Lecture Notes for Theory of Linear Models

Vector Space and Projection

Longhai Li Department of Mathematics and Statistics University of Saskatchewan

Vector and Projection

- Vector and Geometry
- Inner Product and Perpendicular
- Projection to a Single Vector
- Pythagorean theory
- Shortest distance property of projection

Vector

Addition

Multipliutem by a Sc lr

written with matrix multiplication

$$
c x=x[c] \text { not }[c] x
$$

$$
n \times 1 \quad|x|
$$

Length of Vector (Euclidean Distance)

$$
\begin{aligned}
& \|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2} \\
& \left\|x_{x}\right\|_{1}=\sqrt{\| x u^{2}}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
\end{aligned}
$$

Euclidean distance

Angle (Iuner product)
 $\theta=90^{\circ}\left(\frac{\pi}{2}\right)$
$C^{2}=a^{2}+b^{2}-$ P.T.

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

$$
\begin{aligned}
& \text { pluggina }=\|x\|, \text { vel }\|y\|, c=\|x-y\|: \\
& \|y-x\|^{2}=\|x\|^{2}+\|y\|^{2}-2\|x\| \cdot\|y\| \cos 0
\end{aligned}
$$

$$
\begin{aligned}
\| y-x l^{2} & =\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(x_{i}^{2}+y_{i}^{2}-2 x_{i} y_{i}\right) \\
& =\left\|x_{1}\right\|^{2}+\|y\|^{2}-2 \cdot x^{\prime} y \\
y^{\prime} x=x^{\prime} y & =\sum_{i=1}^{n} x_{i} y_{i} \\
& =x \cdot y=\langle x, y\rangle=\langle y, x\rangle
\end{aligned}
$$

is cacled inma, lrodact

$$
\begin{aligned}
\|x\|^{2}+\|y\|^{2}+2 \cdot x y & =\left\|x+1^{2}+\right\| y+\|^{2} \\
& * 2\|x\| \cdot\|y\| \cdot \cos \theta \\
x^{\prime} y & =\|x\| \cdot\|\cdot y\| \cdot \cos \theta \\
& =\|y\| \cdot \cos \theta \cdot\|x\|
\end{aligned}
$$

$$
\begin{aligned}
& x^{\prime} y=\frac{(\|y\| \cdot \cos \theta}{\|x\|} \\
& \|y\| \cdot \cos \theta=\frac{x^{\prime} y}{\|x\|}=\left\langle\frac{x}{\|x\|}, y\right\rangle
\end{aligned}
$$

coordinate
length of the projection $(+1-)$
of y onto x.

$$
\begin{aligned}
x^{\prime} y & =\|x\| \cdot\|y\| \cdot(0) \theta \\
\cos \theta & =\frac{x^{\prime} y}{1(x\|\cdot l\| y \|} \\
& =\left(\frac{x}{\|x\|}\right)^{\prime} \cdot\left(\frac{y}{\|y\|}\right) \\
& =\left\langle\frac{x}{\|x\|}, \frac{y}{11 y \|}\right\rangle
\end{aligned}
$$

Perpendircular
$x \perp y \Leftrightarrow x^{\prime} \cdot y=0$

Exuple

$$
\begin{aligned}
& x=(1,1)^{\prime}, \quad y=(-1,1) \\
& x^{\prime} y=|\times(-1)+| \times 1=0 \Rightarrow x \perp y
\end{aligned}
$$

\hat{y} is the projection of y onto $L(x)$ if \hat{y} is a vector in $L(x)=\{c x \mid c \in \mathbb{R}\}$

$$
\text { i.e, } \hat{y}=c \cdot x \text { for } c \in \mathbb{R}
$$

such that $y-\hat{y} \perp x$
Let's find an expression of \hat{y}

$$
\begin{aligned}
& x^{\prime} \cdot(y-\hat{y})=0 \\
& x^{\prime} y-x^{\prime} \cdot(c x)=0 \\
& x^{\prime} y=c \cdot x^{\prime} x=c \cdot\|x\|^{2} \\
& c=\frac{x^{\prime} \cdot y}{l\left(x l^{2}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{y}=\frac{x^{\prime} \cdot y}{\| x_{11^{2}}} \cdot x \\
&=\left(\frac{x}{\|x\|}\right)^{\prime} \cdot y \cdot\left(\frac{x}{| | x_{1} \mid}\right) \\
& \text { scale } \uparrow \\
&=\text { direction }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Notatim: } \\
& \hat{y}=\operatorname{proj}(y(x)=p(y(x) \\
& =\frac{x^{\prime} y}{\|x\|} \cdot \frac{x}{\|x\|} \\
& \simeq \frac{x^{\prime} y}{\|x\|^{2}} \cdot x \\
& =x \frac{x-\frac{x^{17} y}{\|x\|^{2}}}{x x^{2}} \\
& =\frac{x x^{\prime}}{\|x\|^{2}} y=p_{x} \cdot y \\
& x \in \mathbb{R}^{p}, \quad{ }^{p \times p} \quad X \cdot X^{\prime} \\
& \underbrace{p x \mid \quad 1 \times P}_{p \times p}
\end{aligned}
$$

$p y=(1,3)$
个

$$
x=(1,1)^{\prime}=j_{2}
$$

$$
\begin{aligned}
\hat{y} & =\left\langle\frac{x}{\left(1 x_{1} 1, y\right.}>\stackrel{x}{11 x 11} \frac{1}{\frac{1}{\sqrt{2}}} \begin{array}{l}
\frac{x}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right),\binom{1}{3}>\binom{1}{\frac{1}{\sqrt{2}}} \\
& =\left\langle\frac{4}{\sqrt{2}},\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\right. \\
& =\binom{2}{2}
\end{aligned}
$$

$$
\begin{aligned}
\hat{y} & =\frac{x \cdot x^{\prime}}{\|x\|^{2}} y \\
P_{x} & =\binom{1}{1} \cdot(1,1) / 2 \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
\hat{y} & =\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \cdot\binom{1}{3} \\
& =\frac{1}{2}\binom{4}{4}=\binom{2}{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& y_{1}=\left(f_{1}, \ldots, y_{n}\right)^{\prime} \\
& j_{n}=(1,1, \ldots, 1)^{\prime}
\end{aligned}
$$

pruje $\left.y \leq j_{n}\right)$

$$
\begin{aligned}
& =\frac{j_{n} j_{n}^{\prime}}{\| j_{n} 1^{2}} \cdot\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \\
& =\frac{1}{n} \cdot\left(\begin{array}{c}
1 \\
1 \\
1 \\
\cdots
\end{array} \cdots \cdots\right. \\
& =\left(\begin{array}{c}
\bar{y} \\
\vdots \\
\frac{\vdots}{y}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \\
& =\bar{y} \cdot j_{n}
\end{aligned}
$$

Pythagorean Theorem in Geometry

$$
S=S_{1}+S_{2}
$$

5

$$
\begin{aligned}
& S_{1}=a^{2} \cdot k, \text { where } k=\frac{1}{2} \cos \theta \cdot \sin \theta \\
& s_{2}=b^{2} \cdot k \\
& S^{2}=c^{2} \cdot k \\
& c^{2} \cdot k=a^{2} \cdot k+b^{2} \cdot k \\
& c^{2}=a^{2}+b^{2}
\end{aligned}
$$

Pythagoreen Theorem (P.T.)
If $x \perp y \Leftrightarrow x^{\prime} y=0$
then $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$

Pf:

$$
\begin{aligned}
\|x+y\|^{2} & =(x+y)^{\prime}(x+y) \\
& =x^{\prime} x+x^{\prime} y+y^{\prime} x+y^{\prime} y \\
& =\|x\|^{2}+\|y\|^{2}+2 \cdot y^{\prime} x \\
& =\|x\|^{2}+\|y\|^{2}
\end{aligned}
$$

shortest distance prop. of projection (Least Square) y

$p(y \mid x)=\hat{y}$ is defined as follows:
$\hat{y}=c x \quad s \cdot t \cdot \hat{y}-y \geq x$
\hat{y} is the vector in $L(x)$ that
is closest to y.
F- a an g $y \neq E L(x),\|y-\hat{y}\| \leqslant\left\|y-y^{*}\right\|$
ef:

suppuse $y^{*} \in L(x)$, i.e. $y^{f}=b x$ for some $b \in \mathbb{R}$

$$
\begin{aligned}
& y-\hat{y} \perp x \Rightarrow y-\hat{y} \perp c x, \text { formy } \\
& y-\hat{y} \perp y^{*},(y-\hat{y})^{\prime} y^{*}=0 \\
& y-\hat{y} \perp \hat{y},(y-\hat{y})^{\prime} \hat{y}=0 \\
& y-\hat{y} \perp \hat{y}-y^{*},(y-\hat{y})^{\prime}(\hat{y}-\hat{y})=0 \\
& y-y^{*}=y-\hat{y}+\hat{y}-y^{*}
\end{aligned}
$$

I. F P.T.,

$$
\left\|y-y^{*}\right\|^{2}=\|y-\hat{y}\|^{2}+\left\|\hat{y}-y^{*}\right\|^{2} \geqslant\|y-\hat{y}\|^{2}
$$

Basics of Vector Space

- Vector Space
- Vector Space Spanned by Vectors
- Rank/Dimension of Vector Space

Vector space
Example

$$
\begin{aligned}
x=\binom{1}{0}, y & =\binom{0}{1} \\
L(x, y) & =1 R^{2}
\end{aligned}
$$

V, a subset of $\left(\mathbb{K}^{n}\right.$, is a
Vector space it
(1) $x_{i}, \gamma_{j} \in V \Rightarrow x_{i}+x_{j} \in V$
(2) $x \in V \Rightarrow c \cdot \gamma \in V$
(including $c=0$)
closed under addition. \& scaling

Example

wot a ven ghees
If $x_{1}, \cdots, \gamma_{k} \in V$
then $C_{1} x_{1}+C_{2} x_{2}+\cdots+C_{k} x_{k} \in V$
Closed under (inear combination
spanned vector space
$L\left(x_{1}, \cdots, x_{p}\right)$
$=\left\{x \mid x=c_{1} \gamma_{1}+\cdots+c_{p} x_{p_{0}} L_{i} \in \mathbb{R}\right\}$

$1 K^{2}$
$\gamma_{1}=\dot{C} \cdot \gamma_{2}$

23 Lec10-vector space and projection.key - March 3, 2023

(1) $x_{3}=c_{1} x_{1}+c_{2} x_{2}$

$$
L\left(x_{1}, x_{2}, x_{3}\right)=L\left(x_{1}, x_{2}\right)
$$

(2) $x_{3} \in L\left(\gamma_{1}, \gamma_{2}\right)$

$$
L\left(x_{1}, x_{2}, x_{3}\right)=1 \theta^{3}
$$

Column space \& fou space

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}, \cdots, x_{p}\right) \\
& \text { column }(x)=c(x)=L\left(x_{1}, \cdots, x_{p}\right) \\
& x=\left(\begin{array}{c}
r_{1} \\
r_{2}^{\prime} \\
\vdots \\
r_{n}^{\prime}
\end{array}\right) \\
& \text { row }(x)=r(x)=L\left(r_{1}, r_{2}, \cdots, r_{n}\right)
\end{aligned}
$$

Liner inclepenclace (LIN)
$x_{1}, \cdots, \gamma_{p}$ are LIN if

$$
\sum_{i=1}^{p} c_{i} x_{i}=0 \Rightarrow c_{i}=0
$$

x_{1}, \cdots, x_{p} are NOT LIN If

$$
\begin{aligned}
& \beth i, \quad x_{i} \in L\left(x_{1}, \cdots, x_{i-1}, x_{i+1} \cdots,-x_{p}\right) \\
& \text { s.0. } \exists b_{1}, b_{2}, \cdots, b_{i-1}, b_{i+1,} \cdots, b_{p} \text { s.c. } \\
& x_{i}=b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{i+1} x_{i+}+b_{i+1} x_{i+1}+\cdots+b_{p} \delta_{p}
\end{aligned}
$$

$x_{1}, \cdots, x_{p} \quad x: n \times p$ matrix $X=\left(x_{1}, \cdots, r_{p}\right)$, hew many linearly indep. (LIN) Vectors?
$\operatorname{rank}(X)=$
(1) \# of LIN Vest. in $\gamma_{1}, \ldots, \gamma_{p}$
(z) $\operatorname{Din}\left(L\left(x_{1}, \cdots, x_{p}\right)\right)$

Proparties of $\operatorname{rauk}(x)$
X: nxp matrix
(1) $\operatorname{rank}(x)=\operatorname{ranh}\left(x^{\prime}\right)$

Anotter equivalence of (1):

$$
\operatorname{Dim}(c(x))=\operatorname{Dim}(r(x))
$$

(2) $\operatorname{rank}(x) \leqslant \min (n, p)$

Proof that column rank is equal to row rank:
Let A be an $m \times n$ matrix. Let the column rank of A be r, and let $\mathbf{c}_{1}, \ldots, \mathbf{c}_{r}$ be any basis for the column space of A. Place these as the columns of an $m \times r$ matrix C. Every column of A can be expressed as a linear combination of the r columns in C. This means that there is an $r \times n$ matrix R such that $A=C R$. R is the matrix whose i th column is formed from the coefficients giving the i th column of A as a linear combination of the r columns of C. In other words, R is the matrix which contains the multiples for the bases of the column space of A (which is C), which are then used to form A as a whole. Now, each row of A is given by a linear combination of the r rows of R. Therefore, the rows of R form a spanning set of the row space of A and, by the Steinitz exchange lemma, the row rank of A cannot exceed r. This proves that the row rank of A is less than or equal to the column rank of A. This result can be applied to any matrix, so apply the result to the transpose of A. Since the row rank of the transpose of A is the column rank of A and the column rank of the transpose of A is the row rank of A, this establishes the reverse inequality and we obtain the equality of the row rank and the column rank of A.

Source: https://en.wikipedia.org/wiki/Rank_(linear_algebra)

$$
\left.\begin{array}{rl}
\begin{array}{c}
A \times n
\end{array} & =\left(c_{1}, \ldots, c_{r}\right) \cdot R \\
& =C \cdot\left[\begin{array}{c}
R \times r \\
b_{1}^{\prime} \\
\vdots \\
b_{r}^{\prime}
\end{array}\right] \\
& =\left[\begin{array}{c}
\sum_{j=1}^{r} c_{1 j} b_{j}^{\prime} \\
\vdots \\
\sum_{j=1}^{r} c_{m j}
\end{array}\right]=\left[\begin{array}{c}
a_{j}^{\prime} \\
\vdots \\
a_{j}^{\prime}
\end{array}\right] \\
\text { where } a_{i}^{\prime}=\sum_{j=1}^{r} C_{i j} b_{j}^{\prime}
\end{array}\right]
$$

Example: $x_{1} x_{2} \quad x_{3}$

$$
\begin{aligned}
& x=\left(\begin{array}{lll}
1 & 4 & 6 \\
2 & 8 & 12
\end{array}\right) \in r_{1}^{\prime} \\
& x_{2}=r_{2}^{\prime} \\
& 4 \gamma_{1} \\
& r_{2}, \gamma_{3}=6(x)=1 \\
& r z=2 \cdot \gamma_{6}
\end{aligned}
$$

To illustrate the proof, we can write X as follows:

$$
\begin{aligned}
x & =\binom{1}{2}(1,4,6) \\
& =\left[\begin{array}{l}
1 \cdot(1,4,6) \\
2 \cdot(1,4,6)
\end{array}\right]
\end{aligned}
$$

Exayrb

$$
\begin{aligned}
& x_{1}, x_{2}, \cdots, x_{100} \in \mid R^{2} \\
& \operatorname{Dim}\left(\operatorname{col}\left(\left[x_{1}, x_{2}, \ldots, x_{100}\right]\right)\right. \\
&= \operatorname{Dim}\left(\operatorname{cof}\left[\begin{array}{c}
x_{1} \\
x_{2}^{\prime} \\
\vdots \\
x_{100}
\end{array}\right]\right) \\
& 100 \times 2
\end{aligned}
$$

$$
x \perp y \Leftrightarrow x^{\prime} y=0 \text { or }\langle x, y\rangle=0
$$

Orthog. To a subypace (r2ef.)

Orthog. Complement $($ (xt)

$$
V^{1}=\left\{x \in \mathbb{R}^{n} \mid x \perp v\right\}
$$

Kernel \& Image space

$$
\begin{aligned}
& x=\left(x_{1}, \cdots, x_{p}\right), x_{i} \in \mathbb{R}^{k} \\
& =\left(\begin{array}{c}
r_{i}^{\prime} \\
\vdots \\
r_{n}^{\prime}
\end{array}\right), \quad r_{i} \in\left(\mathbb{R}^{p}\right. \\
& \operatorname{im}(x)=L\left(x_{1}, \cdots, x_{p}\right) \\
& =\left\{x \beta \mid \beta \in \mathbb{R}^{p}\right\} \subseteq \mathbb{R}^{n} \\
& \operatorname{Kor}(X)=\left\{\beta \in \in R^{p} \mid, \gamma \beta=0\right\} \in\left(R^{p}\right. \\
& =\left\{\beta \in\left|R^{p}\right|\left(\begin{array}{c}
\Gamma_{1}^{\prime} \\
\vdots \\
\gamma_{n}^{\prime}
\end{array}\right) \beta=0\right\} \\
& =\left\{\beta \in\left|R^{p}\right| r_{i}^{i} \beta=0, \cdots, r_{n}^{\prime} \beta=0\right\} \\
& \begin{array}{l}
\uparrow^{\operatorname{Ker}(x)}=[\operatorname{row}(x)]^{\perp} \\
\longrightarrow r_{2} \in \operatorname{row}(x) \\
\xrightarrow[r]{ }
\end{array}
\end{aligned}
$$

(3) Nullity Therem

$$
\begin{aligned}
& \operatorname{Nullity}(x)=\operatorname{Dian}(\operatorname{ker}(x)) \\
& \operatorname{Nullity}(x)+\operatorname{Vank}(x)=p \\
& \mathbb{R}^{p}=\operatorname{ker}(x) \oplus \operatorname{Ker}(x)^{\perp} \\
& =[\operatorname{row}(x)]^{\perp} \oplus \operatorname{row}(x) \\
& P=\operatorname{Nullity}(x)+\operatorname{rank}(x)
\end{aligned}
$$

Understanding Nulliy therrem with SDD

$$
\begin{aligned}
& r=\operatorname{rank}(x) \underbrace{p-r} \\
& \text { Note: } s V D, x=U\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) V
\end{aligned}
$$

$$
r\{(\overbrace{(\begin{array}{lll}
\Lambda & 0 & \cdots \\
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array} \overbrace{0}^{p r}}^{r})_{\beta}^{p r} 0=0
$$

The solution is all β of this for m :

$$
\begin{aligned}
& \left.\left\{\begin{array}{c}
0 \\
\left.\left\{\begin{array}{c|c}
0 \\
\vdots \\
\beta_{r+1} \\
\vdots \\
\beta_{p}
\end{array}\right]\right\} r
\end{array}\right\} \begin{array}{l}
\beta_{i} \in \operatorname{R}
\end{array}\right\} \\
& p-r=\text { Nullity }(x)
\end{aligned}
$$

A useful method for comparing rank:

$$
\begin{aligned}
& \operatorname{rank}(A) \leqslant \operatorname{rank}(B) \\
& \Leftrightarrow \operatorname{Nulliag}(A) \geqslant \operatorname{Nullitg}(B) \\
& \Leftrightarrow \operatorname{ker}(A) \geqslant \operatorname{ker}(B) \\
& \Leftrightarrow B \beta=0 \Rightarrow A \beta=0 \\
& \operatorname{Ker}(B)=\{\beta \mid B \beta=0\} \\
& \operatorname{ker}(A)=\{\beta \mid A B=0\}
\end{aligned}
$$

Dim of $\quad(0 \mid(x) \rightarrow \operatorname{Dim}$ of $\operatorname{row}(x)$ $\rightarrow \operatorname{Dim}$ of $[\operatorname{row}(x)]^{!}$
(4) $\operatorname{rank}(X Z) \leq \min (\operatorname{rank}(x), \operatorname{rank}(z))$
ff: $\quad z=\left(z_{1}, \cdots, z_{m}\right), x=\left(x_{1}, \ldots, \gamma_{p}\right)$

$$
\begin{aligned}
p \times m & =\left(x z^{2}, \cdots, x z_{m}\right) \\
x z_{j} & =\sum_{i=1}^{p} x_{i} z_{j}^{(i)} \in c(x)
\end{aligned}
$$

$$
\sum_{j}=\left(\begin{array}{c}
z_{j}^{(1)} \\
\vdots \\
\delta_{j}^{(n)}
\end{array}\right)
$$

$$
\operatorname{rauk}(x z) \leq \operatorname{rank}(x)
$$

Simibify, $\operatorname{rank}\left(\frac{z^{\prime}}{\frac{x}{\prime}}\right) \leqslant \operatorname{rank}\left(z^{\prime}\right)=\operatorname{rack}(z)$
Anotler pruof $\overline{\bar{x}}{ }^{\bar{z}} \quad \operatorname{rank}(x z)=\operatorname{Vana}\left(Z^{\prime} X\right)$

$$
\begin{gathered}
z \beta=0 \Rightarrow x z \beta=0 \\
\text { so } \operatorname{ker}(z) \subseteq \operatorname{ker}(x z) \\
\Rightarrow \operatorname{nullig}(z) \leq \operatorname{nullizy}(x z) \\
\Rightarrow \operatorname{rank}(z) \geqslant \operatorname{rank}(x z)
\end{gathered}
$$

(5) A: $n \times n,|A|=0 \Leftrightarrow \operatorname{raak}(A)<n$
$|A| \neq 0 \Leftrightarrow \operatorname{raut}(t)=n$
(A^{-1} exists, non singular)
A is invertible: $A x=y$ has the unique solution $x=A^{-1} y$

$$
\begin{aligned}
& \operatorname{Ker}(A)=\{\beta \mid A B=0\}=N \cup L L=\left\{\left(\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right)\right\} \\
& \prime A \beta=0 \Rightarrow \beta=0 \quad \prime \\
& { }^{\prime} A \beta_{1}=A \beta_{2} \Rightarrow \beta_{1}=\beta_{2} \prime \prime \\
& \beta_{1} \neq \beta_{2} \Rightarrow A \beta_{1} \pm A \beta_{2} \\
& \forall y \in \mid R^{n}, \exists \beta \in \mathbb{R}^{n}, \text { S.B. } A \beta=y \\
& \beta=A^{-1} y
\end{aligned}
$$

(6) $\operatorname{rauk}(A X)=\operatorname{rank}(X)$, if iA $A \neq 0$ DE:

$$
\operatorname{rarde}(A X) \leq \operatorname{Vank}(X)
$$

using nullity theorem,

$$
\left.\left.\begin{array}{rl}
& \operatorname{vavk}(x)
\end{array}\right) \operatorname{raups} A x\right)
$$

The last stage mort is true b.c.A A ${ }^{-1}$ exists

This implies that

$$
\begin{aligned}
& \operatorname{row}(A x)=\operatorname{row}(x) \\
& A=\left(\begin{array}{c}
a_{1}^{\prime} \\
\vdots \\
a_{n}^{\prime}
\end{array}\right) \\
& A X=\left(\begin{array}{c}
a_{i}^{\prime} x \\
\vdots \\
a_{n}^{\prime} x
\end{array}\right) \\
& X^{\prime} a_{i} \in \operatorname{row}(x)
\end{aligned}
$$

Equivalent statement of 16)
B : pep matrix. B^{-1} exists (invertible)
(6.1)

$$
\begin{aligned}
& \operatorname{rank}(X B)=\operatorname{rank}(X) \text { b.c. } \\
& \operatorname{rank}(X B)=\operatorname{rank}\left(B^{\prime} X^{\prime}\right)=\operatorname{rauk}\left(X^{\prime}\right)=\operatorname{roulf}(X)
\end{aligned}
$$

$$
(6.2) C(X B)=C \underset{A}{(X i t h B}
$$

where B : pep matrix and B^{-1} exists.

$$
\begin{aligned}
L\left(x_{1}, x_{2}\right) & =L\left(y_{1}, y_{2}\right) \\
i f\left(i x, x_{2}\right) & \stackrel{Y}{\models}\left(y_{1}, y_{2}\right) \text { is } \frac{1-1 \text { \& onto }}{\text { invertible }}
\end{aligned}
$$

A direct prove:
$\forall y \in c(x)$.

$\exists \beta \in \mathbb{R}^{p}$ s.t. $y=x \beta$
sime B is invertible, $\exists \gamma$ s.t.

$$
\beta=B \gamma .
$$

Therefore, $y=X B r=\left(X_{B}\right) r$

$$
\in c(X B)
$$

Therefone, $c(X) \subseteq c(X B)$

$$
\begin{aligned}
& B=\left(b_{1}, \cdots, b_{p}\right) \leq p \times p, b_{j} \in \mathbb{R}^{p} \\
& X \underset{n \times p}{X}=X\left(b_{1}, \cdots, b_{p}\right) \\
& =\left(x b_{1}, x b_{2}, \cdots, x b_{p}\right)
\end{aligned}
$$

$x b_{j} \in C(X)$. Thene fore,

$$
C(X B) \subseteq C(X)
$$

putting togetw, $c(X B)=c(X)$

Examples:
(1)

(2) $x_{2}=c \cdot x_{1}$, linearly dependent

$$
b_{j}=\binom{b_{1} j}{b_{2 j}}
$$

$\left[b_{r}, b_{2}\right]$ is invertibce

$$
x b_{j}=x_{1} \cdot b_{j}+x_{2} \cdot h_{2 j}
$$

$$
\begin{aligned}
& x=\left(x, x_{2}, L\left(X b_{1}, X b_{2}\right)=\left[\left(x_{1}, x_{2}\right)\right.\right. \\
& (3), B b_{1}=b_{2},\left(b_{1}, b_{2}\right) \\
& L\left(X b_{1}, X b_{2}\right) \neq x b_{2} \\
& L\left(x_{1}, x_{2}\right)
\end{aligned}
$$

(7) $\operatorname{ramk}\left(x x^{\prime}\right)=\operatorname{rank}\left(x^{\prime} x\right)=\operatorname{rant}(x)=\operatorname{couh}\left(x^{\prime}\right)$
$n \times p p \times n$ $p \times n \quad n \times p$
Further more, $C\left(X X^{\prime}\right)=C(X)$
Pf: $\operatorname{ranf}(X X) \leq \operatorname{raup}(x)$

$$
\begin{aligned}
& \operatorname{rauld}\left(x^{\prime} x\right) \geqslant \operatorname{ran}(x) ? \\
& \left.\Leftrightarrow \operatorname{nuctg}\left(X^{\prime} X\right) \leq \operatorname{nuc}(x) x\right) \text { ? }
\end{aligned}
$$

\Leftrightarrow "If $X^{\prime} X \beta=0 \Rightarrow \beta^{\prime} X^{\prime} X \beta=0 \Rightarrow\|X \beta\|^{2}=0$

$$
\Rightarrow x \beta=0^{\prime \prime}
$$

Since $\operatorname{rank}\left(x^{\prime} x\right)=\operatorname{rank}(x)$, we have

$$
\begin{aligned}
& \operatorname{rank}\left(X x^{\prime}\right)=\operatorname{raak}\left(Y^{\prime} Y\right)=\operatorname{rank}(Y)=\operatorname{rank}(X) \\
& C\left(X X^{\prime}\right) E C(X) \\
& \operatorname{rank}\left(X X^{\prime}\right)=\operatorname{rank}(x) \\
& \operatorname{Dim}\left(c\left(X X^{\prime}\right)\right)=\operatorname{Dim}(c(x)) \\
& c\left(x x^{\prime}\right)=c(X)
\end{aligned}
$$

Questions:
$x: n \times p$ matrix
$\operatorname{rank}(x)=$ R, i.e. full column rank.
(1) $x^{\prime} X$ is invertible?
pan nap

$$
=\left(\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{p}^{\prime}
\end{array}\right)\left(x_{1}, \cdots, x_{p}\right): p \times p
$$

(2) $\operatorname{rank}\left(\underset{n \times p}{x} \cdot\left(X^{\prime} x\right)^{-1} X^{\prime}\right)=p$?

$$
(X B) \cdot\left(\begin{array}{ll}
B^{\prime} \cdot B^{\prime} & B \\
(X B)^{\prime} & \text { invertible }
\end{array}\right.
$$

(3) $c\left(X \cdot\left(X^{\prime} X\right)^{-1} X^{\prime}\right)=c(X)$?
(8) $\operatorname{ran}\{[x, b] \geqslant \operatorname{ramk}(x)$

$$
x=\left(x_{1}, x_{2}\right) \sim
$$

$$
1 Q^{2}
$$

(q)

$$
\begin{aligned}
& \operatorname{ramk}([x, b])=\operatorname{rack}(x) \\
& \Leftrightarrow b(-c(x) \\
& \Leftrightarrow \exists \beta, \text { s.t. } x \beta=b
\end{aligned}
$$

$\Leftrightarrow x, b$ are consistent $\Leftrightarrow \quad x \beta=b$ has a solution.

E xaupl

$$
[x, b]=\left(\begin{array}{ccc}
1 & 4 & 1 \\
2 & -1 & 2 \\
1 & 2 & 1
\end{array}\right) \quad X \beta=b
$$

Projection onto Vector Space via Orthonormal Basis

projectin to $L(x)$

$\hat{y}=C x$ for sone $C \in(R), \hat{y} \in L(x)$
$y-\hat{y} \perp L(x)$

$$
\begin{aligned}
& \hat{y}=\frac{x^{\prime} y}{\|x\|^{2}} \cdot x=\frac{x x^{\prime}}{\|x\|^{2}} \cdot y(\text { how tio } \\
&\text { lis. Tvanform } y) \\
& \approx\left\langle\frac{x}{\|x\|)}, y\right\rangle \frac{x}{\|x\|} \text { 玉 } \\
&=\langle q, y\rangle \cdot q, \text { clevo } q=\frac{x}{\|x\| 1},\|q\|=1
\end{aligned}
$$

Exaplo
 base of $L(T)$

$$
\begin{aligned}
& \langle q, y\rangle=y_{1} \\
& \hat{y}=y_{1} \cdot\binom{1}{0}=\binom{y_{1}}{0}
\end{aligned}
$$

"projectin is jut dropping dinention"

$$
\langle q, y\rangle
$$

$$
\begin{aligned}
& \langle q, y\rangle=\left\langle\frac{x}{11 x,}, y\right\rangle \\
& \hat{y}=\langle q, y\rangle \cdot q
\end{aligned}
$$

where $\|q\|=1$

Definition
Proj. To a subspace $U \leq T R^{n}$
$\operatorname{proj}(y \mid V)=\hat{y}$ is as follows:

1) $\hat{y} \in V$
2) $y-\hat{y} \perp V$

$$
V=L\left(x_{1}, \cdots, x_{p}\right)
$$

What's proje $y(V)$?
Theorem: $V=L\left(x_{1}, \cdots, x_{p}\right)$

$$
\operatorname{proj}(y \mid v)=\hat{y}
$$

$\Leftrightarrow x^{2} y-\hat{y} \perp x_{i}$ for all $i=1, \cdots, p$

$$
\hat{f} \in L\left(x_{c}, \cdots, x_{p}\right)
$$

pt:

$$
x=\sum_{i=r}^{p} C_{i} x_{i} \text {, for smas } C_{i} \in \mathscr{R}
$$

\Rightarrow suppuse $\bar{y}=\operatorname{proj}(y \mid u)$ as definod ahove, $y-\hat{y} \geq V$

$$
\begin{array}{r}
x_{i} \in V \text {, so } y-\hat{y} \Psi x_{i}^{v} \\
(\kappa) y-\hat{y} \perp x_{i} \Rightarrow y-\hat{y} \perp \sum_{i=1}^{\infty} c_{i} x_{i} \Rightarrow y-\hat{y} \perp V \\
(y-\hat{y})^{\prime} x_{i}=0 \Rightarrow(y-\hat{y})^{\prime} \sum C_{c} x_{i} \\
=\sum C_{i}(y-\hat{y})^{\prime} x_{i}
\end{array}
$$

Theorem:
suppress $q_{1}, q_{2}, \cdots, q_{k}$ is an orthonormal basis for $V=L\left(x_{0}, \cdots, x_{p}\right)$
$\left[k \leqslant p, k=\operatorname{rank}\left(\left[x_{1}, \ldots, x_{p}\right]\right)\right]$.
Twa $\operatorname{proj}(y \mid v)=\sum_{i=1}^{k} \operatorname{proj}\left(y \mid q_{i}\right)$

what's orthogonomal basis?

$$
L\left(q_{1}, q_{2}, \cdots, q_{k}\right)=L\left(x_{1}, \cdots, x_{p}\right)
$$

$q_{i} \perp q_{j}$ for and $i f j, \quad 1 q_{i}(1=1$

Vector form for \hat{y} :

$$
\begin{aligned}
\hat{y}=\operatorname{proj} j|y| v) & =\sum_{i=1}^{k} \operatorname{proj}\left(y \mid q_{i}\right) \\
& =\sum_{i=1}^{k}\left\langle y, q_{i}\right\rangle \cdot q_{i} \quad\left(\left\|q_{i}\right\|=1\right) \\
& =\sum_{i=1}^{k} \frac{\left\langle y_{,}, q_{i}\right\rangle}{\left\|q_{i}\right\|^{2}} \cdot q_{i}, \text { if }\left\|q_{i}\right\| \neq 1
\end{aligned}
$$

Rf: suppose $\left\|q_{i}\right\|=1$ for $i=1, \ldots, k$ $\hat{y} \in V$. we will show

$$
\begin{aligned}
& y-\hat{y} \perp \vee \\
\Leftrightarrow & y-\bar{y} \perp q_{j}, f o j=1, \cdots, k \\
\left\langle y-\hat{y}, q_{j}\right\rangle & \begin{array}{l}
\left\langle q_{i}, q_{j}\right\rangle \\
=\left\{\begin{array}{l}
1, i \\
i, i \neq j
\end{array}\right. \\
=
\end{array}\left|y, q_{j}\right\rangle-\left\langle\sum_{i=1}^{k}\left\langle q_{1} q_{i}\right\rangle q_{i}, q_{j}\right\rangle \\
= & \left\langle y, q_{j}\right\rangle-\sum_{i=1}^{k=}\left\langle y_{,}, q_{i}\right\rangle\left\langle q_{i}, q_{j}\right\rangle \\
= & \left\langle y, q_{j}\right\rangle-\left\langle y, q_{j}\right\rangle\left\langle q_{j}, q_{j}\right\rangle \\
= & \left.\left\langle y, q_{j}\right\rangle-\left\langle y, q_{j}\right\rangle\right\rangle=0
\end{aligned}
$$

$\operatorname{proj}^{\prime \prime}(y \mid v)$ in matrix form
suppose $\left\|q_{i}\right\|=1, q_{i} \in \mathbb{R}^{n}$

$$
I_{A}=\left(\begin{array}{l}
1 \\
\ddots \\
\ddots
\end{array}\right)
$$

$$
\begin{aligned}
& \rightarrow=Q_{n \times k} \cdot Q_{k \times 1}^{\prime} y_{n \times 1} \\
& \rightarrow=Q^{*}\left(\begin{array}{c}
Q_{k} \\
I_{n \times n} \\
0 \times 1
\end{array}\right)\left(Q^{*}\right)^{\prime} y \\
& =\left(\sum_{i=1}^{k} q_{i} q_{i}^{\prime}\right)^{0} \cdot y
\end{aligned}
$$

were $Q=\left(q_{1}, \ldots, q_{k}\right): n \times k$, partan

$$
Q^{*}=\left(q_{1}, \cdots, q_{k}, q_{k+1}, \cdots q_{n}\right): A \times n
$$

Not: $Q^{\prime} Q=I_{k}, \quad Q^{*}\left(Q^{*}\right)^{\prime}=\left(Q^{*}\right)^{\prime} Q^{*}=I_{n}$

Uniqueness of projectim
Theorem: \hat{y}_{1}, \hat{y}_{2} are tuo preje-tons of y outd \cup. Then $\hat{y}_{1}=\widehat{y}_{2}$.

访:

$$
\langle y, x\rangle-\left\langle\hat{y}_{1}, x\right\rangle
$$

$$
\begin{aligned}
& \left\langle y-\hat{y}_{1}, x\right\rangle=\left\langle y-\hat{y}_{2}, x\right\rangle=0 \\
& \forall x \in V \\
\Rightarrow & \left\langle\hat{y}_{1}, x\right\rangle=\left\langle\hat{y}_{2}, x\right\rangle \forall x \in V \\
\Rightarrow & \left\langle\hat{y}_{1}-\hat{y}_{2}, x\right\rangle=0, \forall x \in V \quad\langle\hat{y}, \forall \hat{y}, r| \\
\Rightarrow & \left\langle\hat{y}_{1}-\hat{y}_{2}, \hat{y},-\hat{y}_{2}\right\rangle=0 \quad[\langle x+y, z\rangle \\
\Rightarrow & \left.11 \hat{y}_{1}-\hat{y}_{2} \|^{2}=0 \quad=\langle x, z\rangle+\langle y, z\rangle\right] \\
\Rightarrow & \hat{y}_{1}-\hat{y}_{2}=0
\end{aligned}
$$

Example:
$Y K \mid R^{3}$

$$
\begin{aligned}
p r o j '(y \mid v) & \left.=\operatorname{proj}|y| q_{1}\right)+\operatorname{proj}\left(y \mid q_{2}\right) \\
& =y_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+y_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& =\left(\begin{array}{l}
y_{1} \\
y_{2} \\
0
\end{array}\right)
\end{aligned}
$$

Example $y_{i j}=u_{i}+\varepsilon_{i j}$

$$
\left[\begin{array}{c}
y_{11} \\
y_{12} \\
y_{21} \\
y_{22} \\
y_{31} \\
y_{32}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{6}
\end{array}\right]
$$

$y^{2}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right] \cdot u+\varepsilon$

$$
\eta_{00 j_{3}}\left(y \mid L\left(x_{1}, x_{2}, \cdots, x_{3}\right)\right)
$$

$$
\left[x_{1}, x_{11}, x_{3}\right] \hat{x}
$$

$$
=\sum_{i=1}^{3} \operatorname{proj}\left(y \mid x_{i}\right)
$$

b.c. x_{1}, x_{2}, x_{3} ane orthogovel. i.e. $x_{i}^{\prime} x_{j}=0, i \neq j$

$$
\operatorname{proj}\left(y\left(x_{i}\right)=\frac{\left\langle q, \gamma_{i}\right\rangle}{\left\|\gamma_{i}\right\|^{2}} \cdot \gamma_{i}\right.
$$

$$
\begin{aligned}
& \left.<y, x_{1}\right\rangle=y_{12}+y_{12} \\
& 11 x, 11^{2}=1+1=2 \\
& \frac{\left\langle y, x_{1}\right\rangle}{\left\|x_{1}\right\|^{2}}=\frac{y_{11}+y_{12}}{\frac{2}{1}}=\bar{y}_{1 .} \\
& \eta^{2} j\left(y \mid \gamma_{1}\right)=\left[\begin{array}{c}
\bar{y}_{10} \\
\bar{y}_{1} \\
0 \\
0 \\
0
\end{array}\right]=\bar{y}_{10} \cdot x_{1} \\
& \operatorname{proj}\left(y\left(L\left(x_{1}, x_{2}, x_{3}\right)\right)=\right.
\end{aligned}
$$

$$
\begin{aligned}
\hat{y}= & \bar{y}_{1} \cdot x_{1}+\bar{y}_{2} \cdot x_{2}+\bar{y}_{3} \cdot x_{3} \\
= & \underbrace{\bar{y}_{1}, \cdots,} \underbrace{\bar{y}_{1}}_{n_{1}}, \bar{y}_{2}, \cdots, \bar{y}_{2 n} \\
& \underbrace{\bar{y}_{3,}, \bar{y}_{n_{3}}}_{n_{2}})^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \left.y-\hat{y}=\left[\begin{array}{c}
y_{11}-\bar{y}_{1} \\
y_{12}-y_{1} \\
\vdots \\
y_{31}-\bar{y}_{3} \\
y_{32}-\frac{y_{3}}{2}
\end{array}\right]\right\} \rightarrow s s_{1} \\
& \} \rightarrow s s_{3} \\
& \|y-\hat{y}\|^{2}=s s_{1}+s s_{2}+s s_{3} \\
& \text { where } s s_{i}=\sum_{j=1}^{n_{i}}\left(y_{i j}-\overline{y_{i}}\right)^{2}
\end{aligned}
$$

sum square with groups.

$$
\begin{aligned}
\|y-\hat{y}\|^{2} & =\|y\|^{2}-\|\hat{y}\|^{2} \\
& =\sum \sum_{i j} y_{i j}^{2}-\sum_{i} n_{i} \bar{y}_{i}^{2} \\
& =\sum_{i} \sum_{j} y_{i j}^{2}-\sum_{i} \frac{y_{i 0}^{2}}{n_{i}}
\end{aligned}
$$

whar $y_{i_{0}}=n_{i} \cdot \bar{y}_{i}$.
projection is the least-squared prediction

Theorem:
$\operatorname{proj}(y \mid x)=\hat{y}$ is defined as follows:

$$
\hat{y} \in V \quad \text { s.t. } \hat{y}-y \perp V
$$

\hat{y} is the vector in V that is closest to y. That is, for any $\hat{y} \neq V,\|y-\hat{y}\|^{2} \leq\left\|y-\hat{y}^{*}\right\|^{2}$

1) $\hat{y}-\hat{y}^{*} \in V\left(\sin \alpha \hat{y} \otimes \hat{y}^{*} \in V\right)$
2) $y-\hat{y} \perp V$ (dafinition of \hat{y})
$\Rightarrow y-\hat{y} \perp \hat{y}-\hat{y}^{*}$

$$
y-\hat{y}^{*}=y-\hat{y}+\hat{y}-\hat{y}^{*}
$$

By Pythayorean theorem,

$$
\left\|y-\hat{y}^{*}\right\|^{2}=\|y-\hat{y}\|^{2}+\left\|\hat{y}-\hat{y}^{*}\right\|^{2} \geqslant\|y-\hat{y}\|^{2}
$$

Gram-Schmidt Orth. (QR factorixation)
I^{2}

$$
\begin{aligned}
& q_{1}=x_{1} \mid\left\|x_{1}\right\| \\
& \hat{x}_{2}=\left\langle\hat{x}_{2}, g_{1}\right\rangle \cdot g_{1} \\
& \left.e_{2}\right)=\frac{x_{2}-\hat{x}_{2} \perp q_{1}}{0}
\end{aligned}
$$

$$
q_{2}=\frac{e_{2}}{11 e_{2}+1}
$$

$L\left(g_{0}, g_{2}\right)=L\left(H_{1}, r_{2}\right)$
$x_{2}=\left\langle\gamma_{2}, q_{2}\right\rangle \cdot q_{2}+\left\langle\gamma_{2}, \delta_{1}, q_{1}\right.$.

$$
x_{1}=\left\langle x_{1}, q_{1}\right\rangle q_{1}+0 \cdot q_{2}
$$

$$
\begin{aligned}
\left(x_{1}, x_{2}\right) & =\left(\varepsilon_{1}, g_{2}\right)\left(\begin{array}{cc}
\left.\left\langle\pi_{1}, q_{1}\right\rangle\right\rangle & \left\langle x_{2} q_{\rangle}\right. \\
0 & \left\langle\underline{x}_{2} q_{2}\right\rangle
\end{array}\right) \\
X & =Q \cdot R
\end{aligned}
$$

orthy. uyidr-trumgl.
QR futerization

$$
\begin{aligned}
& n \times k \quad \text { in } L\left(q_{1}, \cdots, q_{k}\right)
\end{aligned}
$$

$\left\{q_{1}, \ldots, q_{k}\right\}$ is an orth. hasis for
$L\left(x_{1}, \cdots, x_{p}\right)$

$$
\left\{\begin{array}{l}
e_{j}=x_{j}-\operatorname{prig}_{j}\left(x_{j} \mid q_{1}, \cdots, q_{j-1}\right) \\
q_{j}=\frac{e_{j}}{\left\|e_{j}\right\|} \\
b_{i}=\frac{x_{1}}{\left\|\gamma_{1}\right\|} .
\end{array}\right.
$$

Projection matrix of projection onto $c(X)$

- Normal equation
- Projection matrix

Normal equation
Let $x=\left(x_{1}, \cdots, x_{p}\right): n \times p$ matrri $1 x$ We want to project y to $C(x)$
That is. We want to find $\beta \in \mathbb{R}^{p}$ Sot.

$$
\begin{aligned}
& y-x \beta \perp c(x) \\
\Leftrightarrow & y-x \beta \perp x_{i}, \text { for } i=1, \cdots, p \\
\Leftrightarrow & x_{i}^{\prime}(y-x \beta)=0, \text { for code } i \\
\Leftrightarrow & x^{\prime}(y-x \beta)=0 \\
\Leftrightarrow & x^{\prime} y=x^{\prime} x^{n} \beta \in \text { normal } \\
\Leftrightarrow & \text { equation }
\end{aligned}
$$

whom $\left(X^{\prime} X\right)^{-1}$ exists, that is x_{1}, \ldots, x_{p} are LIN.

$$
\hat{\beta}=\left(x^{\prime} x\right)^{-1} x^{\prime} y \in L S \text { est. }
$$

Then, another expression for $\operatorname{prg}(y \mid \alpha(x))$

$$
\begin{aligned}
& \eta^{\operatorname{roj}}(y \mid c(x))=x \cdot \hat{\beta}=x \cdot\left(x^{\prime} x\right)^{-1} x^{\prime} y \\
& p=x \cdot\left(x^{\prime} x\right)^{-1} x^{\prime} \text { is the prog. }
\end{aligned}
$$

matrix onto $C(X)=C(P)(?)$
Connection with $P=Q Q^{\prime}$:
when $\operatorname{rank}(x)=P$, with $Q R$ factorization, we can write

$$
\begin{aligned}
P & =X\left(X^{\prime} X\right)^{-1} X^{\prime} \quad \text { orthog } \\
& =Q \cdot R\left(R^{\prime} Q^{\prime} Q R\right)^{-1} R^{\prime} Q^{\prime} \\
& =Q\left(R\left(R^{\prime} R\right)^{-1} R^{\prime} Q^{\prime}\right. \\
& =Q Q^{\prime}>I_{p}
\end{aligned}
$$ orthogonal

Why $C(p)=C(x)$?

$$
X=Q R, \operatorname{rank}(R)=p
$$

$n \times p \quad n \times p$ pxp

$$
\begin{aligned}
& c(X)=c(Q) \\
& P=Q \cdot Q^{\prime} \\
& c(P)=c(Q) \\
& \text { soc(P) } c(X)
\end{aligned}
$$

Projection Matrix

- Projection matrix in general - Symmetric and Idempotent Matrix

Def:
A square matrix $P: n \times n$ is a projection matrix onto $C(p)$ if $\forall y \in \mathbb{R}^{n}, \quad y-p y \perp c(p)$

Note that $p y \in c(p)$.

Examples:

$$
\begin{aligned}
& \text { 1) } y=\left(y_{1}, y_{2}, y_{3}\right)^{\prime} \\
& P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad P y=\left(\begin{array}{l}
y_{1} \\
0 \\
y_{3}
\end{array}\right) \\
& \text { 2) } P_{j n}=\frac{1}{n}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1
\end{array}\right) \\
& =\frac{1}{n} j_{j_{n}} j_{n}{ }^{\prime}, j_{n}=(1, \cdots, l)^{\prime} \\
& p=I_{n}-P_{j a} ? \\
& R^{2} \hat{j}_{2}^{1} \hat{q}_{2}^{q_{2}} \cdots \hat{j}_{2}
\end{aligned}
$$

Theorear: P is a projection matrix onto $V=c(p)$. iff
(1) P is syumetri C
(2) $p^{2}=\rho^{k}$ (idempotent)

Pf:. ($P=P^{k}$, for $k=2, \dot{j}-\ddot{p} y^{\prime}=(T-P) y$

$$
\begin{aligned}
& (y-p y) \leq p z \quad \forall y, z \in \mathbb{R}^{n} \\
\Rightarrow & y^{\prime}\left(I-p^{\prime}\right) p z=0, \forall y, z \in \mathbb{R}^{n} \\
\Leftrightarrow & \left(I-P^{\prime}\right) P=0 \Leftrightarrow p=p^{\prime} p
\end{aligned}
$$

$P^{\prime} P$ is symuetric. so, P is symatros.

$$
P=p^{\prime} p \Leftrightarrow p=p^{2}
$$

${ }^{\bullet} \Leftrightarrow \forall y, z \in \mathbb{R} R^{p}$

$$
\langle y-p y, p z\rangle=y^{\prime}\left(I-p^{\prime}\right) p z
$$

$$
=y^{\prime}\left(p-p^{\prime} p\right) z
$$

$$
=y^{\prime}\left(p-p^{2}\right) z \cdot b \cdot c \cdot p^{\prime}=p
$$

$$
=0 \quad b \cdot c \cdot p=p^{2}
$$

Theorean: P is a proj martix on to $C(P)$.
iff " $\forall y \in C(P), p y=y$

$$
\forall z \in c(p)^{\perp}, p z=0
$$

听 of " \Rightarrow "
suppose $y \in C(\rho), \exists z \in \mathbb{R}^{n}$, s.t. $y=\rho z$

$$
p y=p \cdot p z=p z=y
$$

suppose $w \perp c(p) \Rightarrow W \perp p w$

$$
\begin{aligned}
& \Rightarrow w^{\prime} p w=0 \Rightarrow w^{\prime} p{ }^{\prime} p w=0 \quad\left(p=p^{\prime} p\right) \\
& \Rightarrow\|p \omega\|=0 \Rightarrow p \omega=0 \\
& \text { prooof of }{ }_{\forall} y^{\prime} \in \mathbb{R}^{\left(w^{N}\right.} \in \text {, } \\
& y=y_{1} y_{1}^{\prime}+y_{2} \quad y_{1} \in c(p), y_{2} \perp c(p) \\
& \text { e.g. } y_{1}=\operatorname{proj}(y \mid p), \quad y_{2}=y-y_{1} \\
& p y=p y_{1}+p y_{2}=y_{1}+0=y_{1} \\
& y-p y=y_{2}=1 c(p)
\end{aligned}
$$

progetim onto Complement subspace
Thm: Let $\underset{n \times n}{ } p$ be a proj matrix owto $C(p) \in \mathbb{R}^{n}$
Thon $I_{n}-P$ is a $l^{m i j}$ matrix onto $C\left(I_{n-p}\right)=C(p)^{\perp}$

Pf: (1) $I_{n}-P$ is symetric

$$
\begin{aligned}
& \text { (2) }\left(I_{n}-p\right)^{2}=I_{n}-p-p+p^{2}=I_{m}-p \\
& (3) c\left(I_{n}-p\right)=c(p)^{\perp}: \\
& \Rightarrow \quad \forall z \in c\left(I_{n}-p\right), \exists x, \text { s.t. } z=\left(I_{n}-p\right) x \\
& \quad z=x p x \perp c(p) \\
& \Leftrightarrow \quad \forall y \perp c(p), \quad p y=0, \Rightarrow y-p y=y
\end{aligned}
$$

since $y=y-p y=(I-p) y, \quad y \in c(I-p)$

Exaupe

q,

$$
\begin{aligned}
& L\left(x_{1}, \ldots, x_{100}\right)^{\perp}=C\left(I_{3}-P_{x}\right) \\
& \begin{aligned}
P_{x} & =P^{\text {rojectim matrix onts }} C(x) \\
& =Q Q^{\prime}
\end{aligned}
\end{aligned}
$$

Where Q is an orthonomal basis of $c(X)$
If $x_{1}, \cdots, x_{100} \in L\left(q_{1}, q_{2}\right)$
then $c\left(I_{3}-P_{x}\right)=L\left(q_{3}\right)$

Examples:

$$
\begin{aligned}
j_{n}^{\prime} & =(1,1, \cdots, 1)^{\prime} \\
P_{j_{n}} & =\frac{1}{n} \hat{\jmath}_{n} j_{n}^{\prime}, \\
& =\frac{1}{n}\left(\begin{array}{lll}
1 & 1, \ldots, & 1 \\
1 & 1, \cdots, & 1 \\
1 & 1, \ldots, & 1
\end{array}\right) \\
P & =I_{n}-P_{j n} \\
& =P_{j_{n}^{1}}
\end{aligned}
$$

$$
\begin{aligned}
& c\left(I_{n}-P_{j_{n}}\right) \\
&= c\left(P_{j_{n}}\right)^{\perp} \\
&= j_{n}
\end{aligned}
$$

Projection onto nested subspaces

- Projection onto orthogonal complement space
- Projection onto nested subspaces

Nested Sat. Model

$$
\left[\begin{array}{c}
y \\
\vdots \\
\vdots \\
\vdots
\end{array}\right]=\left[\begin{array}{cc|c}
\cdots \cdots & \cdots & \cdots \\
\cdots \cdots & \cdots & \cdots \\
\cdots \cdots \cdots & \cdots \\
\cdots \cdots \cdots & \cdots \\
\cdots \cdots & \cdots & \cdots
\end{array}\right]\binom{\beta_{1}}{\beta_{2}}+\varepsilon
$$

$H_{0}: y \sim x_{1}, S S E_{0}$
$H_{1}: y \sim X_{1}+X_{2}$, SSE

$$
c\left(X_{1}\right) \pm c\left(\left[X_{1}, X_{2}\right]\right)
$$

projections on to nested spaces
Thn: IF P_{0} is a prij marenix oufo $c\left(P_{0}\right)$

$$
\begin{gathered}
P_{1} \text { is a } c\left(P_{0}\right) \subseteq c\left(P_{1}\right)\left[y=x_{0} \beta+\varepsilon\right. \\
c x_{1} \beta+\varepsilon \\
\text { Then } \left.P_{1} P_{0}=P_{0} P_{1}=P_{0} \quad c\left(r_{0}\right) \Xi c\left(x_{0}\right)\right]
\end{gathered}
$$

مf: $\forall y \in \mathbb{R}^{n}, \quad P_{0} y \in C\left(R_{0}\right) \subseteq c\left(P_{1}\right)$

$$
\begin{aligned}
& \Rightarrow p_{1}\left(p_{0} y\right)=p_{0}(y) \\
& \Rightarrow P_{1} p_{0}=P_{0} \quad P_{0} \text { is symmetric }
\end{aligned}
$$

then $P_{0}=P_{1} P_{0}=\left(P_{1} P_{0}\right)^{\prime}=P_{0}^{\prime} P_{1}^{\prime}=P_{0} P_{1}$

Then: If P_{0} is a proj marrix onfo $c\left(P_{0}\right)$

$$
\begin{aligned}
& P_{1} \text { is a } \cdots c\left(\rho_{1}\right) \\
& c\left(p_{0}\right) \subseteq c\left(P_{1}\right)
\end{aligned}
$$

than $P_{1}-P_{0}$ is a proj mart outso

$$
c\left(P_{1}-P_{0}\right)=\left[c\left(P_{0}\right)\right]^{\perp} n c\left(P_{1}\right)
$$

$P+1:\left[c\left(P_{1}-P_{0}\right) \perp c\left(\rho_{0}\right)\right]$
(1) $\left(P_{1}-P_{0}\right)^{\prime}=P_{1}^{\prime}-R_{0}^{\prime}=P_{1}-R_{0}$ symetric
(2)

$$
\begin{aligned}
\left(P_{1}-P_{0}\right)^{2} & =P_{1}^{2}-P_{0} P_{1}-P_{1} P_{0}+P_{0}^{2} \\
& =P_{1}-2 P_{0}+P_{0}=P_{1}-P_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } c\left(P_{1}-P_{0}\right)=c\left(P_{0}\right)^{\perp} \cap c\left(P_{1}\right) ? \\
& \Leftrightarrow c\left(P_{1}-R_{0}\right) \frac{1}{} c\left(R_{0}\right) \hat{} \\
& \forall y, z \in\left(R_{1}^{\prime},<P_{1}-R\right) y, P_{0} z>=y^{i}\left(P_{1}-P_{0}\right) \cdot P_{0} z \\
& =y^{\prime}\left(P_{1} P_{0}-P_{0}^{2}\right) z=y^{\prime}\left(P_{0}-R_{0}\right) z=0
\end{aligned}
$$

$c\left(p_{1}-p_{0}\right) \pm c\left(p_{1}\right)$ is obvions:...

$$
\begin{aligned}
y & =\hat{y}_{0}+\left(\hat{y}_{1}-\hat{y}_{0}\right)+\left(y-\hat{y}_{1}\right) \\
& =p_{0} y+\left(p_{1} y-p_{0} y\right)+\left(I-p_{1}\right) \cdot y
\end{aligned}
$$

Another pf of $\hat{y}_{1}-\hat{y}_{0} \perp \hat{y}_{0}$:

$$
\hat{y}_{0}=p^{\omega \sim j}\left(\hat{y}_{1} \mid c\left(p_{0}\right)\right)=p_{0}\left(p_{1} y\right)
$$

Therefore, $\hat{y}_{1}-\hat{y}_{0} \perp \hat{y}_{0}$

Remark:

$$
\begin{aligned}
& \text { suppose } P_{1}=\left[x_{1}, \cdots, x_{p}\right]: n \times p \\
& c\left(\rho_{0}\right) \subseteq c\left(\rho_{1}\right) \\
& c\left(\rho_{0}\right)^{\perp} c\left(P_{1}\right) \\
& =C\left(P_{1}-P_{0}\right)=C\left(P_{1}-P_{0} P_{1}\right) \\
& =c\left(P_{1}-\operatorname{prvj}\left(P_{1} \mid P_{0}\right)\right) \text {, where } \\
& P_{1}-\eta^{\operatorname{roj}}\left(P_{1} \| P_{0}\right) \\
& =\left[x_{1}-p p r j\left(x_{1} \mid p_{0}\right), \cdots, x_{p}-p r_{j}\left(x_{p} \mid p_{0}\right)\right] \\
& =\left[x_{1}-p_{0} x_{1}, \cdots, x_{p}-p_{0} x_{p}\right] \\
& =\left[x_{1}, \cdots, x_{p}\right]-p_{0} \cdot\left[x_{1}, \cdots, x_{p}\right] \\
& =P_{1}-P_{0} P_{1}=P_{1}-P_{0}
\end{aligned}
$$

In words, the subspace generated by $\left\{x_{1}-p_{0} x_{1}, \cdots, x_{p}-p_{0} x_{1}\right\}$ is the same as $C\left(P_{0}\right)^{\perp} C\left(P_{1}\right)$

Example:

$$
\begin{aligned}
& c\left(p_{0}\right)^{1} c\left(P_{1}\right) \\
= & c\left(\left[x_{1}-\operatorname{proj}^{\prime}\left(x_{1} \mid \jmath_{2}\right), x_{2}-\operatorname{proj}\left(x_{2} \mid \jmath_{2}\right)\right]\right)
\end{aligned}
$$

An illustrative figure

these there pieces are orthogonal

$$
\begin{aligned}
& y=\hat{y}_{0}+\hat{y}_{1}-\hat{y}_{0}+y-\hat{y}_{1} \\
& \|y\|^{2}=\left\|y_{0}\right\|^{2}+\left\|\hat{y}_{1}-\hat{y}_{0}\right\|^{2}+\left\|y-\hat{y}_{1}\right\|^{2} \\
& \left\|\hat{y}_{1}-\hat{y}_{0}\right\|^{2}=\left\|\hat{y}_{1}\right\|^{2}-\left\|\hat{y}_{0}\right\|^{2} \\
& \left\|y-\hat{y}_{1}\right\|^{2}=\|y\|^{2}-\left\|\hat{y}_{1}\right\|^{2}
\end{aligned}
$$

Similar to $(b-a)^{2}=b^{2}-a^{2}$

Exaylle: (ove-way ANOUA)
An exanble of data
(croup index)

$$
j_{n} \in L\left(x_{1}, x_{2}-x_{3}\right)
$$

$x_{i}=1(g=i)$, indicator of Eroup i
$H_{0}: \quad y_{i j}=u+\varepsilon_{i j}\left[y=j_{n}[u]+\varepsilon\right]$
$H_{1}: \quad y_{i j}=u_{i}+\varepsilon_{i}$

In matrix.
H_{0} :

$$
y=j_{n} \cdot u+\varepsilon, \quad j_{n}=(1,1, \ldots, 1)^{\prime}
$$

(1 :

$$
y=\left[x_{1}, x_{2}, x_{3}\right] \cdot\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)+\varepsilon
$$

projectins:

$$
\begin{aligned}
\text { Undek } H_{:}: & \eta^{\operatorname{rnj}}\left(y \mid j_{x}\right) \equiv P_{0} y \\
\text { Under } H_{1}: & l^{\operatorname{roj}\left(y \mid L\left(x_{1}, x_{2}, x_{3}\right)\right)} \\
& \equiv P_{1} y \\
L\left(j_{n}\right) \subseteq & L\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

sime $j_{n}=x_{1}+x_{2}+x_{3}$
Thut is, H_{0} is a reduced model
of H_{1}.

$$
P_{0}=\frac{1}{\frac{n}{y_{1}}} j_{n} j_{n} j_{n}^{\prime}
$$

$$
\hat{y}_{0}=p_{0} y=\left(\bar{y}_{0}, \bar{y}_{\cdots \cdots}, \cdots, \bar{y}_{n}\right)^{\prime}
$$

$$
\begin{aligned}
\hat{y}_{1}=p_{1} y & =\left(\bar{y}_{1}, \bar{y}_{11}, \bar{y}_{2 v}, \bar{y}_{x_{2}}, \bar{y}_{3}, \bar{y}_{3}\right) \\
& =\overline{y_{1}, x_{1}}+\overline{y_{2}, x_{2}}+\bar{y}_{2} x_{2}
\end{aligned}
$$

$$
=\bar{y}_{1} \cdot x_{1}+\bar{y}_{2} \cdot x_{2}+\bar{y}_{3} \cdot x_{3}
$$

$$
\begin{aligned}
& \hat{y}_{1}=\bar{y}_{1} \cdot x_{1}+\tilde{y}_{2} \cdot x_{2}+\bar{y}_{3} \cdot x_{3} \\
& =(\underbrace{\bar{y}_{1}, \ldots,}_{n_{1}}, \underbrace{\bar{y}_{1}}_{n_{2}}, \underbrace{}_{\bar{y}_{2}}, \cdots, \bar{y}_{2,} \\
& \bar{y}_{3} \underbrace{}_{\underbrace{}_{n}} \ldots, \bar{y}_{3})^{\prime} \\
& \hat{y}_{0}=\bar{y}_{\ldots} \dot{j}_{n}=\left(\bar{y}_{1}, \ldots, \bar{y}_{\ldots}\right)^{\prime}
\end{aligned}
$$

some $S S$ based on $\hat{y}_{0} \& \hat{y}_{1}$:

$$
\begin{align*}
\text { RSS }_{0} & =\left\|y-\hat{y}_{0}\right\|^{2}=\sum_{i, j}\left(y_{i j}-\bar{y}_{n}\right)^{2} \\
& =\|y\|^{2}-\left\|\hat{y}_{0}\right\|^{2} \tag{0}\\
& =\sum_{i, j} y_{i j}^{2}-n \cdot \bar{y}_{.}^{2}
\end{align*}
$$

$$
\begin{aligned}
\frac{R s S_{0}}{n-1} & =s_{y}^{2} \text { sayple varmue of } y \\
R S S_{1} & =\left\|y-\tilde{y}_{1}\right\|^{2} \\
& =\sum_{i} \sum_{j}\left(y_{i j} \bar{y}_{i}\right)^{2} \\
& =\left\|y_{i}^{2}-\right\| \hat{y}_{1} \|^{2} \quad \text { grup thin } \\
& =\sum_{i j} y_{i j}^{2}-\sum_{i} n_{i} \bar{y}_{i .}^{2} \quad y_{1}^{y}
\end{aligned}
$$

RSS. - RSS

$$
\begin{aligned}
& =\left\|y-\hat{y}_{0}\right\|^{2}-\left\|y-\hat{y}_{1}\right\|^{2} \\
& =\left\|\hat{y}_{0}-\right\|^{2} \\
& =\left\|\hat{y}_{1}\right\|^{2}-\left\|\hat{y}_{0}\right\|^{2}=\sum_{i} n_{i} \bar{y}_{i \cdot}^{2}-n \bar{y}_{0}^{2} \\
& =\sum_{i}\left(\bar{y}_{i}-\bar{y}_{1}\right)^{2} \cdot n_{i} \leftarrow \text { ss } b+\omega \\
& =\text { grouls. }
\end{aligned}
$$

projections in orthogonal spares
$V_{1}, V_{2}, \ldots, V_{k}$ are othoganel

$$
\begin{aligned}
& y=I_{n} y=p_{1} y+p_{2} y+\cdots+p_{k} y \\
& \|y\|^{2}=\left\|P_{1} y\right\|^{2}+\left\|\beta_{2} y\right\|^{2}+\cdots+\left\|p_{k} y\right\|^{2}
\end{aligned}
$$

$p_{i} y, \ldots, p_{k} y$ are all orthogonal.
projection to nested spares

$$
V_{1} E V_{2} \subseteq \cdots \sigma_{R} N_{k} \subseteq \mathbb{R}^{n}
$$

$\left(V_{1} \oplus V_{2} V_{1}^{1} \oplus\right.$
$P_{r_{1}} \quad \mathrm{Pr}_{2}-P_{r}$
$(1) V_{k} V_{k+1}^{+} \oplus V_{k}^{1}=1 R^{n}$
$P_{V_{k}}-P_{V_{k-1}} I_{n}-V_{k k}$

