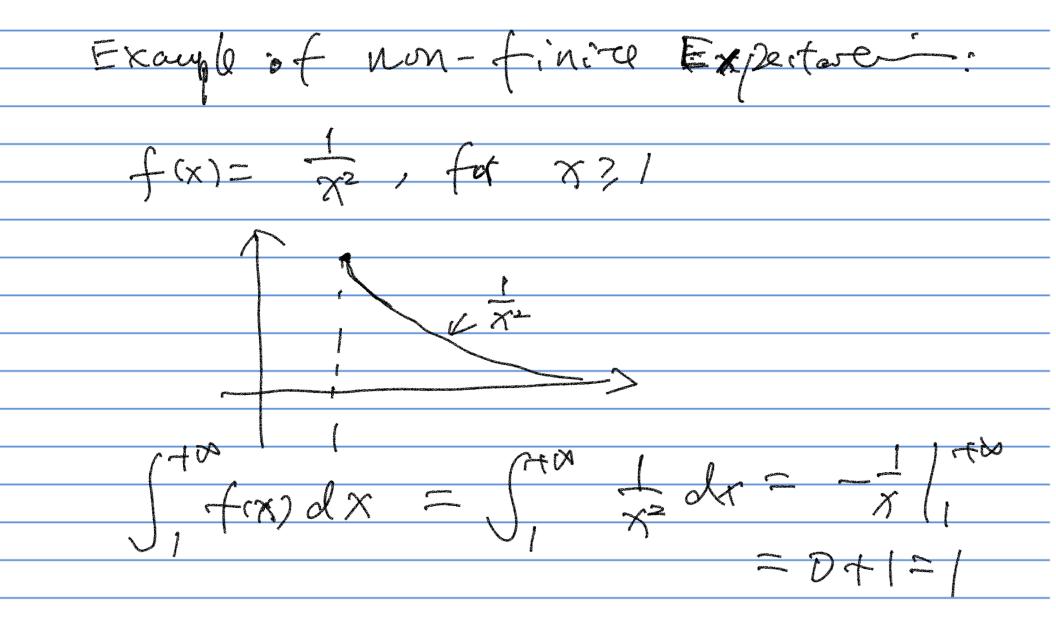
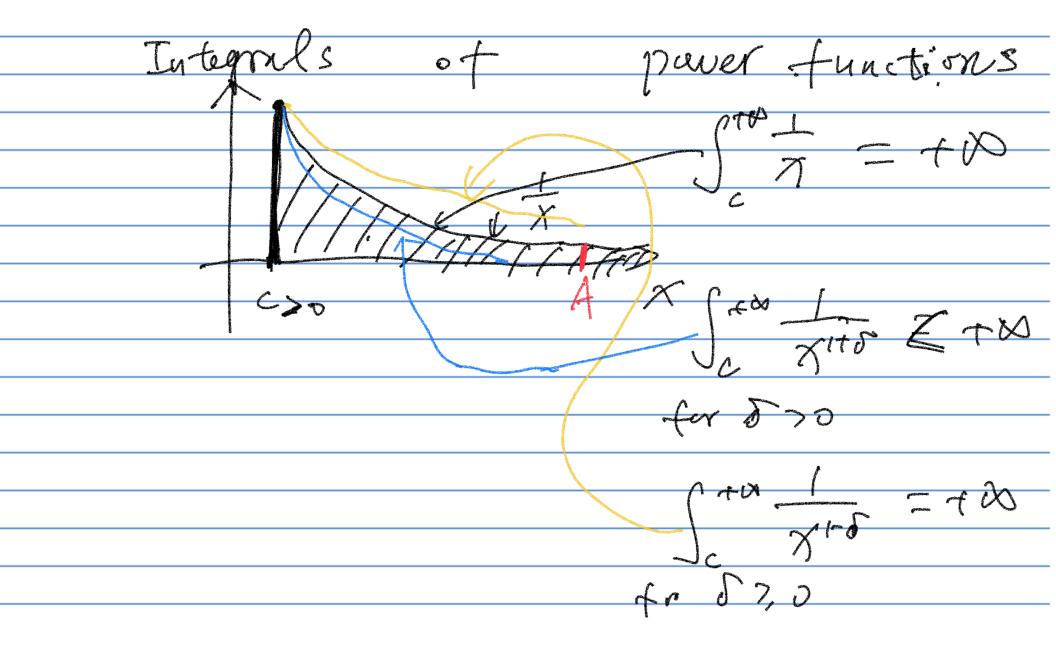
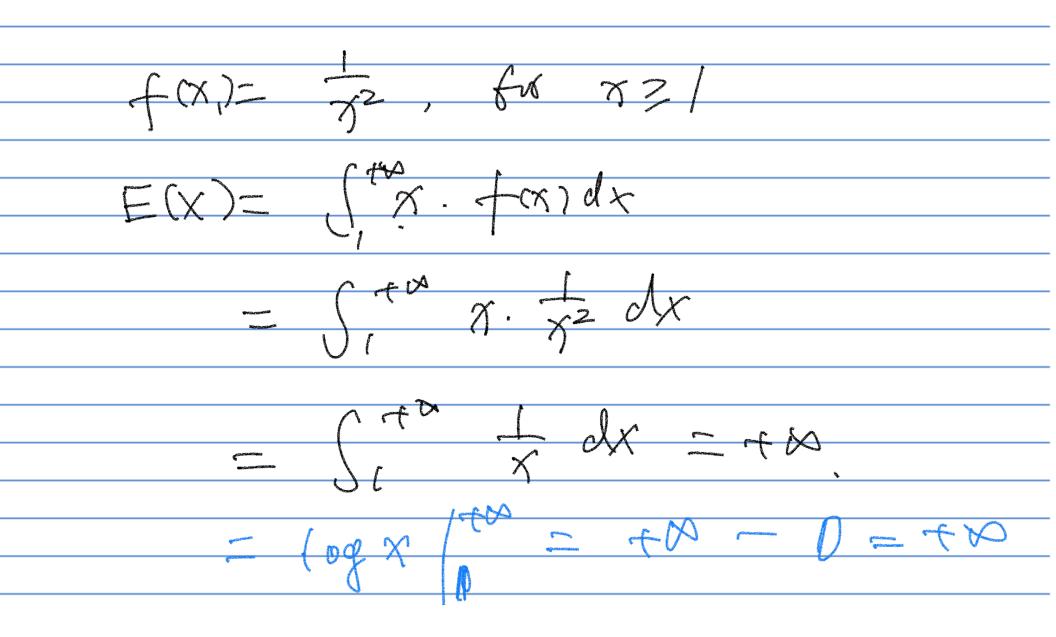
Lecture 8

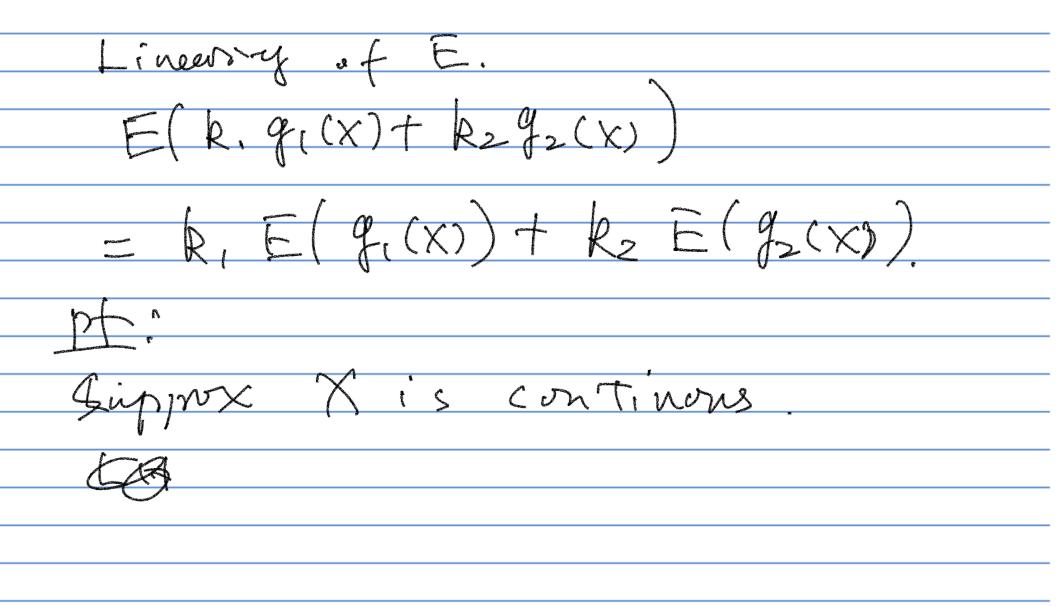
Longhai Li, October 5, 2021

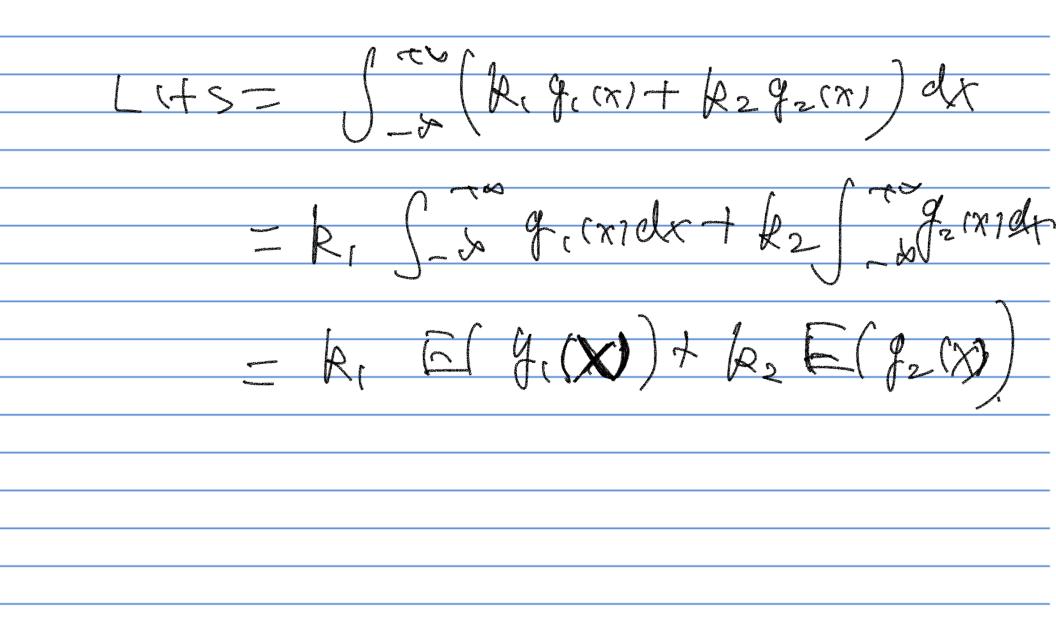
Define
$$f \in E(x)$$
:
1. χ is discrete
 $E(q(x)) = \sum q(x) \cdot p(x)$
all possible χ
2. χ is continuous
 $E(q(x)) = \int_{-\pi}^{+\pi} q(x) f(x) dM$

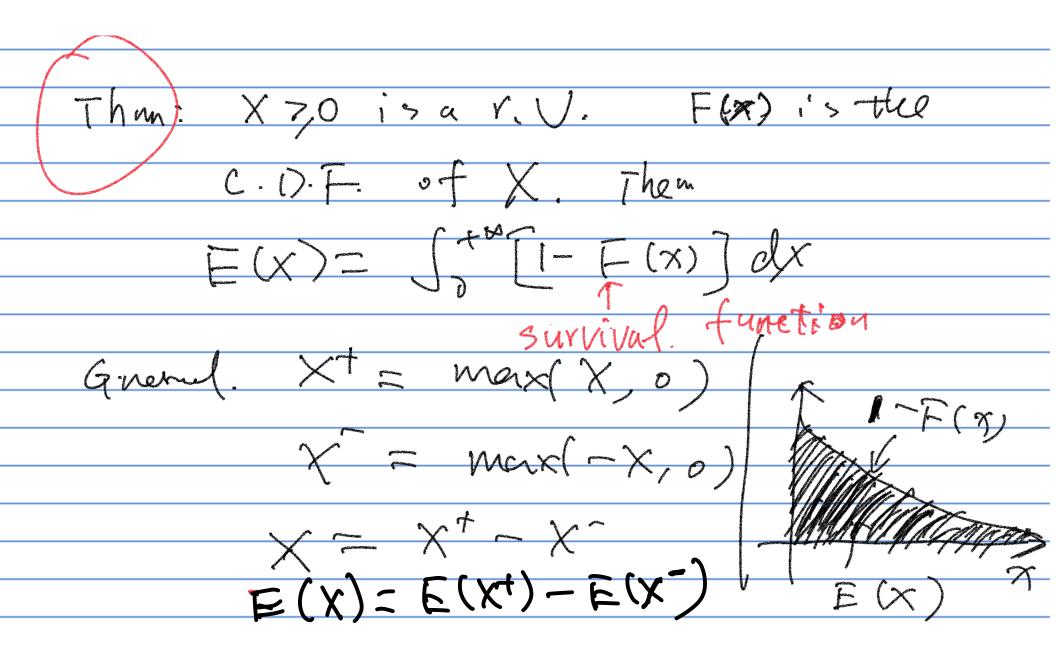




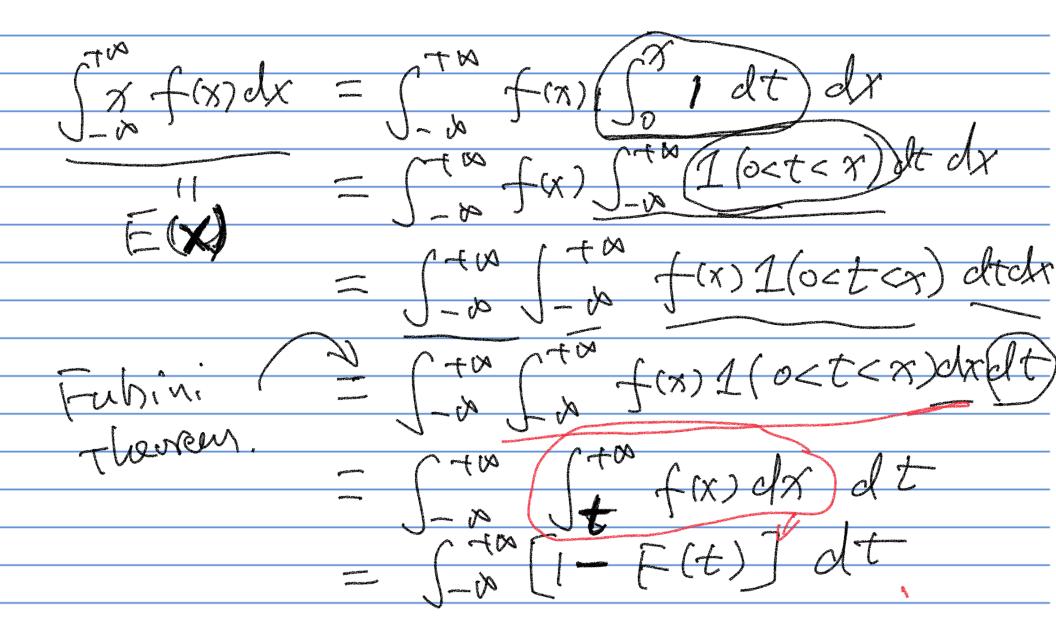








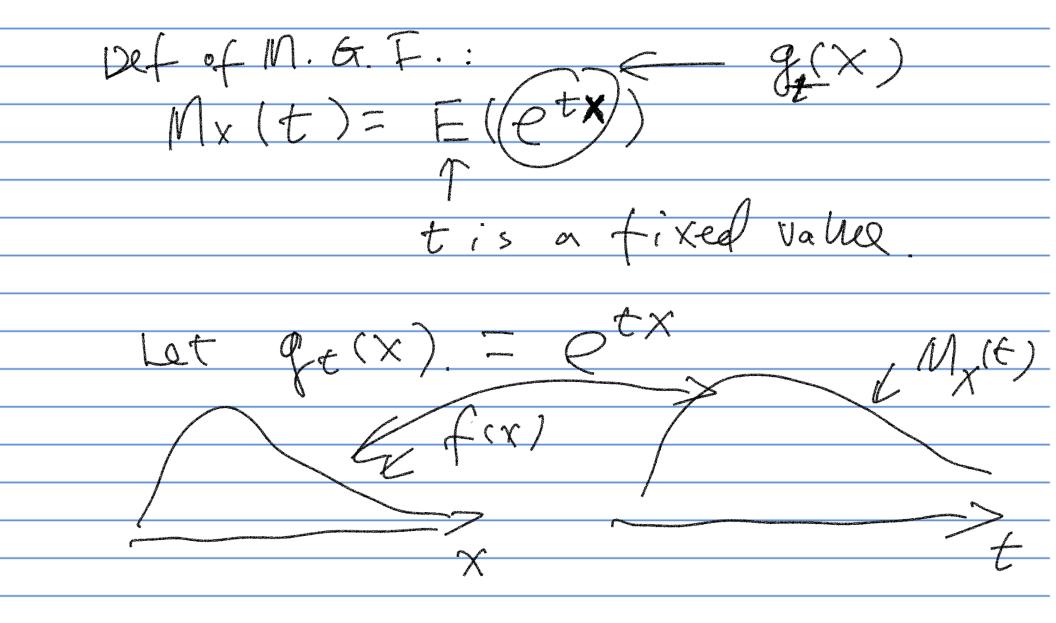


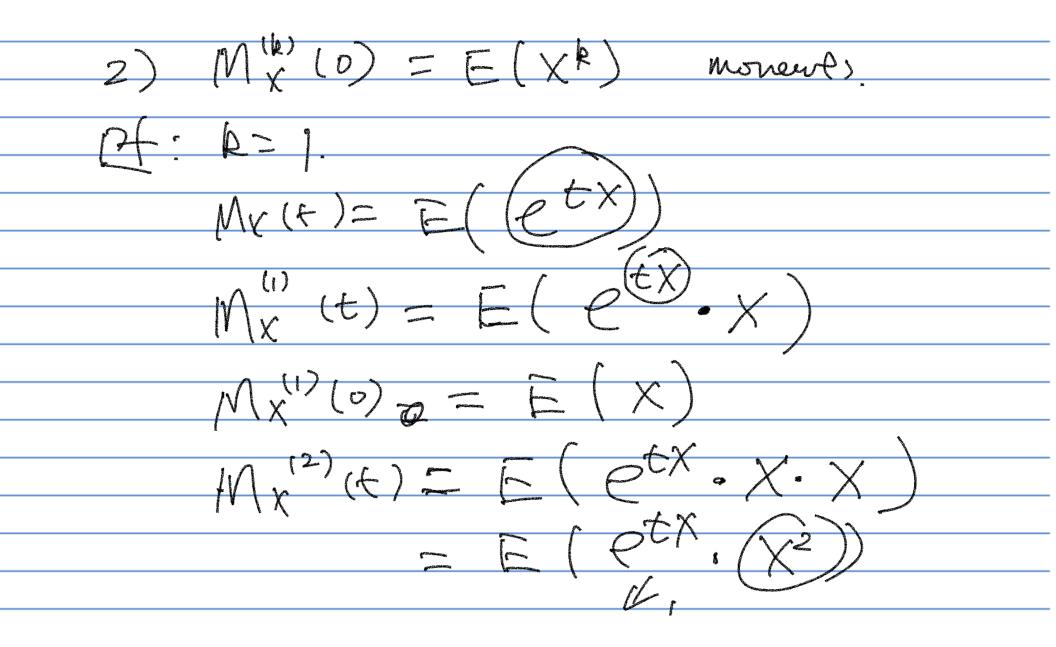


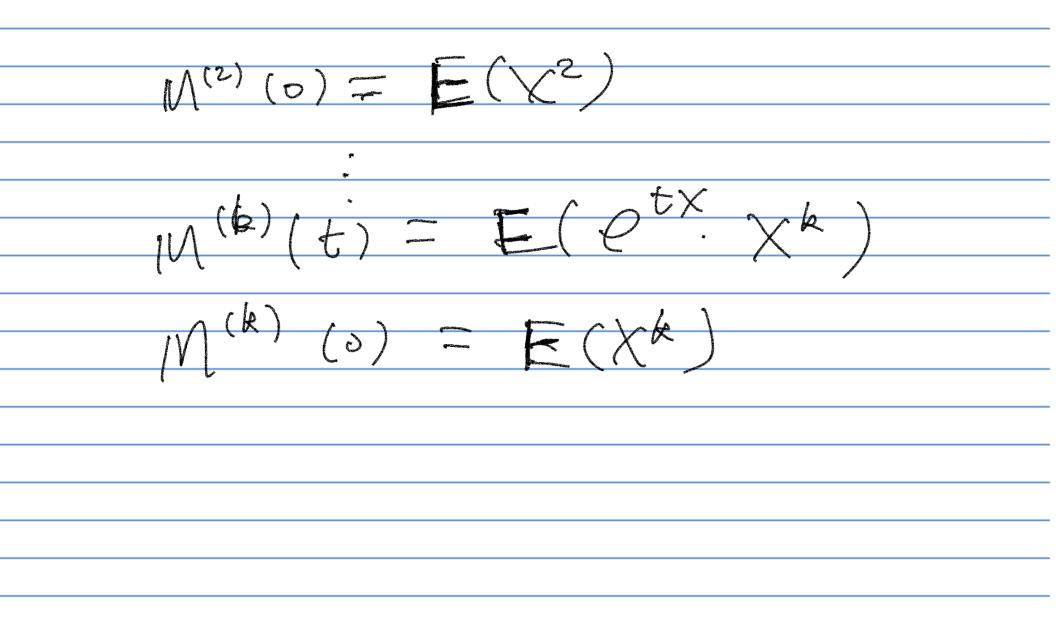
A note: $E(x) = \int_{0}^{+\infty} p(x_{2}t) dt$ $= \int_{0}^{+\alpha} p(X,t) dt$ $p(X_{2t}) = p(X_{2t}) for almost anything$ [tre integrals
 [tre integrals
 [XZC) under
 p(XZC) p(XZC) & p(XZC)
 p(XZC) p(XZC) p(XZC)
 p(XZC) p(XZC)
 p(XZC) p(XZC) p(XZC)
 p(XZC) p(XZC)
 p(XZC) p(XZC)
 p(XZC) p(XZC)
 p(XZC) p(XZC)
 p(XZC) p(XZC)
 p(XZC) p(XZC)
 p(XZC) p(XZC)
 p(XZC)
 p(XZC) p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(XZC)
 p(-> and the same.

Sec 1.9. Special Exp.
Mean:
$$E(X) = U$$

Variance:
 $V(X) = E((X-u)^2)$
 $= E(X^2 - 2uX + u^2)$
 $= E(X^2) - U^2$
 $= E(X^2) - [E(X)]^2$
i) $E(X), V(X)$ may be inter-finite,
2) $V(X) > 0 = \sum E(X^2) \ge [E(X)]^2$



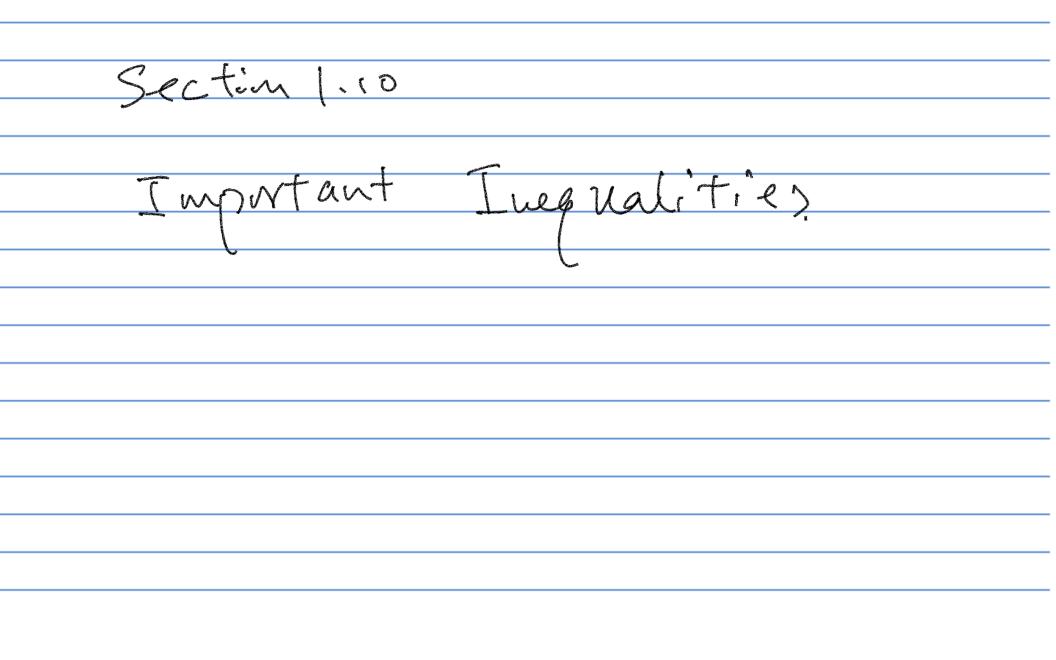




Thm: (Thm 1.9.1.) pet X & Y be two r.v. Fx(x) = Fy(y) for un x & y ES MR(t)= (Mr 16) for te(-h,h) for some U>D $f_{x(x)} \in \mathcal{F}$

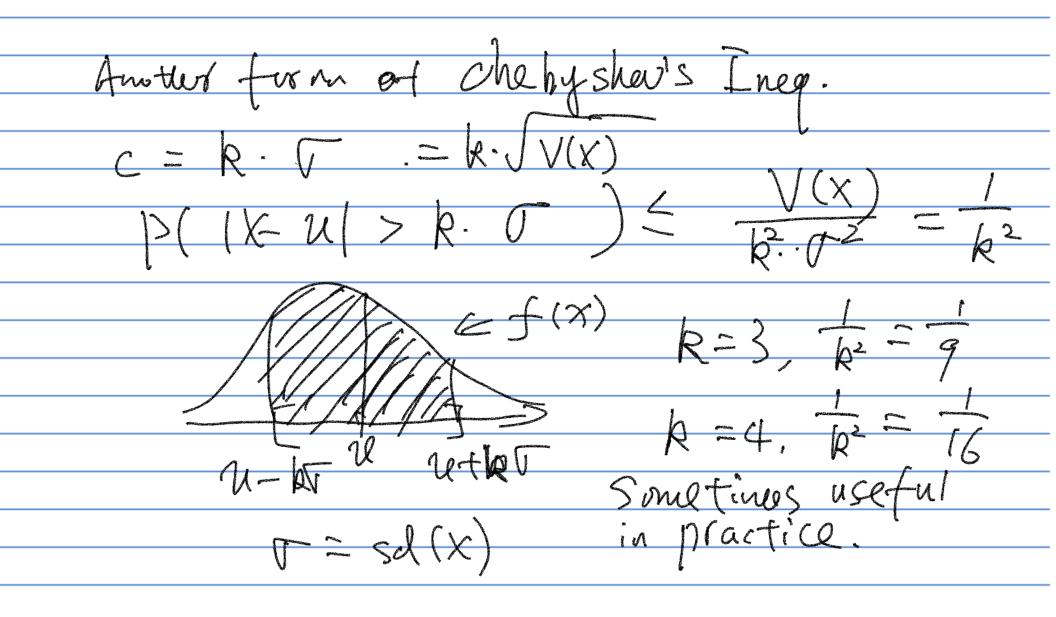
Characteristic Function (always exact)
i is the imaginary number
$$(i^2 = -1)$$

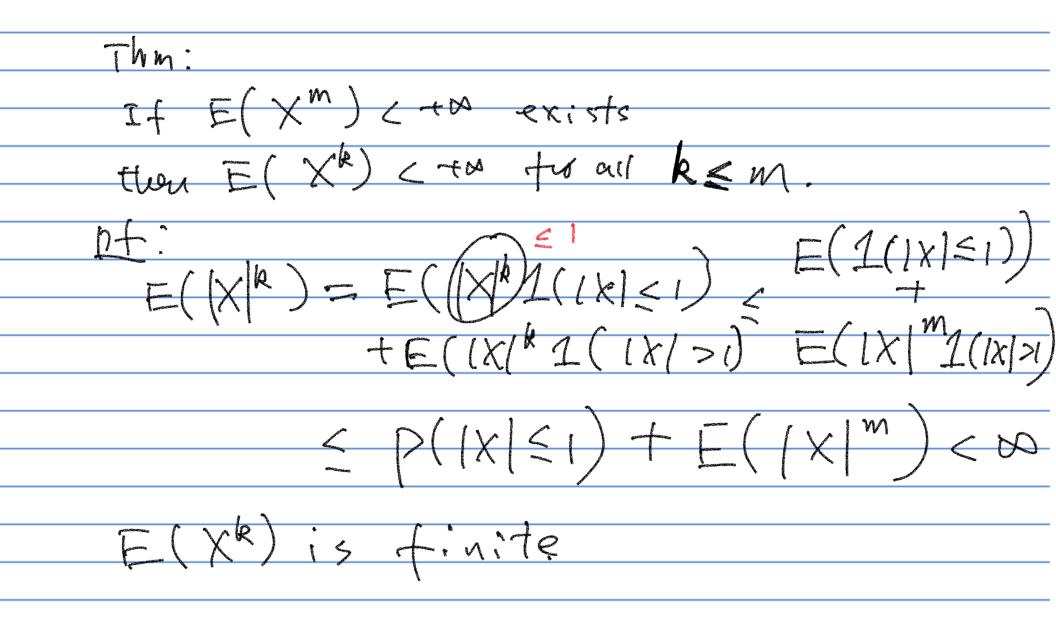
 $C_X(t) = E(e^{itx})$
 $= E(\cos(tx) + i \sin(tx))$
 $= E(\cos(tx)) + i E(\sin(tx))$
 $\leq -f^{2} = (\cos(tx)) + i E(\sin(tx))$



Markov Inegality Thum: $X = P(X = C) \leq E(X)$ Pexza for any cro. $Pf: E(x) = \int_{0}^{+\infty} p(x \ge t) dt$ $7, \int_{a}^{C} P(X; t) dt$ (P(x)c' 1-F(t) $(c) \in E(X)$

Chepyshev's Inequality: Suppose V(X) exists, $\mathcal{A} = E(X)$ $P(|X-u|^{2}c) \leq \frac{V(x)}{r^{2}}$ 14-21 by Marber's ing.





exist finile (to g. 1.2.1 non-exosterret, you-finile. 400 undefined: to - to