Functions and Package

## Loading required package: DoE.base
## Loading required package: grid
## Loading required package: conf.design
## Registered S3 method overwritten by 'DoE.base':
##   method           from       
##   factorize.factor conf.design
## 
## Attaching package: 'DoE.base'
## The following objects are masked from 'package:stats':
## 
##     aov, lm
## The following object is masked from 'package:graphics':
## 
##     plot.design
## The following object is masked from 'package:base':
## 
##     lengths
## 
## Attaching package: 'FrF2'
## The following object is masked from 'package:BsMD':
## 
##     DanielPlot

1 One Half Factorial Design and Analysis

1.1 Full \(2^5\) Factorial Design

## creating full factorial with 32 runs ...
##     A  B  C  D  E
## 1   1  1  1 -1  1
## 2   1 -1 -1 -1  1
## 3   1  1  1 -1 -1
## 4   1  1  1  1 -1
## 5   1  1  1  1  1
## 6  -1 -1 -1 -1 -1
## 7  -1 -1 -1 -1  1
## 8  -1  1  1 -1  1
## 9  -1 -1  1  1 -1
## 10 -1 -1 -1  1  1
## 11 -1  1  1  1 -1
## 12 -1 -1  1 -1  1
## 13  1 -1 -1  1  1
## 14 -1 -1 -1  1 -1
## 15  1 -1 -1 -1 -1
## 16 -1 -1  1 -1 -1
## 17  1 -1  1 -1  1
## 18 -1  1 -1  1 -1
## 19 -1 -1  1  1  1
## 20 -1  1 -1  1  1
## 21  1  1 -1 -1  1
## 22  1 -1 -1  1 -1
## 23 -1  1 -1 -1 -1
## 24  1 -1  1 -1 -1
## 25  1  1 -1  1  1
## 26  1  1 -1 -1 -1
## 27 -1  1 -1 -1  1
## 28 -1  1  1 -1 -1
## 29  1 -1  1  1  1
## 30 -1  1  1  1  1
## 31  1  1 -1  1 -1
## 32  1 -1  1  1 -1
## class=design, type= full factorial
##    A1 B1 C1 D1 E1 A1.B1.C1.D1 A1.C1.D1.E1 A1.B1.C1 D1.E1 A1.B1.C1.D1.E1
## 7  -1 -1 -1 -1  1           1          -1       -1    -1              1
## 15  1 -1 -1 -1 -1          -1          -1        1     1              1
## 23 -1  1 -1 -1 -1          -1           1        1     1              1
## 21  1  1 -1 -1  1           1           1       -1    -1              1
## 16 -1 -1  1 -1 -1          -1          -1        1     1              1
## 17  1 -1  1 -1  1           1          -1       -1    -1              1
## 8  -1  1  1 -1  1           1           1       -1    -1              1
## 3   1  1  1 -1 -1          -1           1        1     1              1
## 14 -1 -1 -1  1 -1          -1          -1       -1    -1              1
## 13  1 -1 -1  1  1           1          -1        1     1              1
## 20 -1  1 -1  1  1           1           1        1     1              1
## 31  1  1 -1  1 -1          -1           1       -1    -1              1
## 19 -1 -1  1  1  1           1          -1        1     1              1
## 32  1 -1  1  1 -1          -1          -1       -1    -1              1
## 11 -1  1  1  1 -1          -1           1       -1    -1              1
## 5   1  1  1  1  1           1           1        1     1              1
## 6  -1 -1 -1 -1 -1           1           1       -1     1             -1
## 2   1 -1 -1 -1  1          -1           1        1    -1             -1
## 27 -1  1 -1 -1  1          -1          -1        1    -1             -1
## 26  1  1 -1 -1 -1           1          -1       -1     1             -1
## 12 -1 -1  1 -1  1          -1           1        1    -1             -1
## 24  1 -1  1 -1 -1           1           1       -1     1             -1
## 28 -1  1  1 -1 -1           1          -1       -1     1             -1
## 1   1  1  1 -1  1          -1          -1        1    -1             -1
## 10 -1 -1 -1  1  1          -1           1       -1     1             -1
## 22  1 -1 -1  1 -1           1           1        1    -1             -1
## 18 -1  1 -1  1 -1           1          -1        1    -1             -1
## 25  1  1 -1  1  1          -1          -1       -1     1             -1
## 9  -1 -1  1  1 -1           1           1        1    -1             -1
## 29  1 -1  1  1  1          -1           1       -1     1             -1
## 30 -1  1  1  1  1          -1          -1       -1     1             -1
## 4   1  1  1  1 -1           1          -1        1    -1             -1

1.2 \(2^{5-1}\) design with E = ABCD (ABCDE=I)

##     A  B  C  D  E
## 13 -1 -1 -1 -1  1
## 11  1 -1 -1 -1 -1
## 14 -1  1 -1 -1 -1
## 10  1  1 -1 -1  1
## 15 -1 -1  1 -1 -1
## 4   1 -1  1 -1  1
## 5  -1  1  1 -1  1
## 2   1  1  1 -1 -1
## 9  -1 -1 -1  1 -1
## 3   1 -1 -1  1  1
## 1  -1  1 -1  1  1
## 7   1  1 -1  1 -1
## 8  -1 -1  1  1  1
## 6   1 -1  1  1 -1
## 16 -1  1  1  1 -1
## 12  1  1  1  1  1
## class=design, type= FrF2.generators
## $legend
## [1] "A=A" "B=B" "C=C" "D=D" "E=E"
## 
## $main
## character(0)
## 
## $fi2
##  [1] "AB=CDE" "AC=BDE" "AD=BCE" "AE=BCD" "BC=ADE" "BD=ACE" "BE=ACD" "CD=ABE"
##  [9] "CE=ABD" "DE=ABC"
## 
## $fi3
## character(0)

Aliase Structure: E = ABCD, A = BCDE, B=ACDE, C = ABDE, D = ABCE,
AE = BCD, BE = ACD, CE = ABD, AB = CDE, AC = BDE, AD = BCE, BC = ADE, BD = ACE, CD = ABE, that is, all third order interactions are confounded with 2nd order interactions. Fourth-order interactions are also confounded with 1st-order main effect.

1.3 \(2^{5-1}\) design with E = -ABCD (ABCDE=-I)

##     A  B  C  D  E
## 5  -1 -1 -1 -1 -1
## 7   1 -1 -1 -1  1
## 1  -1  1 -1 -1  1
## 14  1  1 -1 -1 -1
## 2  -1 -1  1 -1  1
## 11  1 -1  1 -1 -1
## 3  -1  1  1 -1 -1
## 15  1  1  1 -1  1
## 10 -1 -1 -1  1  1
## 4   1 -1 -1  1 -1
## 6  -1  1 -1  1 -1
## 9   1  1 -1  1  1
## 13 -1 -1  1  1 -1
## 16  1 -1  1  1  1
## 12 -1  1  1  1  1
## 8   1  1  1  1 -1
## class=design, type= FrF2.generators
## $legend
## [1] "A=A" "B=B" "C=C" "D=D" "E=E"
## 
## $main
## character(0)
## 
## $fi2
##  [1] "AB=-CDE" "AC=-BDE" "AD=-BCE" "AE=-BCD" "BC=-ADE" "BD=-ACE" "BE=-ACD"
##  [8] "CD=-ABE" "CE=-ABD" "DE=-ABC"
## 
## $fi3
## character(0)

Aliase Structure: E = -ABCD, A = -BCDE, B = -ACDE, C = -ABDE, D = -ABCE,
AE = -BCD, BE = -ACD, CE = -ABD, AB = -CDE, AC = -BDE, AD = -BCE, BC = - ADE, BD = - ACE, CD = - ABE, that is, all third order interactions are confounded with 2nd order interactions. Fourth-order interactions are also confounded with 1st-order main effect.

1.4 Analysis of a Dataset Collected with \(2^{5-1}\) Design

A \(2^{5-1}\) design used for process improvement Five factors in a manufacturing process for an integrated circuit were investigated in a \(2^{5−1}\) design with the objective of improving the process yield. The five factors.

##     y
## 1   8
## 2   9
## 3  34
## 4  52
## 5  16
## 6  22
## 7  45
## 8  60
## 9   6
## 10 10
## 11 30
## 12 50
## 13 15
## 14 21
## 15 44
## 16 63
##     A  B  C  D  E
## 3  -1 -1 -1 -1  1
## 11  1 -1 -1 -1 -1
## 7  -1  1 -1 -1 -1
## 5   1  1 -1 -1  1
## 15 -1 -1  1 -1 -1
## 14  1 -1  1 -1  1
## 1  -1  1  1 -1  1
## 8   1  1  1 -1 -1
## 12 -1 -1 -1  1 -1
## 4   1 -1 -1  1  1
## 9  -1  1 -1  1  1
## 6   1  1 -1  1 -1
## 2  -1 -1  1  1  1
## 10  1 -1  1  1 -1
## 13 -1  1  1  1 -1
## 16  1  1  1  1  1
## class=design, type= FrF2.generators
## $legend
## [1] "A=A" "B=B" "C=C" "D=D" "E=E"
## 
## $main
## character(0)
## 
## $fi2
##  [1] "AB=CDE" "AC=BDE" "AD=BCE" "AE=BCD" "BC=ADE" "BD=ACE" "BE=ACD" "CD=ABE"
##  [9] "CE=ABD" "DE=ABC"
## 
## $fi3
## character(0)
## 
## Call:
## lm.default(formula = y ~ (A + B + C + D + E)^2, data = process)
## 
## Residuals:
## ALL 16 residuals are 0: no residual degrees of freedom!
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  30.3125         NA      NA       NA
## A             5.5625         NA      NA       NA
## B            16.9375         NA      NA       NA
## C             5.4375         NA      NA       NA
## D            -0.4375         NA      NA       NA
## E             0.3125         NA      NA       NA
## A:B           3.4375         NA      NA       NA
## A:C           0.1875         NA      NA       NA
## A:D           0.5625         NA      NA       NA
## A:E           0.5625         NA      NA       NA
## B:C           0.3125         NA      NA       NA
## B:D          -0.0625         NA      NA       NA
## B:E          -0.0625         NA      NA       NA
## C:D           0.4375         NA      NA       NA
## C:E           0.1875         NA      NA       NA
## D:E          -0.6875         NA      NA       NA
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 15 and 0 DF,  p-value: NA
## Warning in anova.lm(g): ANOVA F-tests on an essentially perfect fit are
## unreliable
## Analysis of Variance Table
## 
## Response: y
##           Df Sum Sq Mean Sq F value Pr(>F)
## A          1  495.1   495.1               
## B          1 4590.1  4590.1               
## C          1  473.1   473.1               
## D          1    3.1     3.1               
## E          1    1.6     1.6               
## A:B        1  189.1   189.1               
## A:C        1    0.6     0.6               
## A:D        1    5.1     5.1               
## A:E        1    5.1     5.1               
## B:C        1    1.6     1.6               
## B:D        1    0.1     0.1               
## B:E        1    0.1     0.1               
## C:D        1    3.1     3.1               
## C:E        1    0.6     0.6               
## D:E        1    7.6     7.6               
## Residuals  0    0.0

## Significant Factors Selected by Lenth's Method:
##  A B C A:B
## [1] "A"   "B"   "C"   "A:B"

##    alpha      PSE       ME      SME 
## 0.050000 0.468750 1.204960 2.446243
## Analysis of Variance Table
## 
## Response: y
##           Df Sum Sq Mean Sq  F value    Pr(>F)    
## A          1  495.1   495.1  193.195 2.535e-08 ***
## B          1 4590.1  4590.1 1791.244 1.560e-13 ***
## C          1  473.1   473.1  184.610 3.214e-08 ***
## A:B        1  189.1   189.1   73.781 3.302e-06 ***
## Residuals 11   28.2     2.6                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Call:
## lm.default(formula = y ~ A + B + C + A * B, data = process)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.812 -0.875  0.125  1.188  2.188 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  30.3125     0.4002   75.74 2.64e-16 ***
## A             5.5625     0.4002   13.90 2.53e-08 ***
## B            16.9375     0.4002   42.32 1.56e-13 ***
## C             5.4375     0.4002   13.59 3.21e-08 ***
## A:B           3.4375     0.4002    8.59 3.30e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.601 on 11 degrees of freedom
## Multiple R-squared:  0.9951, Adjusted R-squared:  0.9933 
## F-statistic: 560.7 on 4 and 11 DF,  p-value: 1.252e-12

2 One Quarter Factorial Design and Analysis

2.1 \(2^{6-2}\) design with E=ABC and F=BCD

##     A  B  C  D  E  F
## 4  -1 -1 -1 -1 -1 -1
## 16  1 -1 -1 -1  1 -1
## 1  -1  1 -1 -1  1  1
## 12  1  1 -1 -1 -1  1
## 7  -1 -1  1 -1  1  1
## 3   1 -1  1 -1 -1  1
## 9  -1  1  1 -1 -1 -1
## 2   1  1  1 -1  1 -1
## 15 -1 -1 -1  1 -1  1
## 11  1 -1 -1  1  1  1
## 14 -1  1 -1  1  1 -1
## 13  1  1 -1  1 -1 -1
## 8  -1 -1  1  1  1 -1
## 5   1 -1  1  1 -1 -1
## 6  -1  1  1  1 -1  1
## 10  1  1  1  1  1  1
## class=design, type= FrF2.generators
## $legend
## [1] "A=A" "B=B" "C=C" "D=D" "E=E" "F=F"
## 
## $main
## [1] "A=BCE=DEF" "B=ACE=CDF" "C=ABE=BDF" "D=AEF=BCF" "E=ABC=ADF" "F=ADE=BCD"
## 
## $fi2
## [1] "AB=CE"    "AC=BE"    "AD=EF"    "AE=BC=DF" "AF=DE"    "BD=CF"    "BF=CD"   
## 
## $fi3
## [1] "ABD=ACF=BEF=CDE" "ABF=ACD=BDE=CEF"
## creating full factorial with 64 runs ...
##    A1 B1 C1 D1 A1.B1.C1.E1 B1.C1.D1.F1
## 45 -1 -1 -1 -1           1           1
## 28  1 -1 -1 -1           1           1
## 58 -1  1 -1 -1           1           1
## 3   1  1 -1 -1           1           1
## 60 -1 -1  1 -1           1           1
## 57  1 -1  1 -1           1           1
## 24 -1  1  1 -1           1           1
## 39  1  1  1 -1           1           1
## 19 -1 -1 -1  1           1           1
## 12  1 -1 -1  1           1           1
## 33 -1  1 -1  1           1           1
## 7   1  1 -1  1           1           1
## 14 -1 -1  1  1           1           1
## 9   1 -1  1  1           1           1
## 55 -1  1  1  1           1           1
## 35  1  1  1  1           1           1
## 1  -1 -1 -1 -1          -1           1
## 44  1 -1 -1 -1          -1           1
## 2  -1  1 -1 -1          -1           1
## 36  1  1 -1 -1          -1           1
## 43 -1 -1  1 -1          -1           1
## 40  1 -1  1 -1          -1           1
## 11 -1  1  1 -1          -1           1
## 20  1  1  1 -1          -1           1
## 5  -1 -1 -1  1          -1           1
## 8   1 -1 -1  1          -1           1
## 31 -1  1 -1  1          -1           1
## 51  1  1 -1  1          -1           1
## 38 -1 -1  1  1          -1           1
## 18  1 -1  1  1          -1           1
## 29 -1  1  1  1          -1           1
## 56  1  1  1  1          -1           1
## 4  -1 -1 -1 -1           1          -1
## 52  1 -1 -1 -1           1          -1
## 37 -1  1 -1 -1           1          -1
## 23  1  1 -1 -1           1          -1
## 63 -1 -1  1 -1           1          -1
## 27  1 -1  1 -1           1          -1
## 50 -1  1  1 -1           1          -1
## 26  1  1  1 -1           1          -1
## 15 -1 -1 -1  1           1          -1
## 49  1 -1 -1  1           1          -1
## 22 -1  1 -1  1           1          -1
## 32  1  1 -1  1           1          -1
## 64 -1 -1  1  1           1          -1
## 17  1 -1  1  1           1          -1
## 21 -1  1  1  1           1          -1
## 54  1  1  1  1           1          -1
## 59 -1 -1 -1 -1          -1          -1
## 62  1 -1 -1 -1          -1          -1
## 30 -1  1 -1 -1          -1          -1
## 16  1  1 -1 -1          -1          -1
## 25 -1 -1  1 -1          -1          -1
## 48  1 -1  1 -1          -1          -1
## 6  -1  1  1 -1          -1          -1
## 47  1  1  1 -1          -1          -1
## 53 -1 -1 -1  1          -1          -1
## 41  1 -1 -1  1          -1          -1
## 13 -1  1 -1  1          -1          -1
## 61  1  1 -1  1          -1          -1
## 10 -1 -1  1  1          -1          -1
## 46  1 -1  1  1          -1          -1
## 42 -1  1  1  1          -1          -1
## 34  1  1  1  1          -1          -1

2.2 Analysis of a Dataset Collected with \(2^{6-2}\) Design

y
6
10
32
60
4
15
26
60
8
12
34
60
16
5
37
52
## Warning in anova.lm(g): ANOVA F-tests on an essentially perfect fit are
## unreliable
## Analysis of Variance Table
## 
## Response: y
##           Df Sum Sq Mean Sq F value Pr(>F)
## A          1  770.1   770.1               
## B          1 5076.6  5076.6               
## C          1    3.1     3.1               
## D          1    7.6     7.6               
## E          1    0.6     0.6               
## F          1    0.6     0.6               
## A:B        1  564.1   564.1               
## A:C        1   10.6    10.6               
## A:D        1  115.6   115.6               
## A:E        1   14.1    14.1               
## A:F        1    1.6     1.6               
## B:D        1    0.1     0.1               
## B:F        1    0.1     0.1               
## A:B:D      1    0.1     0.1               
## A:B:F      1   95.1    95.1               
## Residuals  0    0.0
## 
## Call:
## lm.default(formula = y ~ (A + B + C + D + E + F)^2 + A * B * 
##     D + A * B * F, data = shrinkage)
## 
## Residuals:
## ALL 16 residuals are 0: no residual degrees of freedom!
## 
## Coefficients: (8 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  27.3125         NA      NA       NA
## A             6.9375         NA      NA       NA
## B            17.8125         NA      NA       NA
## C            -0.4375         NA      NA       NA
## D             0.6875         NA      NA       NA
## E             0.1875         NA      NA       NA
## F             0.1875         NA      NA       NA
## A:B           5.9375         NA      NA       NA
## A:C          -0.8125         NA      NA       NA
## A:D          -2.6875         NA      NA       NA
## A:E          -0.9375         NA      NA       NA
## A:F           0.3125         NA      NA       NA
## B:C               NA         NA      NA       NA
## B:D          -0.0625         NA      NA       NA
## B:E               NA         NA      NA       NA
## B:F          -0.0625         NA      NA       NA
## C:D               NA         NA      NA       NA
## C:E               NA         NA      NA       NA
## C:F               NA         NA      NA       NA
## D:E               NA         NA      NA       NA
## D:F               NA         NA      NA       NA
## E:F               NA         NA      NA       NA
## A:B:D         0.0625         NA      NA       NA
## A:B:F        -2.4375         NA      NA       NA
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 15 and 0 DF,  p-value: NA

## Significant Factors Selected by Lenth's Method:
##  A B A:B A:D
## [1] "A"   "B"   "A:B" "A:D"
## Analysis of Variance Table
## 
## Response: y
##           Df Sum Sq Mean Sq  F value    Pr(>F)    
## A          1  770.1   770.1  55.1961 3.978e-05 ***
## B          1 5076.6  5076.6 363.8751 1.378e-08 ***
## D          1    7.6     7.6   0.5421 0.4803288    
## A:B        1  564.1   564.1  40.4306 0.0001315 ***
## A:D        1  115.6   115.6   8.2832 0.0182356 *  
## B:D        1    0.1     0.1   0.0045 0.9480994    
## Residuals  9  125.6    14.0                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1