Generate Designs with Computer
Randomized Complete Block Design
## $book
## plots block treatments
## 1 101 1 D
## 2 102 1 A
## 3 103 1 B
## 4 104 1 C
## 5 201 2 C
## 6 202 2 D
## 7 203 2 A
## 8 204 2 B
## 9 301 3 D
## 10 302 3 A
## 11 303 3 C
## 12 304 3 B
## 13 401 4 D
## 14 402 4 B
## 15 403 4 A
## 16 404 4 C
## 17 501 5 D
## 18 502 5 A
## 19 503 5 B
## 20 504 5 C
##
## $sketch
## [,1] [,2] [,3] [,4]
## [1,] "D" "A" "B" "C"
## [2,] "C" "D" "A" "B"
## [3,] "D" "A" "C" "B"
## [4,] "D" "B" "A" "C"
## [5,] "D" "A" "B" "C"
## $book
## plots block treatments2
## 1 101 1 C
## 2 102 1 A
## 3 103 1 D
## 4 104 1 B
## 5 105 1 B
## 6 106 1 C
## 7 107 1 D
## 8 108 1 A
## 9 201 2 D
## 10 202 2 D
## 11 203 2 C
## 12 204 2 A
## 13 205 2 B
## 14 206 2 C
## 15 207 2 A
## 16 208 2 B
## 17 301 3 B
## 18 302 3 A
## 19 303 3 D
## 20 304 3 A
## 21 305 3 C
## 22 306 3 C
## 23 307 3 D
## 24 308 3 B
##
## $sketch
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] "C" "A" "D" "B" "B" "C" "D" "A"
## [2,] "D" "D" "C" "A" "B" "C" "A" "B"
## [3,] "B" "A" "D" "A" "C" "C" "D" "B"
Latin-Square Design
## $book
## plots row col treatments
## 1 101 1 1 A
## 2 102 1 2 C
## 3 103 1 3 B
## 4 104 1 4 D
## 5 201 2 1 B
## 6 202 2 2 D
## 7 203 2 3 C
## 8 204 2 4 A
## 9 301 3 1 D
## 10 302 3 2 B
## 11 303 3 3 A
## 12 304 3 4 C
## 13 401 4 1 C
## 14 402 4 2 A
## 15 403 4 3 D
## 16 404 4 4 B
##
## $sketch
## [,1] [,2] [,3] [,4]
## [1,] "A" "C" "B" "D"
## [2,] "B" "D" "C" "A"
## [3,] "D" "B" "A" "C"
## [4,] "C" "A" "D" "B"
4 |
104 |
1 |
4 |
A |
6 |
202 |
2 |
2 |
A |
9 |
301 |
3 |
1 |
A |
15 |
403 |
4 |
3 |
A |
1 |
101 |
1 |
1 |
B |
7 |
203 |
2 |
3 |
B |
10 |
302 |
3 |
2 |
B |
16 |
404 |
4 |
4 |
B |
2 |
102 |
1 |
2 |
C |
8 |
204 |
2 |
4 |
C |
11 |
303 |
3 |
3 |
C |
13 |
401 |
4 |
1 |
C |
3 |
103 |
1 |
3 |
D |
5 |
201 |
2 |
1 |
D |
12 |
304 |
3 |
4 |
D |
14 |
402 |
4 |
2 |
D |
## col
## row 1 2 3 4
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## treatments
## row A B C D
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## treatments
## col A B C D
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
Graeco-Latin Design
## $book
## plots row col treat1 treat2
## 1 101 1 1 D d
## 2 102 1 2 C b
## 3 103 1 3 A c
## 4 104 1 4 B a
## 5 201 2 1 C c
## 6 202 2 2 D a
## 7 203 2 3 B d
## 8 204 2 4 A b
## 9 301 3 1 A a
## 10 302 3 2 B c
## 11 303 3 3 D b
## 12 304 3 4 C d
## 13 401 4 1 B b
## 14 402 4 2 A d
## 15 403 4 3 C a
## 16 404 4 4 D c
##
## $sketch
## [,1] [,2] [,3] [,4]
## [1,] "D d" "C b" "A c" "B a"
## [2,] "C c" "D a" "B d" "A b"
## [3,] "A a" "B c" "D b" "C d"
## [4,] "B b" "A d" "C a" "D c"
## col
## row 1 2 3 4
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## treat1
## row A B C D
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## treat2
## row a b c d
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## treat1
## col A B C D
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## treat2
## col a b c d
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
Balanced Incomplete Block Design
##
## Parameters BIB
## ==============
## Lambda : 2
## treatmeans : 4
## Block size : 3
## Blocks : 4
## Replication: 3
##
## Efficiency factor 0.8888889
##
## <<< Book >>>
## $book
## plots block treatments
## 1 101 1 C
## 2 102 1 A
## 3 103 1 B
## 4 201 2 D
## 5 202 2 B
## 6 203 2 C
## 7 301 3 C
## 8 302 3 D
## 9 303 3 A
## 10 401 4 B
## 11 402 4 A
## 12 403 4 D
##
## $sketch
## [,1] [,2] [,3]
## [1,] "C" "A" "B"
## [2,] "D" "B" "C"
## [3,] "C" "D" "A"
## [4,] "B" "A" "D"
## block
## 1 2 3 4
## 3 3 3 3
## treatments
## A B C D
## 3 3 3 3
## treatments
## block A B C D
## 1 1 1 1 0
## 2 0 1 1 1
## 3 1 0 1 1
## 4 1 1 0 1
##
## Parameters BIB
## ==============
## Lambda : 1
## treatmeans : 4
## Block size : 2
## Blocks : 6
## Replication: 3
##
## Efficiency factor 0.6666667
##
## <<< Book >>>
## $book
## plots block treatments
## 1 101 1 C
## 2 102 1 A
## 3 201 2 B
## 4 202 2 C
## 5 301 3 D
## 6 302 3 C
## 7 401 4 A
## 8 402 4 D
## 9 501 5 A
## 10 502 5 B
## 11 601 6 D
## 12 602 6 B
##
## $sketch
## [,1] [,2]
## [1,] "C" "A"
## [2,] "B" "C"
## [3,] "D" "C"
## [4,] "A" "D"
## [5,] "A" "B"
## [6,] "D" "B"
## block
## 1 2 3 4 5 6
## 2 2 2 2 2 2
## treatments
## A B C D
## 3 3 3 3
## treatments
## block A B C D
## 1 1 0 1 0
## 2 0 1 1 0
## 3 0 0 1 1
## 4 1 0 0 1
## 5 1 1 0 0
## 6 0 1 0 1
Analyzing Randomized Complete Block Design
This is the example 4.1 from the textbook. A medical device manufacturer produces vascular grafts (artificial veins). These grafts are produced by extruding billets of polytetrafluoroethylene (PTFE) resin combined with a lubricant into tubes. Frequently, some of the tubes in a production run contain small, hard protrusions on the external surface. These defects are known as “flicks.” The defect is cause for rejection of the unit. The product developer responsible for the vascular grafts suspects that the extrusion pressure affects the occur- rence of yield and therefore intends to conduct an experi- ment to investigate this hypothesis. However, the resin is manufactured by an external supplier and is delivered to the medical device manufacturer in batches. The engineer also suspects that there may be significant batch-to-batch variation. Therefore, the product developer decided to investigate the effect of four different levels of extrusion pressure on yield using a randomized com- plete block design considering batches of resin as blocks. Note that there are four levels of extrusion pressure (treatments) and six batches of resin (blocks). Remember that the order in which the extrusion pressures are tested within each block is random. The response variable is yield, or the percentage of tubes in the production run that did not contain any flicks.
Read Data
## The following object is masked from package:datasets:
##
## pressure
90.3 |
1 |
1 |
89.2 |
2 |
1 |
98.2 |
3 |
1 |
93.9 |
4 |
1 |
87.4 |
5 |
1 |
97.9 |
6 |
1 |
92.5 |
1 |
2 |
89.5 |
2 |
2 |
90.6 |
3 |
2 |
94.7 |
4 |
2 |
87.0 |
5 |
2 |
95.8 |
6 |
2 |
85.5 |
1 |
3 |
90.8 |
2 |
3 |
89.6 |
3 |
3 |
86.2 |
4 |
3 |
88.0 |
5 |
3 |
93.4 |
6 |
3 |
82.5 |
1 |
4 |
89.5 |
2 |
4 |
85.6 |
3 |
4 |
87.4 |
4 |
4 |
78.9 |
5 |
4 |
90.7 |
6 |
4 |
## 1 2 3 4
## 1 90.3 92.5 85.5 82.5
## 2 89.2 89.5 90.8 89.5
## 3 98.2 90.6 89.6 85.6
## 4 93.9 94.7 86.2 87.4
## 5 87.4 87.0 88.0 78.9
## 6 97.9 95.8 93.4 90.7
## Pressure1 Pressure2 Pressure3 Pressure4 Average
## Batch1 90.30000 92.50000 85.50000 82.50000 87.70000
## Batch2 89.20000 89.50000 90.80000 89.50000 89.75000
## Batch3 98.20000 90.60000 89.60000 85.60000 91.00000
## Batch4 93.90000 94.70000 86.20000 87.40000 90.55000
## Batch5 87.40000 87.00000 88.00000 78.90000 85.32500
## Batch6 97.90000 95.80000 93.40000 90.70000 94.45000
## Average 92.81667 91.68333 88.91667 85.76667 89.79583
Visualize the Data
par (mfrow = c(2,2))
#boxplot
plot(yield ~ batch, data=vascular, main = "Block")
plot(yield ~ pressure, data=vascular, main = "Pressure")
#interaction plot
with (vascular, interaction.plot(batch, pressure, yield, type = "b"))
with (vascular, interaction.plot( pressure,batch, yield, type = "b"))
Linear Models
Effect Model
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
2 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
3 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
4 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
5 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
6 |
1 |
1 |
-1 |
-1 |
-1 |
-1 |
-1 |
1 |
0 |
0 |
1 |
2 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
2 |
2 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
3 |
2 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
4 |
2 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
5 |
2 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
6 |
2 |
1 |
-1 |
-1 |
-1 |
-1 |
-1 |
0 |
1 |
0 |
1 |
3 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
2 |
3 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
3 |
3 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
4 |
3 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
5 |
3 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
6 |
3 |
1 |
-1 |
-1 |
-1 |
-1 |
-1 |
0 |
0 |
1 |
1 |
4 |
1 |
1 |
0 |
0 |
0 |
0 |
-1 |
-1 |
-1 |
2 |
4 |
1 |
0 |
1 |
0 |
0 |
0 |
-1 |
-1 |
-1 |
3 |
4 |
1 |
0 |
0 |
1 |
0 |
0 |
-1 |
-1 |
-1 |
4 |
4 |
1 |
0 |
0 |
0 |
1 |
0 |
-1 |
-1 |
-1 |
5 |
4 |
1 |
0 |
0 |
0 |
0 |
1 |
-1 |
-1 |
-1 |
6 |
4 |
1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
##
## Call:
## lm(formula = yield ~ batch + pressure, data = vascular, contrasts = list(batch = contr.sum,
## pressure = contr.sum))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5708 -1.3333 -0.3167 1.1417 4.1792
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 89.79583 0.55248 162.531 < 2e-16 ***
## batch1 -2.09583 1.23539 -1.696 0.11044
## batch2 -0.04583 1.23539 -0.037 0.97089
## batch3 1.20417 1.23539 0.975 0.34516
## batch4 0.75417 1.23539 0.610 0.55069
## batch5 -4.47083 1.23539 -3.619 0.00253 **
## pressure1 3.02083 0.95693 3.157 0.00652 **
## pressure2 1.88750 0.95693 1.972 0.06728 .
## pressure3 -0.87917 0.95693 -0.919 0.37277
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.707 on 15 degrees of freedom
## Multiple R-squared: 0.7712, Adjusted R-squared: 0.6492
## F-statistic: 6.321 on 8 and 15 DF, p-value: 0.00113
## Pressure1 Pressure2 Pressure3 Pressure4 Average
## Batch1 90.30000 92.50000 85.50000 82.50000 87.70000
## Batch2 89.20000 89.50000 90.80000 89.50000 89.75000
## Batch3 98.20000 90.60000 89.60000 85.60000 91.00000
## Batch4 93.90000 94.70000 86.20000 87.40000 90.55000
## Batch5 87.40000 87.00000 88.00000 78.90000 85.32500
## Batch6 97.90000 95.80000 93.40000 90.70000 94.45000
## Average 92.81667 91.68333 88.91667 85.76667 89.79583
## [1] 89.79583
## Pressure1 Pressure2 Pressure3 Pressure4
## 3.0208333 1.8875000 -0.8791667 -4.0291667
## Batch1 Batch2 Batch3 Batch4 Batch5 Batch6
## -2.09583333 -0.04583333 1.20416667 0.75416667 -4.47083333 4.65416667
Treatment Difference Model
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
4 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
5 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
6 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
2 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
2 |
2 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
3 |
2 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
4 |
2 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
5 |
2 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
6 |
2 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
3 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
2 |
3 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
3 |
3 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
4 |
3 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
5 |
3 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
6 |
3 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
4 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
2 |
4 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
3 |
4 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
4 |
4 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
5 |
4 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
6 |
4 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
##
## Call:
## lm(formula = yield ~ batch + pressure, data = vascular)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5708 -1.3333 -0.3167 1.1417 4.1792
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 90.721 1.657 54.735 < 2e-16 ***
## batch2 2.050 1.914 1.071 0.301043
## batch3 3.300 1.914 1.724 0.105201
## batch4 2.850 1.914 1.489 0.157175
## batch5 -2.375 1.914 -1.241 0.233684
## batch6 6.750 1.914 3.527 0.003050 **
## pressure2 -1.133 1.563 -0.725 0.479457
## pressure3 -3.900 1.563 -2.496 0.024713 *
## pressure4 -7.050 1.563 -4.512 0.000414 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.707 on 15 degrees of freedom
## Multiple R-squared: 0.7712, Adjusted R-squared: 0.6492
## F-statistic: 6.321 on 8 and 15 DF, p-value: 0.00113
## Pressure1 Pressure2 Pressure3 Pressure4 Average
## Batch1 90.30000 92.50000 85.50000 82.50000 87.70000
## Batch2 89.20000 89.50000 90.80000 89.50000 89.75000
## Batch3 98.20000 90.60000 89.60000 85.60000 91.00000
## Batch4 93.90000 94.70000 86.20000 87.40000 90.55000
## Batch5 87.40000 87.00000 88.00000 78.90000 85.32500
## Batch6 97.90000 95.80000 93.40000 90.70000 94.45000
## Average 92.81667 91.68333 88.91667 85.76667 89.79583
## Pressure2 Pressure3 Pressure4
## -1.133333 -3.900000 -7.050000
## Batch2 Batch3 Batch4 Batch5 Batch6
## 2.050 3.300 2.850 -2.375 6.750
## Batch1
## 90.72083
Visualize the fitted model
##
## Call:
## lm(formula = yield ~ batch + pressure, data = vascular)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5708 -1.3333 -0.3167 1.1417 4.1792
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 90.721 1.657 54.735 < 2e-16 ***
## batch2 2.050 1.914 1.071 0.301043
## batch3 3.300 1.914 1.724 0.105201
## batch4 2.850 1.914 1.489 0.157175
## batch5 -2.375 1.914 -1.241 0.233684
## batch6 6.750 1.914 3.527 0.003050 **
## pressure2 -1.133 1.563 -0.725 0.479457
## pressure3 -3.900 1.563 -2.496 0.024713 *
## pressure4 -7.050 1.563 -4.512 0.000414 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.707 on 15 degrees of freedom
## Multiple R-squared: 0.7712, Adjusted R-squared: 0.6492
## F-statistic: 6.321 on 8 and 15 DF, p-value: 0.00113
par (mfrow = c(1,2))
with (vascular,
interaction.plot(batch, pressure, yield, type = "b", col = "black",
main = "Original Data", ylim = c(78,100))
)
with (vascular,
interaction.plot(batch, pressure, fit_vas$fitted.values, type = "b", col = "red",
main = "Predicted/Fitted Values", ylim = c(78,100)))
ANOVA
Using lm and anova functions
pressure |
3 |
178.1712 |
59.39042 |
3.931339 |
0.023448 |
Residuals |
20 |
302.1383 |
15.10692 |
NA |
NA |
batch |
5 |
192.2521 |
38.45042 |
2.402671 |
0.0777009 |
Residuals |
18 |
288.0575 |
16.00319 |
NA |
NA |
batch |
5 |
192.2521 |
38.45042 |
5.248666 |
0.0055317 |
pressure |
3 |
178.1712 |
59.39042 |
8.107077 |
0.0019163 |
Residuals |
15 |
109.8863 |
7.32575 |
NA |
NA |
pressure |
3 |
178.1712 |
59.39042 |
8.107077 |
0.0019163 |
batch |
5 |
192.2521 |
38.45042 |
5.248666 |
0.0055317 |
Residuals |
15 |
109.8863 |
7.32575 |
NA |
NA |
Effect Comparison
Standard Error of the Difference Between Two Means
\[se(\hat \mu_i-\hat \mu_j)=\hat\sigma\times \sqrt{1/n_i+1/n_j}\] where \(\hat\sigma=\sqrt{MSE}\) from the treatment+block model. This SE will be multiplied by the t quantile or Tukey quantiles to obtain the LSD CI or family-wise CI.
Effect Comparison for Fixed Pair with LSD
## Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
## (Intercept) 90.720833 1.657455 54.7350287 1.091578e-18 87.1880522 94.253615
## batch2 2.050000 1.913864 1.0711316 3.010429e-01 -2.0293043 6.129304
## batch3 3.300000 1.913864 1.7242605 1.052012e-01 -0.7793043 7.379304
## batch4 2.850000 1.913864 1.4891341 1.571751e-01 -1.2293043 6.929304
## batch5 -2.375000 1.913864 -1.2409451 2.336842e-01 -6.4543043 1.704304
## batch6 6.750000 1.913864 3.5268966 3.050449e-03 2.6706957 10.829304
## pressure2 -1.133333 1.562663 -0.7252575 4.794567e-01 -4.4640714 2.197405
## pressure3 -3.900000 1.562663 -2.4957391 2.471273e-02 -7.2307380 -0.569262
## pressure4 -7.050000 1.562663 -4.5115284 4.136854e-04 -10.3807380 -3.719262
## [1] 1.913864
## [1] 1.562663
## [1] 4.079304
## [1] 3.330738
Tukey Multiple Comparison of Effects
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = yield ~ pressure + batch, data = vascular)
##
## $pressure
## diff lwr upr p adj
## 2-1 -1.133333 -5.637161 3.370495 0.8854831
## 3-1 -3.900000 -8.403828 0.603828 0.1013084
## 4-1 -7.050000 -11.553828 -2.546172 0.0020883
## 3-2 -2.766667 -7.270495 1.737161 0.3245644
## 4-2 -5.916667 -10.420495 -1.412839 0.0086667
## 4-3 -3.150000 -7.653828 1.353828 0.2257674
##
## $batch
## diff lwr upr p adj
## 2-1 2.050 -4.1680828 8.2680828 0.8853016
## 3-1 3.300 -2.9180828 9.5180828 0.5376297
## 4-1 2.850 -3.3680828 9.0680828 0.6757699
## 5-1 -2.375 -8.5930828 3.8430828 0.8105903
## 6-1 6.750 0.5319172 12.9680828 0.0297368
## 3-2 1.250 -4.9680828 7.4680828 0.9845521
## 4-2 0.800 -5.4180828 7.0180828 0.9980198
## 5-2 -4.425 -10.6430828 1.7930828 0.2483499
## 6-2 4.700 -1.5180828 10.9180828 0.1986961
## 4-3 -0.450 -6.6680828 5.7680828 0.9998784
## 5-3 -5.675 -11.8930828 0.5430828 0.0837504
## 6-3 3.450 -2.7680828 9.6680828 0.4925715
## 5-4 -5.225 -11.4430828 0.9930828 0.1263042
## 6-4 3.900 -2.3180828 10.1180828 0.3674672
## 6-5 9.125 2.9069172 15.3430828 0.0027838
## [1] 6.218083
## [1] 4.503828
Model Checking
Checking the treatment or block only model
##
## Shapiro-Wilk normality test
##
## data: fit_batch$residuals
## W = 0.98098, p-value = 0.9132
##
## Shapiro-Wilk normality test
##
## data: fit_pressure$residuals
## W = 0.95664, p-value = 0.3747
From the boxplots of residuals versus un-accounted variables, we can see clearly that there are still signals uncaptured. However, the normality test for the residuals of each model may tell you that the model is not bad good. To compare (not check) the goodness of fits of different models, another criteria, AIC, is often used. AIC is a criterion related to sum squares of residuals and the number of parameters.
## [1] 141.7516
## [1] 138.897
## [1] 124.6225
Note: AIC is not required for this course. ### Checking the treatment+block model
##
## Shapiro-Wilk normality test
##
## data: fit_vas$res
## W = 0.95631, p-value = 0.3689
vascular$batch |
5 |
13.44405 |
2.688810 |
1.84921 |
0.1538582 |
Residuals |
18 |
26.17257 |
1.454032 |
NA |
NA |
vascular$pressure |
3 |
0.1339583 |
0.0446528 |
0.0226189 |
0.9952375 |
Residuals |
20 |
39.4826620 |
1.9741331 |
NA |
NA |
Analyzing Latin Square Design Experiments
A hardness testing machine presses a pointed rod (the ‘tip’) into a metal specimen (a ‘coupon’), with a known force. The depth of the depression is a measure of the hardness of the specimen. It is feared that, depending on the kind of tip used, the machine might give different readings. The experimenter wants 4 observations on each of the 4 types of tips. Suppose that the ‘coupon’ and the ‘operator’ of the testing machine are thought to be factors. Suppose there are p = 4 operators, p = 4 coupons, and p = 4 tips. The first two are nuisance factors, the last is the treatment factor.
1 |
1 |
A |
9.3 |
1 |
2 |
B |
9.4 |
1 |
3 |
C |
9.2 |
1 |
4 |
D |
9.7 |
2 |
1 |
B |
9.3 |
2 |
2 |
A |
9.4 |
2 |
3 |
D |
9.6 |
2 |
4 |
C |
9.4 |
3 |
1 |
C |
9.5 |
3 |
2 |
D |
10.0 |
3 |
3 |
A |
9.6 |
3 |
4 |
B |
9.8 |
4 |
1 |
D |
10.2 |
4 |
2 |
C |
9.7 |
4 |
3 |
B |
9.9 |
4 |
4 |
A |
10.0 |
## tip
## operator A B C D
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## coupon
## operator 1 2 3 4
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## tip
## coupon A B C D
## 1 1 1 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## look at the data
par (mfrow = c(1,3))
with (hardness, interaction.plot(tip,operator,y, type = "b"))
with (hardness, interaction.plot(tip,coupon,y, type = "b"))
with (hardness, interaction.plot(operator,tip,y, type = "b"))
##
## Call:
## lm(formula = y ~ operator + coupon + tip, data = hardness)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.075 -0.025 0.000 0.025 0.050
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.300e+00 4.564e-02 203.753 9.43e-13 ***
## operator2 2.500e-02 4.082e-02 0.612 0.562764
## operator3 3.250e-01 4.082e-02 7.961 0.000209 ***
## operator4 5.500e-01 4.082e-02 13.472 1.04e-05 ***
## coupon2 5.000e-02 4.082e-02 1.225 0.266570
## coupon3 9.433e-16 4.082e-02 0.000 1.000000
## coupon4 1.500e-01 4.082e-02 3.674 0.010402 *
## tipB 2.500e-02 4.082e-02 0.612 0.562764
## tipC -1.250e-01 4.082e-02 -3.062 0.022172 *
## tipD 3.000e-01 4.082e-02 7.348 0.000325 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05774 on 6 degrees of freedom
## Multiple R-squared: 0.9845, Adjusted R-squared: 0.9612
## F-statistic: 42.33 on 9 and 6 DF, p-value: 9.592e-05
operator |
3 |
0.825 |
0.2750000 |
82.5 |
0.0000287 |
0.6395349 |
coupon |
3 |
0.060 |
0.0200000 |
6.0 |
0.0307958 |
0.0465116 |
tip |
3 |
0.385 |
0.1283333 |
38.5 |
0.0002585 |
0.2984496 |
Residuals |
6 |
0.020 |
0.0033333 |
NA |
NA |
0.0155039 |
Analyzing Balanced Incomplete Block Design
Suppose that a chemical engineer thinks that the time of reaction for a chemical process is a function of the type of catalyst employed. Four catalysts are currently being investigated. The experimental procedure consists of selecting a batch of raw material, loading the pilot plant, applying each catalyst in a separate run of the pilot plant, and observing the reaction time. Because variations in the batches of raw material may affect the performance of the catalysts, the engineer decides to use batches of raw material as blocks. However, each batch is only large enough to permit three catalysts to be run. Therefore a randomized incomplete block design must be used.
1 |
1 |
73 |
1 |
2 |
74 |
1 |
4 |
71 |
2 |
2 |
75 |
2 |
3 |
67 |
2 |
4 |
72 |
3 |
1 |
73 |
3 |
2 |
75 |
3 |
3 |
68 |
4 |
1 |
75 |
4 |
3 |
72 |
4 |
4 |
75 |
## Treatment
## Block 1 2 3 4
## 1 1 0 1 1
## 2 1 1 1 0
## 3 0 1 1 1
## 4 1 1 0 1
Fitting Linear Model and ANOVA
Block |
3 |
55.00 |
18.333333 |
28.20513 |
0.0014678 |
0.6790123 |
Treatment |
3 |
22.75 |
7.583333 |
11.66667 |
0.0107387 |
0.2808642 |
Residuals |
5 |
3.25 |
0.650000 |
NA |
NA |
0.0401235 |
## making new predictions on complete grid of blocks and treatment (for understanding the estimating process)
new.treat <- rep (as.character(1:4), 4)
new.block <- rep (as.character(1:4), each = 4)
new.data <- data.frame (Treatment=new.treat, Block = new.block)
new.pred <- predict (g, newdata = new.data)
## drawing interaction plots to look at the prediction
par (mfrow = c(1,2))
interaction.plot(Block, Treatment, y, type ="p", main = "Original Data",ylim = range (y, new.pred))
## plot predicted values
interaction.plot(new.block, new.treat, new.pred,
type = "b",col ="red", ylim = range (y, new.pred),
xlab = "Block", ylab = "y", main = "Predicted Values in BIBD")
## show original points on the previous plot
points (as.numeric(Block), y, pch = as.character(Treatment ))
Treatment |
3 |
11.66667 |
3.888889 |
5.982906 |
0.0414634 |
Block |
3 |
66.08333 |
22.027778 |
33.888889 |
0.0009528 |
Residuals |
5 |
3.25000 |
0.650000 |
NA |
NA |
We see that the ordering makes differences in anova, although it does not change least square regression fitting.
Effect Comparison in BIBD
BIBD Effect Estimations is not exactly equal to treatment and block mean differences
## 1 2 3 4
## 0.0000000 -1.3333333 -0.6666667 1.3333333
## 1 2 3 4
## 0.000000 1.000000 -4.666667 -1.000000
##
## Call:
## lm(formula = y ~ Block + Treatment, data = catalyst)
##
## Residuals:
## 1 2 3 4 5 6 7
## 7.500e-01 -3.750e-01 -3.750e-01 3.750e-01 -7.500e-01 3.750e-01 1.250e-01
## 8 9 10 11 12
## 1.188e-14 -1.250e-01 -8.750e-01 8.750e-01 1.077e-14
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 72.2500 0.6158 117.334 8.53e-10 ***
## Block2 2.1250 0.6982 3.043 0.02864 *
## Block3 -4.7500 0.6982 -6.803 0.00105 **
## Block4 -0.8750 0.6982 -1.253 0.26554
## Treatment2 0.2500 0.6982 0.358 0.73492
## Treatment3 0.6250 0.6982 0.895 0.41173
## Treatment4 3.6250 0.6982 5.192 0.00349 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8062 on 5 degrees of freedom
## Multiple R-squared: 0.9599, Adjusted R-squared: 0.9117
## F-statistic: 19.94 on 6 and 5 DF, p-value: 0.002396
## 2.5 % 97.5 %
## (Intercept) 70.6671254 73.8328746
## Block2 0.3301889 3.9198111
## Block3 -6.5448111 -2.9551889
## Block4 -2.6698111 0.9198111
## Treatment2 -1.5448111 2.0448111
## Treatment3 -1.1698111 2.4198111
## Treatment4 1.8301889 5.4198111
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = y ~ Block + Treatment, data = catalyst)
##
## $Block
## diff lwr upr p adj
## 2-1 1.000000 -1.428998 3.428998 0.4917130
## 3-1 -4.666667 -7.095665 -2.237669 0.0032954
## 4-1 -1.000000 -3.428998 1.428998 0.4917130
## 3-2 -5.666667 -8.095665 -3.237669 0.0013433
## 4-2 -2.000000 -4.428998 0.428998 0.0975482
## 4-3 3.666667 1.237669 6.095665 0.0096068
##
## $Treatment
## diff lwr upr p adj
## 2-1 0.2222222 -2.2067758 2.651220 0.9852477
## 3-1 0.5555556 -1.8734425 2.984554 0.8323947
## 4-1 3.2222222 0.7932242 5.651220 0.0165827
## 3-2 0.3333333 -2.0956647 2.762331 0.9540767
## 4-2 3.0000000 0.5710020 5.428998 0.0222012
## 4-3 2.6666667 0.2376686 5.095665 0.0352698
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = y ~ Treatment + Block, data = catalyst)
##
## $Treatment
## diff lwr upr p adj
## 2-1 -1.3333333 -3.7623314 1.095665 0.2923571
## 3-1 -0.6666667 -3.0956647 1.762331 0.7501716
## 4-1 1.3333333 -1.0956647 3.762331 0.2923571
## 3-2 0.6666667 -1.7623314 3.095665 0.7501716
## 4-2 2.6666667 0.2376686 5.095665 0.0352698
## 4-3 2.0000000 -0.4289980 4.428998 0.0975482
##
## $Block
## diff lwr upr p adj
## 2-1 1.8888889 -0.5401092 4.3178869 0.1167979
## 3-1 -4.2222222 -6.6512203 -1.7932242 0.0051736
## 4-1 -0.7777778 -3.2067758 1.6512203 0.6622480
## 3-2 -6.1111111 -8.5401092 -3.6821131 0.0009414
## 4-2 -2.6666667 -5.0956647 -0.2376686 0.0352698
## 4-3 3.4444444 1.0154464 5.8734425 0.0125455
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = y ~ Block + Treatment, data = catalyst)
##
## $Block
## diff lwr upr p adj
## 2-1 1.000000 -1.428998 3.428998 0.4917130
## 3-1 -4.666667 -7.095665 -2.237669 0.0032954
## 4-1 -1.000000 -3.428998 1.428998 0.4917130
## 3-2 -5.666667 -8.095665 -3.237669 0.0013433
## 4-2 -2.000000 -4.428998 0.428998 0.0975482
## 4-3 3.666667 1.237669 6.095665 0.0096068
##
## $Treatment
## diff lwr upr p adj
## 2-1 0.2222222 -2.2067758 2.651220 0.9852477
## 3-1 0.5555556 -1.8734425 2.984554 0.8323947
## 4-1 3.2222222 0.7932242 5.651220 0.0165827
## 3-2 0.3333333 -2.0956647 2.762331 0.9540767
## 4-2 3.0000000 0.5710020 5.428998 0.0222012
## 4-3 2.6666667 0.2376686 5.095665 0.0352698
Analysis of Covariance (Accounting for Uncontrollable Continuous Covariates)
Textbook section 15.3
Consider an experiment (Flurry, 1939) to study the breaking strength (y) in grams of three types of starch film. The breaking strength is also known to depend on the thickness of the film (x) as measured in 10-4 inches. Because film thickness varies from run to run and its values cannot be controlled or chosen prior to the experiment, it should be treated as a covariate whose effect on strength needs to be accounted for before comparing the three types of starch.
791.7 |
7.7 |
canna |
610.0 |
6.3 |
canna |
710.0 |
8.6 |
canna |
940.7 |
11.8 |
canna |
990.0 |
12.4 |
canna |
916.2 |
12.0 |
canna |
835.0 |
11.4 |
canna |
724.3 |
10.4 |
canna |
611.1 |
9.2 |
canna |
621.7 |
9.0 |
canna |
735.4 |
9.5 |
canna |
990.0 |
12.5 |
canna |
862.7 |
11.7 |
canna |
731.0 |
8.0 |
corn |
710.0 |
7.3 |
corn |
604.7 |
7.2 |
corn |
508.8 |
6.1 |
corn |
393.0 |
6.4 |
corn |
416.0 |
6.4 |
corn |
400.0 |
6.9 |
corn |
335.6 |
5.8 |
corn |
306.4 |
5.3 |
corn |
426.0 |
6.7 |
corn |
382.5 |
5.8 |
corn |
340.8 |
5.7 |
corn |
436.7 |
6.1 |
corn |
333.3 |
6.2 |
corn |
382.3 |
6.3 |
corn |
397.7 |
6.0 |
corn |
619.1 |
6.8 |
corn |
857.3 |
7.9 |
corn |
592.5 |
7.2 |
corn |
983.3 |
13.0 |
potato |
958.8 |
13.3 |
potato |
747.8 |
10.7 |
potato |
866.0 |
12.2 |
potato |
810.8 |
11.6 |
potato |
950.0 |
9.7 |
potato |
1282.0 |
10.8 |
potato |
1233.8 |
10.1 |
potato |
1660.0 |
12.7 |
potato |
746.0 |
9.8 |
potato |
650.0 |
10.0 |
potato |
992.5 |
13.8 |
potato |
896.7 |
13.3 |
potato |
873.9 |
12.4 |
potato |
924.4 |
12.2 |
potato |
1050.0 |
14.1 |
potato |
973.3 |
13.7 |
potato |
Analysis 1-1: Considering ‘Type’ only, no ‘thickness’
type |
2 |
2246204 |
1123102.19 |
32.6191 |
0 |
0.586473 |
Residuals |
46 |
1583818 |
34430.82 |
NA |
NA |
0.413527 |
Analysis 1-2: Considering ‘thickness’ only, no ‘Type’
## (Intercept) thickness
## -43.46202 83.13356
thickness |
1 |
2553357 |
2553357.20 |
94.00102 |
0 |
0.6666691 |
Residuals |
47 |
1276665 |
27163.08 |
NA |
NA |
0.3333309 |
Analysis 2-1: Considering “thickness” and then “type”
## (Intercept) thickness typecanna typepotato
## 74.59478 62.50120 83.66605 154.02614
## (Intercept) thickness typecanna typepotato
## 1 1 7.7 1 0
## 2 1 6.3 1 0
## 3 1 8.6 1 0
## 4 1 11.8 1 0
## 5 1 12.4 1 0
## 6 1 12.0 1 0
## 7 1 11.4 1 0
## 8 1 10.4 1 0
## 9 1 9.2 1 0
## 10 1 9.0 1 0
## 11 1 9.5 1 0
## 12 1 12.5 1 0
## 13 1 11.7 1 0
## 14 1 8.0 0 0
## 15 1 7.3 0 0
## 16 1 7.2 0 0
## 17 1 6.1 0 0
## 18 1 6.4 0 0
## 19 1 6.4 0 0
## 20 1 6.9 0 0
## 21 1 5.8 0 0
## 22 1 5.3 0 0
## 23 1 6.7 0 0
## 24 1 5.8 0 0
## 25 1 5.7 0 0
## 26 1 6.1 0 0
## 27 1 6.2 0 0
## 28 1 6.3 0 0
## 29 1 6.0 0 0
## 30 1 6.8 0 0
## 31 1 7.9 0 0
## 32 1 7.2 0 0
## 33 1 13.0 0 1
## 34 1 13.3 0 1
## 35 1 10.7 0 1
## 36 1 12.2 0 1
## 37 1 11.6 0 1
## 38 1 9.7 0 1
## 39 1 10.8 0 1
## 40 1 10.1 0 1
## 41 1 12.7 0 1
## 42 1 9.8 0 1
## 43 1 10.0 0 1
## 44 1 13.8 0 1
## 45 1 13.3 0 1
## 46 1 12.4 0 1
## 47 1 12.2 0 1
## 48 1 14.1 0 1
## 49 1 13.7 0 1
## attr(,"assign")
## [1] 0 1 2 2
## attr(,"contrasts")
## attr(,"contrasts")$type
## [1] "contr.treatment"
## look at the prediction to understand the fitting
plot (strength~thickness,pch = as.numeric(type), col =type,
main = "Varying Intercept, One Slope");
legend (5.5,1700, legend= levels(type), pch = 1:3, col=1:3)
#abline (fit_starch1, lwd=2)
coef.fit2 <- coefficients(fit_starch2)
abline (a = coef.fit2[1], b= coef.fit2[2], col = 1)
abline (a = coef.fit2[1]+ coef.fit2[3], b = coef.fit2[2] ,col =2)
abline (a = coef.fit2[1]+ coef.fit2[4], b = coef.fit2[2] ,col =3)
thickness |
1 |
2553357.20 |
2553357.20 |
94.185852 |
0.0000000 |
0.6666691 |
type |
2 |
56724.87 |
28362.44 |
1.046207 |
0.3596542 |
0.0148106 |
Residuals |
45 |
1219939.85 |
27109.77 |
NA |
NA |
0.3185203 |
Analysis 2-2: Considering “type” then “thickness” (wrong for this question)
## (Intercept) typecanna typepotato thickness
## 74.59478 83.66605 154.02614 62.50120
Note that linear model estimation is the same as analysis 2-1, but anova will be different
type |
2 |
2246204.4 |
1123102.19 |
41.42794 |
0.0000000 |
0.5864730 |
thickness |
1 |
363877.7 |
363877.69 |
13.42238 |
0.0006526 |
0.0950067 |
Residuals |
45 |
1219939.9 |
27109.77 |
NA |
NA |
0.3185203 |
Note that the ordering of variables matters in producing ANOVA table.
Analyzing Starch Data Again: Varying Slopes (Interaction)
##
## Call:
## lm(formula = strength ~ thickness * type)
##
## Residuals:
## Min 1Q Median 3Q Max
## -262.56 -83.31 -18.84 47.20 659.67
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -751.04 323.32 -2.323 0.02499 *
## thickness 188.91 49.20 3.839 0.00040 ***
## typecanna 942.01 399.62 2.357 0.02303 *
## typepotato 1338.49 446.49 2.998 0.00451 **
## thickness:typecanna -129.62 54.17 -2.393 0.02116 *
## thickness:typepotato -156.40 55.44 -2.821 0.00721 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 154.7 on 43 degrees of freedom
## Multiple R-squared: 0.7314, Adjusted R-squared: 0.7002
## F-statistic: 23.42 on 5 and 43 DF, p-value: 2.774e-11
(Intercept) |
-751.0374 |
thickness |
188.9074 |
typecanna |
942.0086 |
typepotato |
1338.4945 |
thickness:typecanna |
-129.6155 |
thickness:typepotato |
-156.3974 |
1 |
7.7 |
1 |
0 |
7.7 |
0.0 |
1 |
6.3 |
1 |
0 |
6.3 |
0.0 |
1 |
8.6 |
1 |
0 |
8.6 |
0.0 |
1 |
11.8 |
1 |
0 |
11.8 |
0.0 |
1 |
12.4 |
1 |
0 |
12.4 |
0.0 |
1 |
12.0 |
1 |
0 |
12.0 |
0.0 |
1 |
11.4 |
1 |
0 |
11.4 |
0.0 |
1 |
10.4 |
1 |
0 |
10.4 |
0.0 |
1 |
9.2 |
1 |
0 |
9.2 |
0.0 |
1 |
9.0 |
1 |
0 |
9.0 |
0.0 |
1 |
9.5 |
1 |
0 |
9.5 |
0.0 |
1 |
12.5 |
1 |
0 |
12.5 |
0.0 |
1 |
11.7 |
1 |
0 |
11.7 |
0.0 |
1 |
8.0 |
0 |
0 |
0.0 |
0.0 |
1 |
7.3 |
0 |
0 |
0.0 |
0.0 |
1 |
7.2 |
0 |
0 |
0.0 |
0.0 |
1 |
6.1 |
0 |
0 |
0.0 |
0.0 |
1 |
6.4 |
0 |
0 |
0.0 |
0.0 |
1 |
6.4 |
0 |
0 |
0.0 |
0.0 |
1 |
6.9 |
0 |
0 |
0.0 |
0.0 |
1 |
5.8 |
0 |
0 |
0.0 |
0.0 |
1 |
5.3 |
0 |
0 |
0.0 |
0.0 |
1 |
6.7 |
0 |
0 |
0.0 |
0.0 |
1 |
5.8 |
0 |
0 |
0.0 |
0.0 |
1 |
5.7 |
0 |
0 |
0.0 |
0.0 |
1 |
6.1 |
0 |
0 |
0.0 |
0.0 |
1 |
6.2 |
0 |
0 |
0.0 |
0.0 |
1 |
6.3 |
0 |
0 |
0.0 |
0.0 |
1 |
6.0 |
0 |
0 |
0.0 |
0.0 |
1 |
6.8 |
0 |
0 |
0.0 |
0.0 |
1 |
7.9 |
0 |
0 |
0.0 |
0.0 |
1 |
7.2 |
0 |
0 |
0.0 |
0.0 |
1 |
13.0 |
0 |
1 |
0.0 |
13.0 |
1 |
13.3 |
0 |
1 |
0.0 |
13.3 |
1 |
10.7 |
0 |
1 |
0.0 |
10.7 |
1 |
12.2 |
0 |
1 |
0.0 |
12.2 |
1 |
11.6 |
0 |
1 |
0.0 |
11.6 |
1 |
9.7 |
0 |
1 |
0.0 |
9.7 |
1 |
10.8 |
0 |
1 |
0.0 |
10.8 |
1 |
10.1 |
0 |
1 |
0.0 |
10.1 |
1 |
12.7 |
0 |
1 |
0.0 |
12.7 |
1 |
9.8 |
0 |
1 |
0.0 |
9.8 |
1 |
10.0 |
0 |
1 |
0.0 |
10.0 |
1 |
13.8 |
0 |
1 |
0.0 |
13.8 |
1 |
13.3 |
0 |
1 |
0.0 |
13.3 |
1 |
12.4 |
0 |
1 |
0.0 |
12.4 |
1 |
12.2 |
0 |
1 |
0.0 |
12.2 |
1 |
14.1 |
0 |
1 |
0.0 |
14.1 |
1 |
13.7 |
0 |
1 |
0.0 |
13.7 |
## looking at the prediction to understand the fitting
par (mfrow = c(1,1))
plot (strength~thickness,pch = as.numeric(type), col =type,
main = "Varying Intercept, Varying Slope");
legend (5.5,1700, legend=levels(type), pch = 1:3, col=1:3 )
#abline (fit_starch1, lwd=2)
coef.fit2 <- coefficients(fit_starch2)
abline (a = coef.fit5[1], b= coef.fit5[2], col = 1)
abline (a = coef.fit5[1]+ coef.fit5[3], b = coef.fit5[2] + coef.fit5[5] ,col =2)
abline (a = coef.fit5[1]+ coef.fit5[4], b = coef.fit5[2] + coef.fit5[6],col =3)
thickness |
1 |
2553357.20 |
2553357.20 |
106.741403 |
0.0000000 |
0.6666691 |
type |
2 |
56724.87 |
28362.44 |
1.185673 |
0.3153306 |
0.0148106 |
thickness:type |
2 |
191338.42 |
95669.21 |
3.999388 |
0.0255292 |
0.0499575 |
Residuals |
43 |
1028601.43 |
23920.96 |
NA |
NA |
0.2685628 |
The most resonable way to account for the contribution of “type” should be comparing these two models.
47 |
1276665 |
NA |
NA |
NA |
NA |
43 |
1028601 |
4 |
248063.3 |
2.59253 |
0.0497493 |
## [1] 0.1943055
Which model should we choose to interpret? Using AIC
Notes: not required for this course
AIC is an estimate of the leave-one-out predictive accuracy, a value related to SSE but penalized by the number of model parameters.
## [1] 640.6986
## [1] 645.0581
## [1] 643.2851
## [1] 655.8489
The model considering the interaction between thickness and type has the lowest AIC value, which means that it has the best out-of-sample predictive ability. Our conclusion should be based on this model.
The model considering thickness+type has lower predictive accuracy than the model considering thickness only. This is another approach to conclude that the type of starch does not affect the mean of the strengthness of films. After considering the interaction between the thickness and the type of starch, we discover that the type of starch affects the slope between the strengthness and thickness.