Lecture Notes for Theory of Linear Models

- Distribution of Quadratic Forms (Sum Squares)

Longhai Li
Department of Mathematics and Statistics
University of Saskatchewan

Quadratin forms

$$
\begin{aligned}
& y=\left(y_{1} \cdots, y_{n}\right)^{\prime} \\
& \|y\|^{2}=\sum_{i=1}^{n} y_{i}^{2}=y^{\prime} \cdot I_{n} y \\
& \|p y\|^{2}=(p y)^{\prime} \cdot p y=y^{\prime} p^{\prime} p y \\
& \quad=y^{\prime} p y
\end{aligned}
$$

ubre P is a prous matrix
y'A, , At may bl yemarl.

$$
E\left(y^{2}\right)=V(y)+u^{2}, u=E(y)
$$

Mean of Quadratic Form (without normality assumption)
Theorem 5.2a. If \mathbf{y} is a random vector with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ and if \mathbf{A} is a symmetric matrix of constants, then

$$
E\left(\mathbf{y}^{\prime} \mathbf{A} \mathbf{y}\right)=\operatorname{tr}(\mathbf{A \Sigma})+\boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu}
$$

$$
\Sigma=E\left(\frac{(y-u)(y-u)^{\prime}}{(5.4)}\right)
$$

Proof. By (3.25), $\boldsymbol{\Sigma}=E(\mathbf{y} \mathbf{y})^{\boldsymbol{\lambda}}-\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}$, which can be written as

$$
E\left(\mathbf{y y}^{\prime}\right)=\Sigma+\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}
$$

Since $\mathbf{y}^{\prime} \mathbf{A y}$ is a scalar, it is equal to its trace. We thus have

$$
=E\left(y y^{\prime}\right)^{(5.5)}-u u^{\prime}
$$

$$
\begin{aligned}
E\left(\mathbf{y}^{\prime} \mathbf{A y}\right) & =E\left[\operatorname{tr}\left(\mathbf{y}^{\prime} \mathbf{A y}\right)\right] & & \operatorname{tr}(\mathbb{A})=\operatorname{tr}(\mathrm{BA}) \\
& =E\left[\operatorname{tr}\left(\mathbf{A y y}^{\prime}\right)\right] & & {[\text { by }(2.87)] } \\
& =\operatorname{tr}[E(\mathbf{A y y})] & & {[\text { by }(3.5)] }
\end{aligned} \leftarrow(\operatorname{tr}(X))
$$

Another

$$
\begin{aligned}
& A=\left(a_{i j}\right)_{n \times 1} \\
& y^{\prime} A y=\sum_{i} \sum_{j} y_{i} y_{j} a_{i j} \\
& E\left(g_{i} y_{j}\right)=\nabla_{i j}+u_{i} u_{j} \\
& F\left(y^{\prime} A y\right)=\sum_{i} \sum_{j} \sigma_{i j} a_{i j}+\sum_{i} \sum_{j} a_{i j} a_{i} l_{j} \\
& =\operatorname{Tr}(A \Sigma)+u^{\prime} A U
\end{aligned}
$$

Illustration

$$
A=I_{2} . \quad y^{\prime} y=\|y\|^{2}
$$

Example:
Let x be a ravelom vector with

$$
\begin{aligned}
& E(x)=u=\left(u_{1}, \cdots, u_{n}\right)^{\prime}, \operatorname{Var}(x)=v^{2} I_{n} \\
& \cdot x=\left(x_{1}, \cdots, x_{n}\right)^{\prime}, \quad E\left(x_{i}\right)=u_{i}, v^{\prime}\left(x_{n}\right)=\sigma^{2} \\
& \operatorname{Cor}\left(x_{i}, x_{j}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
E\left(\|x\|^{2}\right) & =E\left(x^{\prime} I_{n} x\right) \\
& =\operatorname{tr}\left(I_{n} \cdot \sigma^{2} I_{n}\right)+u^{\prime} \cdot I_{n} \cdot u \\
& =\sigma^{2} \cdot n+\sum_{i=1}^{n} u_{i}^{2} \\
E\left(\sum_{i=1}^{n} x_{i}^{2}\right) & =\sum_{i=1}^{n} E\left(x_{i}^{2}\right) \\
& =\sum_{i=1}^{n}\left(u_{i}^{2}+\sigma^{2}\right) \\
& =\sum_{i=1}^{n} u_{i}^{2}+n \sigma^{2}
\end{aligned}
$$

A direct approach:
Let $x_{i}=z_{i}+u_{i}$, where $E\left(z_{i}\right)=0, V\left(z_{i}\right)=\sigma^{2}$

$$
\begin{aligned}
& x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], u=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right], z=\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right] \\
& \begin{aligned}
\|x\|^{2} & =\langle\delta+u, z+u\rangle \\
& =\|z\|^{2}+2\langle z, u\rangle+\|u\|^{2} \\
E\left(\|x\|^{2}\right) & =E\left(\|z\|^{2}\right)+2 E\left(u^{\prime} \delta\right)+\|u\|^{2} \\
& =n \sigma^{2}+2 \cdot u^{\prime} \cdot E(z)+\|u\|^{2} \\
& =n \sigma^{2}+\|u\|^{2}
\end{aligned}
\end{aligned}
$$

Example:

$$
u \hat{\jmath}_{n}=(u, \cdots, u)^{\prime}
$$

Suppue $E(x)=u j_{n}, \operatorname{Var}(x)=\sigma^{2} I_{n}$,
x is a scalar.
X may not follow $N\left(u j_{n}, \sigma^{2} I_{n}\right)$

In non-matrix notation

$$
x=\left(x_{1}, \cdots, x_{n}\right)^{\prime}
$$

$X_{1,}, \cdots, X_{n}$ are uncorrelateel
and $E\left(x_{i}\right)=x, V\left(x_{i}\right)=\sigma^{2}$

Let $H=\frac{1}{n} \bar{j}_{n} \jmath_{n}^{\prime}, \quad H x=\bar{x} \cdot \hat{\jmath}_{n}$
$I t$ is a projection matrix onto $L\left(\hat{j}_{n}\right)$

$$
\begin{aligned}
\left(I_{n}-1 t\right) x & =x-\operatorname{proj}\left(x \mid \jmath_{n}\right)=x-\bar{x} \cdot \tilde{\jmath}_{n} \\
& =\left(x_{1}-\bar{x}, \cdots, x_{n}-\bar{x}\right)^{\prime}
\end{aligned}
$$

$$
\left\|\left(I_{n}-1+\right) x\right\|^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \equiv(n-1) S_{x}^{2}
$$

$$
E\left((n-1) S_{x}^{2}\right)=E\left(11\left(T_{n}-1 f\right) \times 11^{2}\right)
$$

$$
=E\left(x^{\prime}\left(I_{n}-H\right) x\right)
$$

$$
\begin{aligned}
&=\operatorname{tr}\left(\left(I_{n}-H\right) \sigma^{2}-I_{n}\right)+\left(u \cdot \hat{j}_{n}\right)^{\prime}\left(I_{4}-H\right) u j_{n} \\
&=\sigma^{2} \operatorname{tr}\left(I_{n}-H\right)+u^{2} \cdot j_{n}^{\prime}\left(I_{n}-1+\right) j_{n} \\
&=\sigma^{2} \cdot(n-1) \quad \text { gina } j_{n} \perp c(H) \\
& \operatorname{tr}(H)=\operatorname{rank}(H)=1 \\
& \operatorname{tr}\left(I_{n}-H\right)=\operatorname{rauk}\left(I_{n}-H\right)=n-1
\end{aligned}
$$

In words, sample variame is an unbiased estimate of population variance σ^{2}.

$$
\begin{aligned}
& H x=\operatorname{prof}\left(x \mid j_{n}\right) \\
& =\frac{1}{n} j_{n} \hat{j}_{n}^{\prime} x \\
& =\left[\begin{array}{c}
\bar{x} \\
\vdots \\
\bar{x}
\end{array}\right] \\
& E\left(\|H x\|^{2}\right)=\operatorname{tr}\left(H \cdot \sigma^{2} I_{n}\right)+\left\|u \hat{\rho}_{n}\right\|^{2} \\
& =\sigma^{2}+n u^{2} \\
& \underbrace{+\underbrace{x}_{(n-1) \sigma^{2}} \leftarrow \text { mean of } S S}_{n u^{2}+\sigma^{2}} \\
& \text { using } E\left(\|+x\|^{2}\right) \text { to find } V(\bar{x}) \\
& \left\|\|x\|^{2}=n \bar{x}^{2}\right. \\
& E\left(\bar{x}^{2}\right)=\frac{n u^{2}+\sigma^{2}}{n}=u^{2}+\frac{\sigma^{2}}{n} \\
& V(\bar{x})=E\left(\bar{x}^{2}\right)-(E(\bar{x}))^{2} \\
& =u^{2}+\frac{\sigma^{2}}{n}-u^{2} \\
& =\frac{\sigma^{2}}{n}
\end{aligned}
$$

Chi-square Distribution: Let x_{1}, \ldots, x_{n} be independent normal random variables with means μ_{1}, \ldots, μ_{n} and common variance 1 . Then

$$
y=x_{1}^{2}+\cdots+x_{n}^{2}=\mathbf{x}^{T} \mathbf{x}=\|\mathbf{x}\|^{2}, \quad \text { where } \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}
$$

is said to have a noncentral chi-square distribution with n degrees of freedom and noncentrality parameter $\lambda=\frac{1}{2} \sum_{i=1}^{n} \mu_{i}^{2}$. We denote this as $y \sim \chi^{2}(n, \lambda)$.

In matrix form,
Let $x \sim N\left(U, I_{n}\right), U=\left(U_{1}, \cdots, u_{n}\right)^{\prime}$

$$
\begin{gathered}
x \sim N\left(u, I_{n}\right) \\
y=\|x\|^{2}=x^{\prime} x \sim x^{2}\left(n, \frac{\|u\|^{2}}{2}\right) \\
x^{2} \approx x^{\prime} I_{n} x
\end{gathered}
$$

The distribution of $\|x\|^{2}$ is
determined by $" u \|^{2}$, ratter then the specific u.

PDF

Figure 5.1 Central and noncentral chi-square densities.

Mean, Variance and MGF

$$
\lambda=\frac{\| \pi 1^{2}}{2}
$$

Theorem: Let $Y \sim \chi^{2}(n, \lambda)$. Then
i. $\mathrm{E}(Y)=n+2 \lambda ; \boldsymbol{n} \boldsymbol{+} \boldsymbol{\|} \boldsymbol{u} \boldsymbol{\|}^{2}$
ii. $\operatorname{var}(Y)=2 n+8 \lambda$; and
iii. the m.g.f. of Y is

$$
m_{Y}(t)=\frac{\exp [-\lambda\{1-1 /(1-2 t)\}]}{(1-2 t)^{n / 2}} .
$$

Pf:
i) $Y=\|x\|^{2}$, with $x \sim N\left(u, I_{n}\right)$

$$
\begin{aligned}
& Y=\|u+z\|^{2}, \text { when } z \sim N\left(0, I_{n}\right) \\
& =\|u\|^{2}+\|z\|^{2}+2 u^{\prime} z \\
& \|z\|^{2} \sim X_{n}^{2}(\text { central }) \\
& E\left(\|z\|^{2}\right)=n \\
& E(Y)=u^{2}+n+2 \cdot u^{\prime} \cdot 0=u^{2}+n
\end{aligned}
$$

ii) with m.G.F.
iii) a special case of Thu 5.2 b

Additivity

Theorem 5.3c. If $v_{1}, v_{2}, \ldots, v_{k}$ are independently distributed as $\chi^{2}\left(n_{i}, \lambda_{i}\right)$, then
点

Pt: using M.G.F.

$$
\begin{aligned}
& \text { F: using M.G.F. } \\
& M_{i=1}^{k} v_{i}(t)=\frac{\exp \left(\sum_{i=1}^{k} \lambda_{i}\left(1-\frac{1}{1-2 t}\right)\right)}{(1-2 t) \frac{\sum_{i=1}^{n} n_{i}}{2}}
\end{aligned}
$$

This is the M.G.F. of $\lambda^{2}\left(\sum n_{i}, 2 \lambda_{i}\right)$
pf 2:

$$
\begin{aligned}
& V_{1}=\left\|x_{1}\right\|^{2}, \quad x_{1} \sim N\left(u_{1}, I_{n_{1}}\right) \\
& V_{2}=\left\|x_{2}\right\|^{2}, \quad x_{2} \sim N\left(u_{2}, I_{u_{2}}\right) \\
& \vdots \\
& V_{k}=\left\|x_{k}\right\|^{2}, \quad x_{k} \sim N\left(u_{k}, I_{n_{k}}\right) \\
& \sum_{i=1}^{k} V_{i}=\sum_{i=1}^{k}\left\|x_{i}\right\|^{2}=\|x\|^{2}, \\
& \text { when l } x=\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{k}^{\prime}\right)^{\prime} \\
& \sim N\left(\left(u_{1}^{\prime}, \cdots, u_{n}^{\prime}\right)^{\prime}, \quad I_{\left.n_{1}+\cdots+n_{k}\right)}\right)
\end{aligned}
$$

MGF of Quadratic Form

Theorem 5.2b. If \mathbf{y} is $N_{p}(\boldsymbol{\mu}, \mathbf{\Sigma})$, then the moment generating function of $\mathbf{y}^{\prime} \mathbf{A y}$ is

$$
M_{\mathbf{y}^{\prime} \mathbf{A} \mathbf{y}}(t)=|\mathbf{I}-2 t \mathbf{A} \mathbf{\Sigma}|^{-1 / 2} e^{-\boldsymbol{\mu}^{\prime}\left(\mathbf{I}-(\mathbf{I}-2 t \mathbf{A} \mathbf{\Sigma})^{-1}\right] \mathbf{\Sigma}^{-1} \boldsymbol{\mu} / 2}
$$

The distribution of $y^{\prime} A y$

$$
A=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Theorem 5.5. Let \mathbf{y} be distributed as $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, let \mathbf{A} be a symmetric matrix of constans of rank r, and let $\lambda=\frac{1}{2} \boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\mu}$. Then $\mathbf{y}^{\prime} \mathbf{A y}$ is $\chi^{2}(r, \lambda)$, if and only if $\mathbf{A} \mathbf{\Sigma}$ is idempotent. (AS may not be a projection matrix)
pt:inusig the M. G.F. at $y^{\prime} A y$.
see the textbook. (very complicated)
2) Will be proved in next pages.

Important:
csperical

Corollary Suppose $\mathbf{y} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}_{n}\right)$ and let \mathbf{P}_{V} be the projection matrix onto a subspace $V \in \mathcal{R}^{n}$ of dimension $r \leq n$. Then

$$
\begin{aligned}
\frac{1}{\sigma^{2}} \mathbf{y}^{T} \mathbf{P}_{V} \mathbf{y} & =\frac{1}{\sigma^{2}}\|p(\mathbf{y} \mid V)\|^{2} \sim \chi^{2}\left(r, \frac{1}{2 \sigma^{2}} \boldsymbol{\mu}^{T} \mathbf{P}_{V} \boldsymbol{\mu}\right)=\chi^{2}\left(r, \frac{1}{2 \sigma^{2}}\|p(\boldsymbol{\mu} \mid V)\|^{2}\right) \\
P_{V} & =Q_{n \times n}^{*} \cdot\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)\left(Q^{*}\right)^{\prime} \\
P_{r} y & =Q^{*}\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right) Q^{*} y \\
& -\left(Q, Q_{2}\right) \cdot\binom{I r, 0}{0}\binom{Q^{\prime}}{Q_{z}} y \\
& =
\end{aligned}
$$

$P_{V}=Q Q^{\prime}$, where $Q^{\prime} Q=I_{r}$

$$
\begin{aligned}
& Q^{\prime} y \sim N\left(Q^{\prime} r, I_{r}\right) \\
& r \times n \\
& Q^{\prime} y \in\left(R^{r}\right.
\end{aligned}
$$

$Q^{\prime} y$ is the coordinates of the projection of y onto $V=1\left(q_{1}, \ldots, q_{r}\right)$

Pf of the corollary:
suppose $\sigma^{2}=1 \quad\left(\right.$ later yeneralind to $\left.\sigma^{2} \neq 1\right)$

$$
\begin{aligned}
y^{\prime} P_{v} y & =y^{\prime} P_{v}^{\prime} P_{v} y \\
& =\left\|P_{v} y\right\|^{2}
\end{aligned}
$$

By the formulas for liner transformation of multivariate normal,

$$
\begin{aligned}
& P_{v} y \sim N_{n}\left(P_{v} u, P_{v} I_{n} \cdot P_{v}^{\prime}\right) \\
&=N_{n}\left(P_{v} u, P_{v}\right) \\
& \operatorname{rank}\left(P_{v}\right)=r<n, P_{v} y \in \mathbb{R}^{n}
\end{aligned}
$$

The distribution of Pry is deqeneracel (confined to the space V).
We will express $\left\|P_{r} y\right\|^{2}$ with a non-degerated random vector in \mathbb{R}^{r}

$$
\begin{aligned}
P_{v} & =Q \cdot Q^{\prime} \\
& =\left(q_{1}, \cdots, q_{r}\right) \cdot\left[\begin{array}{c}
q_{1}^{\prime} \\
q_{2}^{\prime} \\
\vdots \\
q_{r}^{\prime}
\end{array}\right], ~
\end{aligned}
$$

With $Q^{\prime} Q=I_{r}$.

$$
\begin{aligned}
& P_{v} y=Q \cdot Q^{\prime} y \\
& =\left(q_{1}, \cdots, q_{r}\right) \cdot\left[\begin{array}{c}
q_{1}^{\prime} y \\
q_{2}^{\prime} y \\
\vdots \\
q_{r}^{\prime} y
\end{array}\right] \\
& Q^{\prime} y \in \mathbb{R}^{r}, \quad P_{v} y \in \mathbb{R}^{n} \\
& \|P, y\|^{2}=y^{\prime} Q Q^{\prime} \cdot Q \cdot Q^{\prime} y \\
& =\left\|Q^{\prime} y\right\|^{2} \text {, for all } y \in \mathbb{R}^{N}
\end{aligned}
$$

Q'y is the coordinates of the projection of y onto $V=L\left(q_{1}, \cdots, q_{r}\right)$
$Q^{\prime} y \sim N_{r}\left(Q^{\prime} U, Q^{\prime} I_{n} Q=I_{r}\right)$
By the definition of x^{2},

$$
\begin{aligned}
\left\|Q^{\prime} y\right\|^{2} & \sim x^{2}\left(r, \frac{1}{2}\left\|Q^{\prime} u\right\|^{2}\right) \\
& =x^{2}\left(r, \frac{1}{2}\|p u\|^{2}\right)
\end{aligned}
$$

So $\left\|p_{v} y\right\|^{2} \sim \chi^{2}\left(r, \frac{1}{2}\left\|p_{v} u\right\|^{2}\right)$
Note:

$$
\begin{aligned}
& \left\|Q^{\prime} x\right\|^{2}=\left\|p_{v} u\right\|^{2} \text { because } \\
& \left\|Q^{\prime} y\right\|^{2}=\left\|P_{v} y\right\|^{2} \text { for all } y \in \mathbb{R}^{n}
\end{aligned}
$$

Now, if $\sigma^{a} \neq 1$, suppose

$$
\begin{gathered}
y \sim N\left(u, \sigma^{2} I_{n}\right) \\
\Rightarrow \frac{y}{\sigma} \sim N\left(\frac{u}{\sigma}, I_{n}\right)
\end{gathered}
$$

Applying previous result for $\sigma^{2}=1$

$$
\begin{aligned}
& \left\|P_{v}\left(\frac{y}{\sigma}\right)\right\|^{2} \sim x^{2}\left(r, \frac{1}{2}\left\|P_{v}\left(\frac{u}{\sigma}\right)\right\|^{2}\right) \\
& \frac{\left\|P_{v} y\right\|^{2}}{\sigma^{2}} \sim \lambda^{2}\left(r, \frac{1}{2} \frac{\left\|P_{v} u\right\|^{2}}{\sigma^{2}}\right)
\end{aligned}
$$

Note: this doesn't say that

$$
\begin{aligned}
\text { Note: } \begin{aligned}
& \text { this doesrit say that } \\
& \frac{\|p y\|^{2} \sim x^{2}\left(r, \frac{1}{2}\|v u\|^{2}\right)}{\left\|p_{2} u\right\|^{2}} \\
& \text { Note: } E\left(\frac{\left\|P_{v}\right\|^{2}}{\sigma^{2}}\right)=r+\frac{\| \sigma^{2}}{\sigma^{2}} \\
& E\left(\left\|P_{v}\right\|^{2}\right)=r \cdot \sigma^{2}+\left\|p_{v} u\right\|^{2}
\end{aligned}
\end{aligned}
$$

Alterontivly, $E\left(\left\|P_{v} y\right\|^{2}\right)$

$$
\begin{aligned}
& =\operatorname{Tv}\left(\rho_{v} \sigma^{2} I\right)+\left\|P_{v} u\right\|^{2} \\
& =r \cdot \sigma^{2}+\left\|P_{r} u\right\|^{2}
\end{aligned}
$$

Lemma: notp.s.d.
\sum is (D.d. $\left(\exists \Sigma^{\frac{1}{2}}\right.$ s.t. $\left.\Sigma=2^{-\frac{1}{2}} \cdot 2^{\frac{1}{2}}\right)$
$A \Sigma$ is iolempotent $\Leftrightarrow \sum^{\frac{\pi}{2}} A \Sigma^{\frac{1}{2}}$ is idemp.

$$
\begin{aligned}
& \text { [1 }: ~(\rightarrow A \Sigma A \Sigma=A \Sigma \text { (given) } \\
& \left(\Sigma^{\frac{1}{2}} A E^{\frac{1}{2}}\right)\left(2^{\frac{1}{2}} A \Sigma^{\frac{1}{2}}\right) \\
& =\sum^{-\frac{1}{2}} A \sum A \Sigma \Sigma^{-\frac{1}{2}} \\
& =2^{-\frac{1}{2}} A \Sigma \cdot \Sigma^{-\frac{1}{2}} \\
& =\Sigma^{\frac{1}{2}} A \Sigma^{\frac{1}{2}} \\
& { }^{n \prime} \epsilon{ }^{\prime \prime}\left(\Sigma^{\frac{1}{2}} A \Sigma^{\frac{1}{2}}\right)\left(\sum^{\frac{1}{2}} A \Sigma^{\frac{1}{2}}\right)=\Sigma^{\frac{1}{2}} A S A \Sigma^{-\frac{1}{2}} \\
& =\Sigma^{-\frac{1}{2}} A \Sigma^{\frac{1}{2}} \\
& \Rightarrow A \Sigma A=A \\
& \Rightarrow A \Sigma A \Sigma=A \Sigma
\end{aligned}
$$

The 5.5 (A) (only one direction)
Let A be a symmetric matrix. with rank $(A)=r$. $y \sim N(u, \Sigma), \Sigma^{-1}$ exists. If $A \Sigma$ is idempotent,

$$
y^{\prime} A y \sim x^{2}\left(r, \frac{1}{2} u^{\prime} A u\right)
$$

时:
Let $y^{*}=\Sigma^{-\frac{1}{2}} y . y^{*} \sim N_{n}\left(\Sigma^{-\frac{1}{2}} u, I_{n}\right)$

$$
y^{\prime} A y=y^{\frac{1}{2}}\left(\Sigma^{\frac{1}{2}} A \Sigma^{\frac{1}{2}} \Sigma^{-\frac{1}{2}} y=y^{\neq 1} \Sigma^{\frac{1}{2}} A \Sigma^{\frac{1}{2}} y^{*}\right.
$$

Let $P_{v}=\sum^{-\frac{1}{2}} A \Sigma^{-\frac{1}{2}} . \quad y^{\prime} A y=y^{*^{\prime}} P_{r} y^{*}=\left\|P_{v} y^{*}\right\|^{2}$ $\left\{A \sum\right.$ is iclemps tent $\Rightarrow P_{r}$ is idempotent.
A is s yumnetric $\Rightarrow P_{V}=P_{V}^{\prime}$
$P r$ is a proj. matrix with rank r
Applying Cor with $\sigma^{2}=1$,

$$
y^{\prime} A y=\left\|P_{v} y^{A}\right\|^{2} \sim x^{2}\left(r, \frac{1}{2}\left\|p_{v} \Sigma^{-\frac{1}{2}} u\right\|^{2}\right)
$$

$$
\begin{aligned}
\left\|P_{v} \Sigma^{-\frac{1}{2}} u\right\|^{2} & =u^{\prime} \Sigma^{-\frac{1}{2}} \cdot \Sigma^{\frac{1}{2}} A \Sigma^{\frac{1}{2}} \Sigma^{-\frac{1}{2}} u \\
& =u^{\prime} A u \\
\operatorname{rank}\left(P_{V}\right) & =\operatorname{ramk}\left(\Sigma^{\frac{1}{2}} A \Sigma^{\frac{1}{2}}\right) \\
& =\operatorname{rank}(A) \text {. Sincee } \Sigma^{-\frac{1}{2}} P \cdot d .
\end{aligned}
$$

Corallang:
suppose $y \sim N_{n}(u, \Sigma), y \in \mathbb{R}^{n}$
Then,

$$
\begin{aligned}
& \left(y-u_{0}\right)^{\prime} \sum^{-1}\left(y-u_{0}\right) \\
& \sim x^{2}\left(n, \frac{1}{2}\left(u-u_{0}\right)^{\prime} \Sigma^{-1}\left(u-u_{0}\right)\right)
\end{aligned}
$$

Pf: Let $A=\Sigma^{-1}, A \Sigma=I_{n}$

$$
y_{-} u_{0} \sim N\left(x-u_{0}, \Sigma\right)
$$

We can also prove the corollary directly:

$$
\sum^{-\frac{1}{2}}\left(y-u_{0}\right) \sim N_{n}\left(\sum^{-\frac{1}{2}}\left(u-u_{0}\right), I_{n}\right)
$$

Therefore, $b y$ the definition $-f x^{2}$:

$$
\begin{aligned}
& \left(y-x_{0}\right)^{\prime} \Sigma^{-1}\left(y-u_{0}\right)=\left\|\sum^{-\frac{1}{2}}\left(y-u_{0}\right)\right\|^{2} \\
& \sim x^{2}\left(n, \lambda=\frac{1}{2}\left\|\Sigma^{-\frac{1}{2}}\left(u-u_{0}\right)\right\|^{2}\right)
\end{aligned}
$$

Distributions of a projection and its Sum Square

Theorem: Let V be a k-dimensional subspace of \mathcal{R}^{n}, and let \mathbf{y} be a random vector in \mathcal{R}^{n} with mean $\mathrm{E}(\mathbf{y})=\boldsymbol{\mu}$. Then

1. $\mathrm{E}\{p(\mathbf{y} \mid V)\}=p(\boldsymbol{\mu} \mid V)$;
2. if $\operatorname{var}(\mathbf{y})=\sigma^{2} \mathbf{I}_{n}$ then

and

3. if we assume additionally that \mathbf{y} is m'variate normal i.e., $\mathbf{y} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}_{n}\right)$, then

$$
p(\mathbf{y} \mid V) \sim N_{n}\left(p(\boldsymbol{\mu} \mid V), \sigma^{2} \mathbf{P}_{V}\right)
$$

and

$$
\frac{1}{\sigma^{2}}\|p(\mathbf{y} \mid V)\|^{2}=\frac{1}{\sigma^{2}} \mathbf{y}^{T} \mathbf{P}_{V} \mathbf{y} \sim \chi^{2}(k, \frac{1}{2 \sigma^{2}} \underbrace{\boldsymbol{\mu}^{T} \mathbf{P}_{V} \boldsymbol{\mu}}_{=\|p(\boldsymbol{\mu} \mid V)\|^{2}})
$$

Proof:

1. Since the projection operation is linear, $\mathrm{E}\{p(\mathbf{y} \mid V)\}=p(\mathrm{E}(\mathbf{y}) \mid V)=$ $p(\boldsymbol{\mu} \mid V) . \quad E(P \sqrt{\prime})=P_{V} \cdot E(\varphi)=P_{V} u$
2. $p(\mathbf{y} \mid V)=\mathbf{P}_{V} \mathbf{y}$ so $\operatorname{var}\{p(\mathbf{y} \mid V)\}=\operatorname{var}\left(\mathbf{P}_{V} \mathbf{y}\right)=\mathbf{P}_{V} \sigma^{2} \mathbf{I}_{n} \mathbf{P}_{V}^{T}=\sigma^{2} \mathbf{P}_{V}$.

In addition, $\|p(\mathbf{y} \mid V)\|^{2}=p(\mathbf{y} \mid V)^{T} p(\mathbf{y} \mid V)=\left(\mathbf{P}_{V} \mathbf{y}\right)^{T} \mathbf{P}_{V} \mathbf{y}=\mathbf{y}^{T} \mathbf{P}_{V} \mathbf{y}$.
So, $\mathrm{E}\left(\|p(\mathbf{y} \mid V)\|^{2}\right)=\mathrm{E}\left(\mathbf{y}^{T} \mathbf{P}_{V} \mathbf{y}\right)$ is the expectation of a quadratic form and therefore equals

$$
\begin{aligned}
\mathrm{E}\left(\|p(\mathbf{y} \mid V)\|^{2}\right)=\operatorname{tr}\left(\sigma^{2} \mathbf{P}_{V}\right)+\boldsymbol{\mu}^{T} \mathbf{P}_{V} \boldsymbol{\mu} & =\sigma^{2} \operatorname{tr}\left(\mathbf{P}_{V}\right)+\boldsymbol{\mu}^{T} \mathbf{P}_{V}^{T} \mathbf{P}_{V} \boldsymbol{\mu} \\
& =\sigma^{2} k+\|p(\boldsymbol{\mu} \mid V)\|^{2}
\end{aligned}
$$

3. The previous Cor

Orthogonal Projections and their Quadratic Forms

Theorem: Let V_{1}, \ldots, V_{k} be mutually orthogonal subspaces of \mathcal{R}^{n} with dimensions d_{1}, \ldots, d_{k}, respectively, and let \mathbf{y} be a random vector taking values in \mathcal{R}^{n} which has mean $\mathrm{E}(\mathbf{y})=\boldsymbol{\mu}$. Let \mathbf{P}_{i} be the projection matrix onto V_{i} so that $\hat{\mathbf{y}}_{i}=p\left(\mathbf{y} \mid V_{i}\right)=\mathbf{P}_{i} \mathbf{y}$ and let $\boldsymbol{\mu}_{i}=\mathbf{P}_{i} \boldsymbol{\mu}, i=1, \ldots, n$. Then

1. if $\operatorname{var}(\mathbf{y})=\sigma^{2} \mathbf{I}_{n}$ then $\operatorname{cov}\left(\hat{\mathbf{y}}_{i}, \hat{\mathbf{y}}_{j}\right)=\mathbf{0}$, for $i \neq j$; and
2. if $\mathbf{y} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}_{n}\right)$ then $\hat{\mathbf{y}}_{1}, \ldots, \hat{\mathbf{y}}_{k}$ are independent, with

$$
\hat{\mathbf{y}}_{i} \sim N\left(\boldsymbol{\mu}_{i}, \sigma^{2} \mathbf{P}_{i}\right)
$$

and
3. if $\mathbf{y} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}_{n}\right)$ then $\left\|\hat{\mathbf{y}}_{1}\right\|^{2}, \ldots,\left\|\hat{\mathbf{y}}_{k}\right\|^{2}$ are independent, with

$$
\frac{1}{\sigma^{2}}\left\|\hat{\mathbf{y}}_{i}\right\|^{2} \sim \chi^{2}\left(d_{i}, \frac{1}{2 \sigma^{2}}\left\|\boldsymbol{\mu}_{i}\right\|^{2}\right)
$$

Proof: Part 1: For $i \neq j, \operatorname{cov}\left(\hat{\mathbf{y}}_{i}, \hat{\mathbf{y}}_{j}\right)=\operatorname{cov}\left(\mathbf{P}_{i} \mathbf{y}, \mathbf{P}_{j} \mathbf{y}\right)=\mathbf{P}_{i} \operatorname{cov}(\mathbf{y}, \mathbf{y}) \mathbf{P}_{j}=$ - $\mathbf{P}_{i} \sigma^{2} \mathbf{I} \mathbf{P}_{j}=\sigma^{2} \mathbf{P}_{i} \mathbf{P}_{j}=\mathbf{0}$. (For any $\mathbf{z} \in \mathcal{R}^{n}, \mathbf{P}_{i} \mathbf{P}_{j} \mathbf{z}=\mathbf{0} \Rightarrow \mathbf{P}_{i} \mathbf{P}_{j}=\mathbf{0}$.)

Part 2: If \mathbf{y} is m'variate normal then $\hat{\mathbf{y}}_{i}=\mathbf{P}_{i} \mathbf{y}, i=1, \ldots, k$, are jointly multivariate normal and are therefore independent if and only if $\operatorname{cov}\left(\hat{\mathbf{y}}_{i}, \hat{\mathbf{y}}_{j}\right)=$ $\mathbf{0}, i \neq j$. The mean and variance-covariance of $\hat{\mathbf{y}}_{i}$ are $\mathrm{E}\left(\hat{\mathbf{y}}_{i}\right)=\mathrm{E}\left(\mathbf{P}_{i} \mathbf{y}\right)=$ $\mathbf{P}_{i} \boldsymbol{\mu}=\boldsymbol{\mu}_{i}$ and $\operatorname{var}\left(\hat{\mathbf{y}}_{i}\right)=\mathbf{P}_{i} \sigma^{2} \mathbf{I} \mathbf{P}_{i}^{T}=\sigma^{2} \mathbf{P}_{i}$.

Part 3: If $\hat{\mathbf{y}}_{i}=\mathbf{P}_{i} \mathbf{y}, i=1, \ldots, k$, are mutually independent, then any (measurable*) functions $f_{i}\left(\hat{\mathbf{y}}_{i}\right), i=1, \ldots, k$, are mutually independent. Thus $\left\|\hat{\mathbf{y}}_{i}\right\|^{2}, i=1, \ldots, k$, are mutually independent. That $\sigma^{-2}\left\|\hat{\mathbf{y}}_{i}\right\|^{2} \sim$ $\chi^{2}\left(d_{i}, \frac{1}{2 \sigma^{2}}\left\|\boldsymbol{\mu}_{i}\right\|^{2}\right)$ follows from part 3 of the previous theorem.

$$
\begin{aligned}
& \left.y \sim N \mid u, \sigma^{2} I_{n}\right)^{p_{1} u} \\
& E\left(\|p y\|^{2}\right)=\|p u\|^{2}+\sigma^{2} \operatorname{rank}(p) \\
& \frac{\|p y\|^{2}}{\sigma^{2}} \sim x^{2}\left(\operatorname{rank}(p), \frac{1}{2} \frac{\|p u\|^{2}}{\sigma^{2}}\right)
\end{aligned}
$$

Independence of Linear and Quadratic Forms under MVN

Theorem: Suppose \mathbf{B} is a $k \times n$ matrix of constants, \mathbf{A} a $n \times n$ symmetric matrix of constants, and $\mathbf{y} \sim N_{n}(\boldsymbol{\mu}, \Sigma)$. Then $\mathbf{B y}$ and $\mathbf{y}^{T} \mathbf{A y}$ are independent if and only if $\mathbf{B \Sigma A}=\mathbf{0}_{k \times n}$.

Proof
Assuming \mathbf{A} is symmetric and idempotent, then we have

$$
\mathbf{y}^{T} \mathbf{A} \mathbf{y}=\mathbf{y}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{y}=\|\mathbf{A} \mathbf{y}\|^{2}
$$

Now suppose $\mathbf{B \Sigma A}=\mathbf{0}$. Then $\mathbf{B y}$ and $\mathbf{A y}$ are each normal, with

$$
\operatorname{cov}(\mathbf{B y}, \mathbf{A y})=\mathbf{B} \Sigma \mathbf{A}=\mathbf{0} .
$$

Therefore, By and Ay are independent of one another. Furthermore, $\mathbf{B y}$ is independent of any (measureable) function of $\mathbf{A y}$, so that $\mathbf{B y}$ is independent of $\|\mathbf{A y}\|^{2}=\mathbf{y}^{T} \mathbf{A y}$.

Theorem: Let \mathbf{A} and \mathbf{B} be symmetric matrices of constants. If $\mathbf{y} \sim$ $N_{n}(\boldsymbol{\mu}, \Sigma)$, then $\mathbf{y}^{T} \mathbf{A y}$ and $\mathbf{y}^{T} \mathbf{B y}$ are independent if and only if $\mathbf{A} \Sigma \mathbf{B}=\mathbf{0}$.

Cochran theorem

Theorem: Let $\mathbf{y} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}_{n}\right)$, let \mathbf{A}_{i} be symmetric of rank $r_{i}, i=$ $1, \ldots, k$, and let $\mathbf{A}=\sum_{i=1}^{k} \mathbf{A}_{i}$ with rank r so that $\mathbf{y}^{T} \mathbf{A} \mathbf{y}=\sum_{i=1}^{k} \mathbf{y}^{T} \mathbf{A}_{i} \mathbf{y}$. Then

1. $\mathbf{y}^{T} \mathbf{A}_{i} \mathbf{y} / \sigma^{2} \sim \chi^{2}\left(r_{i}, \boldsymbol{\mu}^{T} \mathbf{A}_{i} \boldsymbol{\mu} /\left\{2 \sigma^{2}\right\}\right), i=1, \ldots, k$; and
2. $\mathbf{y}^{T} \mathbf{A}_{i} \mathbf{y}$ and $\mathbf{y}^{T} \mathbf{A}_{j} \mathbf{y}$ are independent for all $i \neq j$; and
3. $\mathbf{y}^{T} \mathbf{A y} / \sigma^{2} \sim \chi^{2}\left(r, \boldsymbol{\mu}^{T} \mathbf{A} \boldsymbol{\mu} /\left\{2 \sigma^{2}\right\}\right)$;
if and only if any two of the following statements are true:
$\left.\begin{array}{l}\text { a. each } \mathbf{A}_{i} \text { is idempotent; } \\ \text { b. } \mathbf{A}_{i} \mathbf{A}_{j}=\mathbf{0} \text { for all } i \neq j ;\end{array}\right\} A_{1} y, \ldots, A_{k} y$ are
b. $\mathbf{A}_{i} \mathbf{A}_{j}=\mathbf{0}$ for all $i \neq j$;
c. \mathbf{A} is idempotent;
or if and only if (c) and (d) are true where (d) is as follows:
d. $r=\sum_{i=1}^{k} r_{i}$.

Corollary: Let $\mathbf{y} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \mathbf{I}\right)$, let \mathbf{A}_{i} be symmetric of rank $r_{i}, i=$ $1, \ldots, k$, and suppose that $\mathbf{y}^{T} \mathbf{y}=\sum_{i=1}^{k} \mathbf{y}^{T} \mathbf{A}_{i} \mathbf{y}$ (i.e., $\sum_{i=1}^{k} \mathbf{A}_{i}=\mathbf{I}$). Then

1. each $\mathbf{y}^{T} \mathbf{A}_{i} \mathbf{y} \sim \chi^{2}\left(r_{i}, \boldsymbol{\mu}^{T} \mathbf{A}_{i} \boldsymbol{\mu} /\left\{2 \sigma^{2}\right\}\right)$; and
2. the $\mathbf{y}^{T} \mathbf{A}_{i} \mathbf{y}^{\prime}$ s are mutually independent;

$$
=\mathbb{R}^{n^{n}}
$$

if and only if any one of the following statements holds:
$\left\{\begin{array}{l}\text { a. each } \mathbf{A}_{i} \text { is idempotent; } \\ \text { b. } \mathbf{A}_{i} \mathbf{A}_{j}=\mathbf{0} \text { for all } i \neq j ;\end{array}\right.$

c. $n=\sum_{i=1}^{k} r_{i}$.

F-Distribution: Let

$$
U_{1} \sim \chi^{2}\left(n_{1}, \lambda\right), \quad U_{2} \sim \chi^{2}\left(n_{2}\right) \quad(\text { central })
$$

be independent. Then

$$
V=\frac{U_{1} / n_{\mathfrak{Y}}}{U_{2} / n_{2}}
$$

is said to have a noncentral F distribution with noncentrality parameter λ, and n_{1} and n_{2} degrees of freedom.
t-Distribution: Let

$$
W \sim N(\mu, 1), \quad Y \sim \chi^{2}(m)
$$

be independent random variables. Then

$$
T=\frac{W}{\sqrt{Y / m}}
$$

$$
t(m, u)
$$

is said to have a (Student's) t distribution with noncentrality parameter μ and m degrees of freedom.
different from the λ in $x^{2}(n, \lambda)$

$$
\lambda=\frac{1}{2}\|u\|^{2}
$$

Example: Student's

Theorem: Let Y_{1}, \ldots, Y_{n} be a random sample (i.i.d. r.v.'s) from a $N\left(\mu, \sigma^{2}\right)$ distribution, and let \bar{Y}, S^{2}, and T be defined as above. Then

1. $\bar{Y} \sim N\left(\mu, \sigma^{2} / n\right)$;
2. $V=\frac{S^{2}(n-1)}{\sigma^{2}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \sim \chi^{2}(n-1)$;
3. \bar{Y} and S^{2} are independent; and
4. $T=\frac{\bar{Y}-\mu_{0}}{S / \sqrt{n}} \sim t(n-1, \lambda)$ where $\lambda=\frac{\mu-\mu_{0}}{\sigma / \sqrt{n}}$ for any constant μ_{0}.

BE: Let $y=\left(Y_{1}, \cdots, Y_{n}\right)^{\prime}$

$$
y \sim N_{n}\left(u \tilde{J}_{n}, \sigma^{2} I_{1}\right), 6 t v_{y}=u j_{n}
$$

1) $\bar{Y}=\frac{1}{n} j_{n}^{\prime} y \sim N\left(u, \frac{\sigma^{2}}{n}\right)$.

Not: $\frac{1}{n} j_{n}^{\prime} \cdot v j_{n}=u$

$$
\frac{1}{n} J_{n}^{\prime} \nabla^{2} I_{n} J_{n} \cdot \frac{1}{n}=\frac{\sigma^{2}}{n}
$$

2)

$$
\left.\begin{array}{rl}
s^{2} \cdot(n-1) & =\overline{2}\left(Y_{i}-\bar{Y}\right)^{2} \\
& =\left\|\left(I_{n}-P_{j n}\right) y\right\|^{2} \quad\left[\begin{array}{c}
\bar{Y} \\
\vdots \\
\\
\end{array}\right]=\left\|P_{v} y\right\|^{2} \\
\bar{Y}
\end{array}\right]=p_{j_{n}} y
$$

whee $P_{V}=I_{n}-\frac{1}{n} j_{n} j_{n}^{\prime}, \operatorname{rank}\left(P_{V}\right)=n-1$

$$
\begin{aligned}
& \frac{(n-1) s^{2}}{\sigma^{2}}=\frac{\left\|P_{v} y\right\|^{2}}{\sigma^{2}}=\frac{y^{\prime} P_{v} y}{\sigma^{2}} \\
& \sim \chi^{2}\left(n-1, \quad \frac{1}{2} \frac{\left\|P_{v} u_{y}\right\|^{2}}{\sigma^{2}}\right) \\
& \left\|P_{v} u_{y}\right\|^{2}=\left\|P_{v} \cdot \bar{j}_{n} \cdot u\right\|^{2}=0 \\
& \sin \left(P_{n} \perp P_{v}, \quad P_{v}=0\right. \\
& \text { so } \frac{(n-1) s^{2}}{\sigma^{2}} \sim x^{2}(n-1,0) \text { (Central) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
P_{j n} y=\left(\frac{1}{n} \hat{j}_{n} \jmath_{n}\right) y \\
\underset{y_{n}}{ }\left(\hat{j}_{n}\right)
\end{array} \quad j_{n}=\left[\begin{array}{l}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& p_{v} x_{y}=0
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \bar{y}=\frac{1}{n} I n^{\prime} y \\
& \frac{(n-1) s^{2}}{\sigma^{2}}=\frac{y^{\prime} P_{v} y}{\sigma^{2}} \\
& \frac{1}{n} \hat{\jmath}_{n}^{\prime} \cdot P_{V}=0
\end{aligned}
$$

so \bar{Y} indep $\frac{(n-1) s^{2}}{\sigma^{2}}$
so Y indep S^{2}
Altelnative prouf:

$$
\begin{gathered}
P_{j n} y=[\bar{y}, \cdots, \bar{y}]^{\prime} \perp p_{v} y \\
\Downarrow \\
\Downarrow \\
\bar{y}=[1,0, \cdots, 0]^{\prime} B_{j n} y \perp y^{\prime} 1 y
\end{gathered}
$$

(4) $t=\frac{\bar{Y}-u_{0}}{S / \sqrt{n}}=\frac{\sqrt{n}\left(\bar{Y}-u_{0}\right) / \sigma}{\sqrt{\frac{(n-1) s^{2} / \sigma^{2}}{n-1}}}$

$$
\frac{\sqrt{n}\left(\bar{Y}-u_{0}\right)}{\nabla} \sim N\left(\frac{\sqrt{n}\left(u-u_{b}\right)}{\sigma}, 1\right)
$$

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \exists^{2}(n-1,0)
$$

