Lecture Notes for Theory of Linear Models

(Ch2inRencheret al.)

- Review of Matrix Algebra
- Generalized Inverse

LonghaiLi

Department of Mathematics and Statistics
 University of Saskatchewan

Review of Matrix Theory.
Eigenvalues θ Ergen Vector

$$
\underset{n \times n}{A x}=\lambda x, \quad A x-\lambda I_{n} \cdot x=0
$$

λ - eigar value
x - eigen vector.
$\left|\lambda I_{n}-A\right|=0$, a polynomial of λ.
Ink, $\underline{\underline{\operatorname{SVD}(A)}}$ will you $\lambda \Leftrightarrow x$. Singular value decomposition.

Spectral Decomposition for Symmetric Matrices
A is a symmetric matrix: $n \times n$ (ail eigan values and real)

$$
\begin{aligned}
& A=\left(q_{1}, q_{2}, \cdots, q_{n}\right)\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \cdots & & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
q_{1}^{\prime} \\
q_{2}^{\prime} \\
\vdots \\
q_{n}^{\prime}
\end{array}\right] \\
& \begin{array}{l}
=\left(q_{1}, \cdots, q_{n}\left[\begin{array}{c}
\lambda_{1} q_{1}^{\prime} \\
\vdots \\
\lambda_{n} q_{n}^{\prime}
\end{array}\right]\right. \\
\left.=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}\right)=Q \cdot\left(\begin{array}{l}
\lambda_{1} \\
\left.\vartheta_{i} \lambda_{n}\right) Q^{\prime}
\end{array}\right.
\end{array} \\
& \begin{array}{l}
\uparrow \\
Q^{\prime}
\end{array} \\
& q_{i} \perp q_{j}(\neq), \quad\left\|q_{i}\right\|^{2}=1
\end{aligned}
$$

$Q=\left(q_{1}, \cdots, q_{n}\right)$ is an orthoganal $\operatorname{marrix}, Q^{\prime} Q=Q \cdot Q^{\prime}=I_{n}$

$$
\begin{aligned}
A X & =Q\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \lambda_{n}
\end{array}\right) Q^{\prime} x \\
& =Q\left(\begin{array}{ll}
\lambda_{1} & \\
& \ddots \\
& \\
\lambda_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
q_{1}^{\prime} x \\
\vdots \\
q_{n}^{\prime} x
\end{array}\right)=Q \cdot\left(\begin{array}{c}
\lambda_{1} q_{1}^{\prime} x \\
\vdots \\
\lambda_{n} q_{n}^{\prime} x
\end{array}\right)
\end{aligned}
$$

Some facts about syun. matrices $\quad \operatorname{tr}(A B)=\operatorname{tr}(B A)$

1) $\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i},|A|=\prod_{i=1}^{n} \lambda_{i}, \quad \operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$
$\operatorname{tr}\left(Q \cap Q^{\prime}\right)=\operatorname{tr}=1 \wedge Q^{\prime}(Q)=\operatorname{tr}(\Lambda), i=1 Q \wedge Q^{\prime}|=|A|$
2) A is singular if $\exists \lambda_{i}=0$
3) $A^{-1}=Q \cdot\left(\begin{array}{cc}\lambda_{1}^{-1} & 0 \\ 0 & - \\ \cdot \lambda_{n}^{-1}\end{array}\right) Q^{\prime}$, if $\lambda_{i} \neq 0$ for arl i
4) $A^{\frac{1}{2}} \equiv Q \cdot\left(\begin{array}{cc}\sqrt{\lambda_{i}} & \cdots \\ 0 & \cdots \\ 0 & \\ \lambda_{n}\end{array}\right) \cdot Q^{\prime}$, if $\lambda_{i} \geqslant 0$ forall:

Squere $A^{\frac{1}{2}} A^{\frac{1}{2}}=A \quad A^{\frac{1}{2}}$ is $\left(Q \wedge Q^{\prime}\right)^{-1}=Q \cdot n^{-1} Q^{\prime}$ voot $A^{\frac{1}{2}} \cdot A^{\frac{1}{2}}=A, \quad A^{\frac{1}{2}}$ is symumtric
5)

Quadric form of symmeriy t

$$
\begin{aligned}
& =X^{\prime} \cdot Q \cdot\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \ddots \\
\lambda_{n}
\end{array}\right) \underline{Q^{\prime} x} \text {, let } y=Q^{\prime} x \\
& =\sum_{i}^{n} \lambda_{i}\left(q_{i}^{\prime} x\right)^{2} \text {, culere } Q=\left(q_{6}, \cdots, q_{n}\right) \\
& =\sum_{i=1}^{i=1} \lambda_{i} y_{i}^{2} \quad y_{i}=q_{i}^{\prime} x
\end{aligned}
$$

projection matrix
(1) $p=p^{\prime}$
(2) $p^{2}=\rho \Rightarrow \lambda_{i}=0$ or 1

$$
P=Q \cdot\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) \cdot Q^{\prime}=\sum_{i=1}^{r} q_{i} q_{i}^{\prime}
$$

sones dimencinis are re-scaled to 0 if $\lambda:=0$ or uachange if $\lambda_{i}=1$
why $\lambda_{i}=0$ or 1 .

$$
\begin{array}{ll}
x \in c(p), & p x=x=1 \cdot x \\
x \perp c(p), & p x=0 \cdot x
\end{array}
$$

Anotho prourf:

$$
\left.\Rightarrow \begin{array}{l}
p^{x}=\lambda x, p^{2}=\rho \\
p^{2} x=\lambda p x=\lambda^{2} x \\
p^{2} x=p x=\lambda x \quad \Rightarrow \lambda^{2} x=\lambda x, \quad|x| \neq 0
\end{array}\right\} \lambda^{2}=\lambda \Rightarrow \lambda=0 / 1
$$

Example

$$
\begin{aligned}
P & =\frac{1}{n} \hat{j}_{n} \cdot \hat{\jmath}_{n}^{\prime} \\
& =\frac{1}{n}\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right][1,1, \cdots, 1] \\
& =\frac{1}{n}\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
\operatorname{rank}(p)
\end{array}\right. \\
& \cdots \operatorname{cr}(p) 1 \\
& =\operatorname{tr}\left(\frac{1}{n} \jmath_{n} \cdot j_{n}^{\prime}\right) \\
& =\frac{1}{n} \cdot \operatorname{tr}\left(\hat{\jmath}_{n}^{\prime} \jmath_{n}\right) \\
& =\frac{1}{n} \cdot \operatorname{tr}([n])=\frac{1}{n} \cdot n \\
& =1
\end{aligned}
$$

Positive Definite (p.d.) and Positive semi-definite (p.s.d) Matrices

A is symmetric

ifs
$x^{\prime} A x>0 \quad \forall x \in \mathbb{R}^{n}, x \neq 0[A>0]$
inf $x^{\prime} A x \geqslant 0 \quad \forall x \in \mathbb{R}^{n} \quad[A \geqslant 0]$

Examples:

1) The matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)
$$

is positive definite.
Q: Why?
A: Because the associated quadratic form is

$$
\begin{aligned}
\mathbf{x}^{T} \mathbf{A} \mathbf{x} & =\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =2 x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}=2\left(x_{1}-\frac{1}{2} x_{2}\right)^{2}+\frac{5}{2} x_{2}^{2},
\end{aligned}
$$

2)

The matrix

$$
\mathbf{B}=\left(\begin{array}{ccc}
13 & -2 & -3 \\
-2 & 10 & -6 \\
-3 & -6 & 5
\end{array}\right)
$$

is positive semidefinite because its \uparrow associated quadratic form is

$$
\mathbf{x}^{T} \mathbf{B} \mathbf{x}=\left(2 x_{1}-x_{2}\right)^{2}+\left(3 x_{1}-x_{3}\right)^{2}+\left(3 x_{2}-2 x_{3}\right)^{2},
$$

which is always non-negative, but does equal 0 for $\mathbf{x}=(1,2,3)^{T}$ (or any multiple of $\left.(1,2,3)^{T}\right)$.

Sone facts about P.d. 8 P.S.d.
Let $A=\left(a_{i j}\right)_{n \times n}$

1) A isp.d. $\Leftrightarrow a_{i i}>0$
A is P.s.d. $\Rightarrow a_{i i} \geqslant 0$
㫙: let $x=(0, \cdots, 1,0, \cdots, 0)^{\prime}, x^{\prime} A x=a_{i i}$
2)
3) ith
A is P.S.d. $\Leftrightarrow \lambda i \geqslant 0$
pf:

$$
\begin{aligned}
& A=Q\left(\begin{array}{lll}
\lambda_{1} & \ddots & \\
& \ddots \lambda_{n}
\end{array}\right) Q^{\prime} \text {, whon } Q=\left(q_{1}, \cdots, q_{n}\right) \\
& X^{\prime} A X=\sum_{i=1}^{n} \lambda_{i}\left(q_{i}^{\prime} x\right)^{2}=\sum_{i=1}^{n} \lambda_{i} \cdot y_{i}^{2}
\end{aligned}
$$

abe $y=Q^{\prime} x$.

$$
x^{\prime} A x=y_{1}^{2}-y_{2}^{2} \text { isn't al way } \geqslant 0
$$

3) Let B : nap matrix
a) if $\operatorname{rauk}(B)=P$, thaw $B_{p \times P}^{\prime} B$ is $P \cdot d$.
b) if $\operatorname{roult}(B)<P$, then $B^{1} B$ is $P \cdot$ sod.

Bf: $\operatorname{rank}(B)=P$, tan $B X \neq 0 \quad \forall x \neq 0$
So $x^{\prime} B^{\prime} B X=\|B x\|^{2}>0$
If $\operatorname{rank}(B)<T$ then $B X$ may be 0 for sima $x \neq 0$. But we always hale

$$
x^{\prime} A x=\|B x\|^{2} \geqslant 0
$$

4) A is P.d. $\Rightarrow A^{-1}$ exists. (non-singulad)
5) A is p.d. $\Rightarrow A^{-1}$ is p.d.

$$
A=Q\left(\lambda_{1}, \lambda_{p}\right) Q^{\prime} \cdot A^{-1}=Q\left(\lambda_{1}^{-1} \cdot \because \lambda_{p}^{-1}\right) Q^{\prime}
$$

Cholesky Decomposition
If A is pod. . $\exists B$ st. $A=B^{\prime} B$
When B is an upper triangle matrix The factorization is unique.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\frac{b_{11}}{b_{12}} b_{22} & \cdots & 0 \\
\vdots & & \vdots \\
b_{1 n} & b_{2 n} & \cdots & b_{n n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
\left(b_{11}\right. & b_{12} & \cdots \\
0 & b_{22} & \cdots \\
0 & \cdots & b_{1 n} \\
0 & \cdots & b_{n n}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)=A \\
& b_{11}^{2}=a_{11} \Rightarrow b_{11}=\sqrt{a_{11}} \quad a_{1 i}>0 \\
& b_{11} \cdot b_{1 j}=a_{1 j} \Rightarrow b_{1 j}=\frac{a_{1 j}}{b_{11}} \\
& b_{12}^{2}+b_{22}^{2}=a_{22} \Rightarrow b_{22}=\sqrt{a_{22}-b_{12}^{2}}
\end{aligned}
$$

Why Clublesky? B^{-1} can be obtrinal easily.

Singular Value decomposition

$$
X: n \times p, \quad z \sim p l^{n a l} \operatorname{rauk}(x)=r \leqslant \min (x, p)
$$

$$
\begin{aligned}
& \text { then } X \text { can be wriffen as: }
\end{aligned}
$$

where, $\mathrm{O}_{12}, \mathrm{O}_{21}, \mathrm{O}_{22}$ ane 0 matrix.

$$
\begin{aligned}
& U_{i}, 1 U_{j}^{j} \text { for } i \neq j \text {, }\left\|u_{i}\right\|=1, i=1, \cdots r \\
& v_{i} \perp v_{j} \text { for } i f j, \quad\left\|v_{i}\right\|=1, i=1, \cdots, r \\
& U^{\prime} U=U \cdot U^{\prime}=I n \\
& V^{\prime} V=V \cdot V^{\prime}=I_{p} \\
& \Lambda=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
\vdots & 0 & \vdots \\
0 & 0 & \cdots & \lambda_{r}
\end{array}\right)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}\right) \\
& U=\left(u_{1}, \cdots, u_{r}, u_{r+1}, \cdots, u_{n}\right) \\
& =\left(U_{1}, U_{2}\right) \\
& V=\left(v_{1}, \ldots, v_{r}, v_{r+1}, \ldots, v_{p}\right) \\
& =\left(V_{1}, V_{2}\right)
\end{aligned}
$$

Generalized Inverses

Motivation

$$
\begin{aligned}
& x=\left[x_{1}, x_{2}\right] \text { invertiqle } \\
& x \beta=y, y \in R^{2} \\
& \left.I x_{1}, x_{2}\right] \cdot\binom{\beta_{1}}{\beta_{2}}, \\
& \beta=x^{-1} y, x \cdot(x+y)=y, f y \\
& \beta \in \mathbb{R}^{2},
\end{aligned}
$$

$$
\begin{aligned}
& x_{i} \in \mathbb{R}^{2} \\
& x=\left[x_{1}, x_{2}, x_{3}\right]
\end{aligned}
$$

$x \beta=y$ doesn't have a unique sol.

$\beta=x$ y should be a solution to $x \beta=y$, for $y \in c(x)$

What X^{-}should be?
suppose $x=\left[x_{1}, \ldots, x_{p}\right]$
$x \cdot\left(x^{-} x_{j}\right)=x_{j}$ for each x_{j} (永)
$\beta_{j}=x^{-} x_{j}$ shod be a solution to $x \beta=x_{j}$
then $x x^{-} y=y$, for each $y \in c(x)$
Writtive in matrix form:

$$
\begin{aligned}
& x \cdot x^{-} \cdot\left[x_{1}, \cdots, x_{p}\right]=\left[x_{1}, \cdots, x_{p}\right] \\
& x \cdot x^{-} x=x
\end{aligned}
$$

Generaliad Inderse (Def):
Let X be an $n \times p$ matrix. X is matrix of $p \times n$ and satisties $X \cdot X^{-} X=X X^{-}$ is caved a generalized intuerse of X
a versias of

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)=y, \quad y \in L\left(q, q_{2}\right)
$$

Exampl:

$$
\begin{aligned}
& x=(1,2,3) \text {, } \\
& x^{-}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), x \cdot x^{-x}=1 \cdot x=x \\
& x^{-}=\left(\begin{array}{l}
\frac{1}{1} \\
\frac{1}{2} \\
0
\end{array}\right), X \cdot X^{-} X=1 \cdot X=X
\end{aligned}
$$

Exangle

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
2 & 2 & 3 \\
1 & 0 & 1 \\
3 & 2 & 4
\end{array}\right) \quad \begin{array}{l}
\operatorname{rank}(A)=2 \text { sine } \\
x_{3}=x_{1}+\frac{1}{2} x_{2}
\end{array} \\
& \mathbf{A}_{1}^{-}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{2} & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \mathbf{A}_{2}^{-}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{3}{2} & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

A Version of X^{-}

$$
\begin{aligned}
& x=\left(\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right)_{n \times p} R_{11}^{-1} \text { exists. } \\
& \left.X^{-}=\left(\begin{array}{ll}
R_{11}^{-1} & O_{21} \\
O_{12} & O_{22}
\end{array}\right)_{\text {pwN }}\right)=r \\
& \operatorname{shope}\left(O_{12}\right)=\operatorname{shape}\left(R_{12}^{\prime}\right) \\
& \operatorname{shap}\left(O_{21}\right)=\operatorname{shapp}\left(R_{21}^{\prime}\right) \\
& \operatorname{shapp}\left(O_{22}\right)=\operatorname{shape}\left(R_{22}^{\prime}\right)
\end{aligned}
$$

$\mathrm{O}_{12}, \mathrm{O}_{21}, \mathrm{O}_{22}$ are all O matrice.

$$
\begin{aligned}
X \cdot X^{-} X & =\left(\begin{array}{cc}
I_{r} & 0 \\
R_{21} R_{11}^{-1} & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right)=X
\end{aligned}
$$

Note: X being singular implies that

$$
R_{22}-R_{21} R_{11}^{-1} R_{12}=0
$$

A Procedure to Find A Version of Generalized Inverse

1. Find any nonsingular $r \times r$ submatrix \mathbf{C}. It is not necessary that the elements of \mathbf{C} occupy adjacent rows and columns in \mathbf{A}.
2. Find \mathbf{C}^{-1} and $\left(\mathbf{C}^{-1}\right)^{\prime}$.
3. Replace the elements of \mathbf{C} by the elements of $\left(\mathbf{C}^{-1}\right)^{\prime}$.
4. Replace all other elements in \mathbf{A} by zeros.
5. Transpose the resulting matrix.

目: c^{-1}

Moure - Penrose Iaverse

$$
\begin{aligned}
& X=\bigcup_{n \times n} \cdot\left(\begin{array}{cc}
\Lambda & O_{12} \\
O_{21} & O_{22}
\end{array}\right) V^{\prime \prime}(s \vee D) \\
& X^{+}=V \cdot\left(\begin{array}{cc}
\Lambda^{-1} & O_{21}^{\prime} \\
O_{12}^{\prime} & O_{22}^{\prime}
\end{array}\right) U^{\prime} \\
& \Lambda=\left(\begin{array}{ll}
\lambda_{1} & \cdots \lambda_{r}
\end{array}\right), \Lambda^{-1}=\left(\begin{array}{ll}
D_{1} \times n \\
= & \cdots \lambda_{1}^{-1}
\end{array}\right)
\end{aligned}
$$

O_{12}, O_{21}, O_{22} ase all 0 marrix
cheekinf:

$$
x \cdot x^{+} x=x
$$

Theorem:

$$
\beta=x-c \text { is a solution to }
$$

proof: $\quad X B=C$, if it is consistent. First we assume $c \in C(X)$, that is $x \beta=C$ is consistent

$$
\begin{aligned}
& P^{x_{3}} \quad \text { (c) } x=\left(x_{1}, x_{2}, x_{3}\right) \\
& x \beta \in C(x) \\
& \operatorname{rauk}([x, c])=\operatorname{rank}(x) \\
& c \in L\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Given c, quppoe $\times b=c$, ie, b is a station.
Let X^{-1} be a version of gen. indue of X.

$$
\begin{aligned}
& \left(x x^{-}\right) x b=\left(x \cdot x^{-}-c\right. \\
& \Rightarrow \quad x x^{-} x b=x \cdot\left(x^{-} c\right) \\
& \Rightarrow \quad x b)=x \cdot\left(x^{-} c\right) \cdot \sin \theta \times x \times x=x \\
& \Rightarrow \quad c=x \cdot\left(x^{-} c\right) \cdot \sin \theta \times b=c
\end{aligned}
$$

That is, $b_{2}=X^{-} C$ is a solution of

$$
x \beta=c \quad \downarrow-m_{a y} \neq b
$$

Example 1:

$$
x=(1,2,3)
$$

To solve $\quad x \beta=4$

$$
\begin{aligned}
& x p=4 \\
& (1,2,3) \cdot\left(\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)=4
\end{aligned}
$$

(1) $x^{-}=\left(\begin{array}{c}y \\ 0 \\ 0 \\ 0\end{array}\right), \quad B=\overline{x^{-}} \cdot 4=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0\end{array}\right) \cdot 4=\left(\begin{array}{l}4 \\ 0 \\ 0\end{array}\right) \leftarrow$
(2) $X=\left(\begin{array}{l}0 \\ \frac{1}{2} \\ 0\end{array}\right), \beta=x 4=\left(\begin{array}{c}0 \\ \frac{1}{2} \\ 0\end{array}\right) \cdot 4=\left(\begin{array}{l}0 \\ 2 \\ 0\end{array}\right) \leftarrow$

Excuple 2:

$$
\begin{aligned}
& x=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \\
& X \beta=\left(\begin{array}{l}
2 \\
4 \\
6
\end{array}\right)=c
\end{aligned}
$$

(1) $\bar{x}^{-}=(10,0,0)$,

$$
\beta=x^{-} c=2
$$

(2) $x=\left(0, \frac{1}{2}, 0\right), \quad \beta=\widetilde{x-c}=\underline{2}$
(3) $X^{-}=\left(0,0, \frac{1}{3}\right)$,

$$
\beta=x^{-} c=2
$$

Th m:

$$
\hat{\beta}=\frac{\left(x^{\prime} x\right)^{-} x^{\prime} y}{\left(x^{\prime} x\right) \beta=x^{\prime} y} \text { is a solutimeto }
$$

Thu:
$\hat{y}=x\left(x^{\prime} x\right)^{-} x^{\prime} y$ is the projection
of y onto $c(x)$. $\quad x^{\prime} x \beta=x^{\beta} y$
PI: $\hat{\beta}=\left(x^{\prime} x\right)^{-} x^{\prime} y \quad \Leftrightarrow x^{\prime}(y-x \beta)=0$
is a solution to the normal ψ
equation $x^{\prime} x \beta=x^{\prime} y\left[\begin{array}{l}y-x \hat{\beta} \leq x_{i} \\ \text { for all } i=1, \cdots+7\end{array}\right]$

$$
\Rightarrow \quad \hat{y}=x \hat{\beta}=x \cdot\left(x^{\prime} x\right)^{-x} x^{\prime} y \text { is }
$$

the pros unto $C(X) \sin \theta \theta^{\text {the }} \uparrow \eta^{2 r v j}$ section is unique.
The next pages give a direct proof.

Thm:
$(X)^{\prime}$ is a version
of $\left(x^{\prime}\right)^{-}$
nf:

$$
\begin{aligned}
& x^{\prime}\left(x^{-}\right)^{\prime} x^{\prime} \\
= & \left(x x^{-} x\right)^{\prime} \\
= & x^{\prime}
\end{aligned}
$$

Sonotines we urite $\left(x^{-}\right)^{\prime} \Theta\left(x^{\prime}\right)^{-}$

Theorem: For amy version $\left(x^{\prime} x\right)^{-}$,

$$
\begin{aligned}
& \left(x\left(x^{\prime} x\right)^{-} \cdot x^{\prime}\right) \cdot x=x \text { 匂transpose } \\
& x^{\prime} x\left(x^{\prime} x\right)^{\prime} x^{\prime}=x^{\prime}
\end{aligned}
$$

Pf 1: using projection
$p_{x}=x \cdot\left(x^{\prime} x\right)^{-} x^{\prime}$ is the prog matrix on to $c(x)$

$$
x=\left[x_{1}, \cdots, x_{p}\right], \quad P_{x} x_{j}=x_{j}
$$

So $P_{x}\left[x_{1}, \cdots, x_{p}\right]=\left[x_{1}, \ldots, x_{p}\right]$
That is $P_{x} \cdot x=X$

Pf 2 : using direct matrix manipulation $\forall y \in \mathbb{R}^{1}, \quad y=x \hat{\beta}+e$, what

$$
\begin{aligned}
& x^{\prime} \hat{\beta}=\operatorname{prog}^{\prime}(y \mid c(x)) \text { and } e \perp c(x) \\
& x^{\prime} x\left(x^{\prime} x\right)^{-} x^{\prime} \cdot y \\
= & x^{\prime} x\left(x^{\prime} x\right)^{-} x^{\prime} \cdot(x \hat{\beta}+e) \\
= & x^{\prime} x\left(x^{\prime} x\right)-x^{\prime} x \hat{\beta}+\left(x^{\prime} x\right) \cdot\left(x^{\prime} x\right)^{-} \cdot\left[\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right] \\
= & x^{\prime} x \hat{\beta}=x^{\prime} y \Rightarrow x^{\prime} x\left(x^{\prime} x\right)^{-} x^{\prime}=x^{\prime}
\end{aligned}
$$

Note:

$$
\begin{aligned}
& x y=0 \quad \forall y \in \mid R^{p} \Leftrightarrow x=0 \\
& x=\left[x_{1}, \cdots, x_{p}\right] \\
& y_{1}=[1,0, \cdots, 0]^{\prime}, x_{1}=0
\end{aligned}
$$

Thm: $\operatorname{Let} P=x \cdot\left(x^{\prime} x\right)=x^{\prime}$
(1) $p=p^{\prime}$ (2) $p^{2}=P$ (idampotent)
(3) ${ }^{\text {(symmotriic) }} p$ is invariant to $\left(x^{\prime} x\right)^{-}$

Df:
(1) $P^{\prime}=X \cdot\left(x^{\prime} X\right)^{-} X^{\prime}=P$

$$
\text { Not: }\left(x^{-}\right)^{\prime}=\left(x^{\prime}\right)^{-}
$$

(2)

$$
\begin{aligned}
P^{2} & =\frac{x \cdot\left(x^{\prime} x\right)^{-} x^{\prime} \cdot x}{=x}\left(x^{\prime} x\right)^{-} x^{\prime} \quad\left(\begin{array}{l}
x_{1}^{\prime} e \\
x_{2}^{2} e \\
x_{p}^{i} e
\end{array}\right)=0 \\
& =x \cdot\left(x^{\prime} x\right)^{-x^{\prime}}
\end{aligned}
$$

(3)

$$
e=y-x b
$$

$$
\forall y \in \mathbb{R}^{n}, y=x b+e_{n} e \perp c(x) \text {, i.e, } x^{\prime} e=0
$$

and $x b \in c(x)$, i.e, $x b=p r j(y \mid c(x))$

$$
\begin{aligned}
& \text { Then we see that, for any version of (x'x)- } \\
& \begin{aligned}
x\left(x^{\prime} x\right)^{-} x^{\prime} y & =x \cdot\left(x^{\prime} x\right)^{\prime} x^{\prime}(x b+e) \\
& =x \cdot\left(x^{\prime} x\right)-x^{\prime} x b+0, \sin \theta x e=0 \\
& =x b=x \\
& =\operatorname{pirj}^{\prime}(y \mid c(x))
\end{aligned}
\end{aligned}
$$

$x\left(x^{\prime} x_{112} x^{\prime} y=x \cdot\left(x^{\prime} x\right)_{(2)}^{-} x^{\prime} y\right.$ for all $y \in \mathbb{R}^{2}$

An Explicit Formula of Projection onto Non-full-rank Subspace

(Optional at the moment)

GI in Least square with rank $<p$.
$Q t Q\left(R_{1}, R_{2}\right), R_{1}^{2}$ exists, $k<p$.
(nip) $n \times k$ kkk $R_{k \times(p-k)}$ wesssuce tho firs k_{1} col. of x

$$
\begin{aligned}
& \left.X^{\prime} X \beta=X^{\prime} y{ }_{E}^{\text {note }} x^{\prime} y \in \boldsymbol{c}\left(X^{\prime}\right)=\boldsymbol{c}\left(X^{\prime} X^{\prime}\right)\right] \\
& \Leftrightarrow\left[\begin{array}{ll}
R_{1}^{\prime} R_{1} & R_{1}^{\prime} R_{2} \\
R_{2}^{\prime} R_{1} & R_{2}^{\prime} R_{2}
\end{array}\right] \beta=\left[\begin{array}{l}
R_{1}^{\prime} \\
R_{2}^{\prime}
\end{array}\right] Q^{\prime} y \\
& \text { let }\left(X^{\prime} x\right)^{-}=\left[\begin{array}{cc}
\left(R_{1}^{\prime} R_{1}\right)^{-1} & 0 \\
0 & 0
\end{array}\right] \text { (on version) } \\
& \hat{\beta}=\left(X^{\prime} x\right)^{-1} x^{\prime} y \\
& =\left[\begin{array}{cc}
\left(R_{1}^{\prime} R_{1}\right)^{-1} & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
R_{1}^{\prime} \\
R_{2}^{\prime}
\end{array}\right] Q^{\prime} y \\
& =\left[\begin{array}{c}
\left(R_{1}^{\prime} R_{1}\right)_{k \times 1}^{-1} R_{1}^{\prime} Q^{\prime} y \\
0
\end{array}\right]=\left[\begin{array}{c}
R_{1}^{-1} Q^{\prime} y \\
0
\end{array}\right] \\
& \begin{aligned}
\hat{y}=\underline{X} \hat{\beta}=Q\left[R_{1}, R_{2}\right] \cdot \hat{\beta} & =Q \cdot R_{1}\left(R_{1}^{\prime} R_{1}\right)^{-1} R_{1}^{\prime} Q^{\prime} y \\
& =Q \cdot Q^{\prime} y
\end{aligned}
\end{aligned}
$$

Another way to understand:

$$
y=Q\left(R_{1}, R_{2}\right) \beta+\varepsilon
$$

Let ${\underset{k}{k} \times 1}_{b}=(\underbrace{R_{1}}_{k}, \underbrace{R_{2}}_{p-k})\binom{\beta_{1}}{\beta_{2}}\} k p, \hat{b}, \hat{b} \rightarrow \hat{\beta}$

$$
\begin{aligned}
& \hat{k} \times 1 \quad{ }_{k} p^{-k}=R_{1} \beta_{1}+R_{2} \beta_{2} \\
& y=Q b+c \\
& \hat{b}=Q^{\prime} y=\left(Q^{\prime} Q\right)^{-1} Q^{\prime} y, \quad \hat{y}=Q Q^{\prime} y
\end{aligned}
$$

Then we find $\hat{\beta}$ S.t.

Sol: $1:$

$$
\left(R_{1}, R_{2}\right)\binom{\beta_{1}}{\beta_{2}}=\hat{b}=Q^{\prime} y
$$

We will set $\beta_{2}=0$, and solve

$$
R_{1} \beta_{1}=Q^{\prime} y \Rightarrow \hat{\beta}_{1}=R_{1}^{-1} Q^{\prime} y
$$

Then $\hat{\beta}=\left[\begin{array}{c}R_{1}^{-1} Q^{\prime} y \\ 0\end{array}\right]$

$$
\begin{aligned}
& \text { Sol 2: using } R^{-} \\
& \begin{aligned}
R^{-} & =\left[\begin{array}{c}
R_{1}^{-1} \\
0
\end{array}\right] \\
\hat{\beta} & =R^{-1} Q^{\prime} y \\
& =\left[\begin{array}{c}
R_{1}^{-1} Q^{\prime} y \\
0
\end{array}\right]
\end{aligned}
\end{aligned}
$$

The $\hat{\beta}$ is the same as using $\left(X^{\prime} x\right)^{-}$in solving $X^{\prime} X \beta=X^{\prime} y$

