1 Draw Some Response Surfaces

1.1 An Additive Model

add.model = function(x1,x2)
{ 
  x1+x2
}

# response surface plot
x2<- x1 <- seq(0,1,by=0.01)
z <- outer(x1,x2, add.model)

persp (x1, x2, z, theta = 30)

# contour plot
contour(x1,x2,z)

1.2 An Interaction Model

inter.model = function(x1,x2)
{ 
  x1+x2+5*x1*x2
}

# response surface plot
x2<- x1 <- seq(0,1,by=0.01)
z <- outer(x1,x2, inter.model)

persp(x1, x2, z, theta=45)

# contour plot
contour(x1,x2,z)

1.3 A Circular Quadratic Model

quad.model = function(x1,x2)
{ 
  x1+x2-10*(x1-0.5)^2-10*(x2-0.5)^2
}

# response surface plot
x2<- x1 <- seq(0,1,by=0.01)
z <- outer(x1,x2, quad.model)

persp(x1, x2, z, theta=45)

# contour plot
contour(x1,x2,z)

1.4 An Elliptical Quadratic Model

quad.model = function(x1,x2)
{ 
  -x1-x2-10*(x1-0.5)^2-40*(x2-0.5)^2
}

# response surface plot
x2<- x1 <- seq(0,1,by=0.01)
z <- outer(x1,x2, quad.model)

persp(x1, x2, z, theta=45)

# contour plot
contour(x1,x2,z)

1.5 A Complex Model

quad.model = function(x1,x2)
{ 
  x1+x2+5*x1*x2-10*(x1-.5)^2-20*(x2-.5)^2
}

# response surface plot
x2<- x1 <- seq(0,1,by=0.01)
z <- outer(x1,x2, quad.model)

persp(x1, x2, z, theta = 45)

# contour plot
contour(x1,x2,z)

2 Design and Analysis of Second-order response surface around optimum

2.1 Read in the data

yield<- read.table("data/yield.txt", header=T)
yield
##       y
## 1  76.5
## 2  77.0
## 3  78.0
## 4  79.5
## 5  79.9
## 6  80.3
## 7  80.0
## 8  79.7
## 9  79.8
## 10 78.4
## 11 75.6
## 12 78.5
## 13 77.0
attach(yield)

2.2 Without Central Composite Design

2.2.1 Fit a 2nd-order model

# define x1 and x2
x1<-c(-1,-1,1,1,rep(0,5))
x2<-c(-1,1,-1,1,rep(0,5))
data.frame (x1,x2, y=y[1:9]) # using only the first 9 observations
##   x1 x2    y
## 1 -1 -1 76.5
## 2 -1  1 77.0
## 3  1 -1 78.0
## 4  1  1 79.5
## 5  0  0 79.9
## 6  0  0 80.3
## 7  0  0 80.0
## 8  0  0 79.7
## 9  0  0 79.8
g<-lm(y[1:9]~x1+x2+I(x1^2)+x1*x2,data=yield)
summary(g)
## 
## Call:
## lm(formula = y[1:9] ~ x1 + x2 + I(x1^2) + x1 * x2, data = yield)
## 
## Residuals:
##          1          2          3          4          5          6 
##  0.000e+00 -6.939e-18 -7.254e-18  4.889e-18 -4.000e-02  3.600e-01 
##          7          8          9 
##  6.000e-02 -2.400e-01 -1.400e-01 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  79.9400     0.1030 776.446 1.65e-11 ***
## x1            1.0000     0.1151   8.687 0.000966 ***
## x2            0.5000     0.1151   4.344 0.012217 *  
## I(x1^2)      -2.1900     0.1544 -14.181 0.000144 ***
## x1:x2         0.2500     0.1151   2.172 0.095611 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2302 on 4 degrees of freedom
## Multiple R-squared:  0.9868, Adjusted R-squared:  0.9737 
## F-statistic: 75.04 on 4 and 4 DF,  p-value: 0.0005143

2.2.2 ANOVA

anova (g)
## Analysis of Variance Table
## 
## Response: y[1:9]
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## x1         1  4.000   4.000  75.472 0.0009664 ***
## x2         1  1.000   1.000  18.868 0.0122172 *  
## I(x1^2)    1 10.658  10.658 201.094 0.0001436 ***
## x1:x2      1  0.250   0.250   4.717 0.0956108 .  
## Residuals  4  0.212   0.053                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.3 Analysis of Central Composite Design

In CCD,we take 4 more observations so that we can estimate pure quadratic effect of \(x_2\).

2.3.1 Fit a 2nd order model with pure quadratic terms

x1<-c(-1,-1,1,1,rep(0,5),1.414,-1.414,0,0)
x2<-c(-1,1,-1,1,rep(0,5),0,0,1.414,-1.414)

data.frame (x1,x2, y)
##        x1     x2    y
## 1  -1.000 -1.000 76.5
## 2  -1.000  1.000 77.0
## 3   1.000 -1.000 78.0
## 4   1.000  1.000 79.5
## 5   0.000  0.000 79.9
## 6   0.000  0.000 80.3
## 7   0.000  0.000 80.0
## 8   0.000  0.000 79.7
## 9   0.000  0.000 79.8
## 10  1.414  0.000 78.4
## 11 -1.414  0.000 75.6
## 12  0.000  1.414 78.5
## 13  0.000 -1.414 77.0
h<-lm(y~x1+x2+I(x1^2)+I(x2^2)+x1*x2,data=yield)

summary(h)
## 
## Call:
## lm(formula = y ~ x1 + x2 + I(x1^2) + I(x2^2) + x1 * x2, data = yield)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.23995 -0.18089 -0.03995  0.17758  0.36005 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 79.93995    0.11909 671.264  < 2e-16 ***
## x1           0.99505    0.09415  10.568 1.48e-05 ***
## x2           0.51520    0.09415   5.472 0.000934 ***
## I(x1^2)     -1.37645    0.10098 -13.630 2.69e-06 ***
## I(x2^2)     -1.00134    0.10098  -9.916 2.26e-05 ***
## x1:x2        0.25000    0.13315   1.878 0.102519    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2663 on 7 degrees of freedom
## Multiple R-squared:  0.9827, Adjusted R-squared:  0.9704 
## F-statistic: 79.67 on 5 and 7 DF,  p-value: 5.147e-06

2.3.2 ANOVA

anova (h)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq  F value    Pr(>F)    
## x1         1  7.9198  7.9198 111.6873 1.484e-05 ***
## x2         1  2.1232  2.1232  29.9413  0.000934 ***
## I(x1^2)    1 10.9816 10.9816 154.8663 4.979e-06 ***
## I(x2^2)    1  6.9721  6.9721  98.3225 2.262e-05 ***
## x1:x2      1  0.2500  0.2500   3.5256  0.102519    
## Residuals  7  0.4964  0.0709                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.3.3 Analysis after removing interaction term (non-significant)

h2<-lm(y~x1+x2+I(x1^2)+I(x2^2),data=yield)
summary(h2)
## 
## Call:
## lm(formula = y ~ x1 + x2 + I(x1^2) + I(x2^2), data = yield)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.23995 -0.18089 -0.08232  0.06005  0.44808 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  79.9400     0.1366 585.215  < 2e-16 ***
## x1            0.9951     0.1080   9.213 1.56e-05 ***
## x2            0.5152     0.1080   4.770  0.00141 ** 
## I(x1^2)      -1.3764     0.1158 -11.883 2.31e-06 ***
## I(x2^2)      -1.0013     0.1158  -8.645 2.49e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3054 on 8 degrees of freedom
## Multiple R-squared:  0.974,  Adjusted R-squared:  0.961 
## F-statistic: 75.02 on 4 and 8 DF,  p-value: 2.226e-06
anova(h2)
## Analysis of Variance Table
## 
## Response: y
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## x1         1  7.9198  7.9198  84.888 1.559e-05 ***
## x2         1  2.1232  2.1232  22.757  0.001408 ** 
## I(x1^2)    1 10.9816 10.9816 117.707 4.604e-06 ***
## I(x2^2)    1  6.9721  6.9721  74.730 2.489e-05 ***
## Residuals  8  0.7464  0.0933                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
detach ("yield")