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We estimate s2 by a corresponding average from the sample

s2 ¼ 1
n" k " 1

Xn

i¼1

(yi " x0ib̂)2, (7:22)

where n is the sample size and k is the number of x’s. Note that, by the corollary to
Theorem 7.3d, x0ib̂ is the BLUE of x0ib.

Using (7.7), we can write (7.22) as

s2 ¼ 1
n" k " 1

(y" Xb̂)0(y" Xb̂) (7:23)

¼ y0y" b̂0X0y
n" k " 1

¼ SSE
n" k " 1

, (7:24)

where SSE ¼ (y" Xb̂)0(y" Xb̂) ¼ y0y" b̂0X0y. With the denominator
n" k " 1, s2 is an unbiased estimator of s2, as shown below.

Theorem 7.3f. If s2 is defined by (7.22), (7.23), or (7.24) and if E(y) ¼ Xb and
cov(y) ¼ s2I, then

E(s2) ¼ s2: (7:25)

PROOF. Using (7.24) and (7.6), we write SSE as a quadratic form:

SSE ¼ y0y" b̂0X0y ¼ y0y" y0X(X0X)"1X0y

¼ y0 I" X(X0X)"1X0
! "

y: (7:26)

By Theorem 5.2a, we have

E(SSE) ¼ tr I" X(X0X)"1X0
! "

s2I
# $

þ E(y0) I" X(X0X)"1X0
! "

E(y)

¼ s2tr I" X(X0X)"1X0
! "

þ b0X0 I" X(X0X)"1X0
! "

Xb

¼ s2 n" tr X(X0X)"1X0
! "# $

þ b0X0Xb" b0X0X(X0X)"1X0Xb

¼ s2 n" tr[X0X(X0X)"1]
# $

þ b0X0Xb" b0X0Xb [by (2:87)]:
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Since X0X is (k þ 1)" (k þ 1), this becomes

E(SSE) ¼ s2[n$ tr(Ikþ1)] ¼ s2(n$ k $ 1):
A

Corollary 1. An unbiased estimator of cov(b̂) in (7.14) is given by

dcov(b̂) ¼ s2(X0X)$1: (7:27)
A

Note the correspondence between n 2 (k þ 1) and y0y$ b̂
0
X0y; there are n terms in

y0y and k þ 1 terms in b̂
0
X0y ¼ b̂

0
X0Xb̂ [see (7.8)]. A corresponding property of the

sample is that each additional x (and b̂ ) in the model reduces SSE (see Problem 7.13).
Since SSE is a quadratic function of y, it is not a best linear unbiased estimator.

The optimality property of s2 is given in the following theorem.

Theorem 7.3g. If E(1) ¼ 0, cov(1) ¼ s2I, and E(14
i ) ¼ 3s4 for the linear model

y ¼ Xbþ 1, then s2 in (7.23) or (7.24) is the best (minimum variance) quadratic
unbiased estimator of s2.

PROOF. See Graybill (1954), Graybill and Wortham (1956), or Wang and Chow
(1994, pp. 161–163). A

Example 7.3.3. For the data in Table 7.1, we have

SSE ¼ y0y$ b̂
0
Xy

¼ 840$ (5:3754, 3:0118, $1:2855)

90

482

872

0

B@

1

CA

¼ 840$ 814:541 ¼ 25:459,

s2 ¼ SSE
n$ k $ 1

¼ 25:459
12$ 2$ 1

¼ 2:829:

A

7.4 GEOMETRY OF LEAST SQUARES

In Sections 7.1–7.3 we presented the multiple linear regression model as the matrix
equation y ¼ Xbþ 1 in (7.4). We defined the principle of least-squares estimation in
terms of deviations from the model [see (7.7)], and then used matrix calculus and
matrix algebra to derive the estimators of b in (7.6) and of s2 in (7.23) and (7.24).
We now present an alternate but equivalent derivation of these estimators based com-
pletely on geometric ideas.

7.4 GEOMETRY OF LEAST SQUARES 151

15 Lec51-point estimation.key - March 20, 2023



16

Properties of β̂ and s2 — Summary:

Theorem: Under assumptions A1–A5 of the classical linear model,

i. β̂ ∼ Nk+1(β,σ2(XT X)−1),
ii. (n − k − 1)s2/σ2 ∼ χ2(n − k − 1), and
iii. β̂ and s2 are independent.

Proof: We’ve already shown (i.) and (ii.). Result (iii.) follows from the
fact that β̂ = (XT X)−1XT µ̂ = (XT X)−1XT PC(X)y and s2 = (n − k −
1)−1||PC(X)⊥y||2 are functions of projections onto mutually orthogonal
subspaces C(X) and C(X)⊥.

Minimum Variance Unbiased Estimation:

• The Gauss-Markov Theorem establishes that the least-squares es-
timator cT β̂ for cT β in the linear model with spherical, but not-
necessarily-normal, errors is the minimum variance linear unbiased
estimator.

• If, in addition, we add the assumption of normal errors, then the
least-squares estimator has minimum variance among all unbiased
estimators.

• The general theory of minimum variance unbiased estimation is be-
yond the scope of this course, but we will present the background
material we need without proof or detailed discussion. Our main goal
is just to establish that cT β̂ and s2 are minimum variance unbiased.
A more general and complete discussion of minimum variance unbi-
ased estimation can be found in STAT 6520 or STAT 6820.

115

Distributions of ̂β and s2
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Maximum Likelihood Estimator

Under normality, sij ¼ 0 implies that the y (or 1) variables are independent, as well as
uncorrelated.

7.6.2 Maximum Likelihood Estimators for b and s2

With the normality assumption, we can obtain maximum likelihood estimators. The
likelihood function is the joint density of the y’s, which we denote by L(b, s2). We
seek values of the unknown b and s2 that maximize L(b, s2) for the given y and x
values in the sample.

In the case of the normal density function, it is possible to find maximum likeli-
hood estimators b̂ and ŝ2 by differentiation. Because the normal density involves a
product and an exponential, it is simpler to work with ln L(b, s2), which achieves its
maximum for the same values of b and s2 as does L(b, s2).

The maximum likelihood estimators for b and s2 are given in the following
theorem.

Theorem 7.6a. If y is Nn(Xb, s2I), where X is n ! (k þ 1) of rank k þ 1 , n, the
maximum likelihood estimators of b and s2 are

b̂ ¼ (X0X)$1X0y, (7:48)

ŝ2 ¼ 1
n

(y$ Xb̂)0(y$ Xb̂): (7:49)

PROOF. We sketch the proof. For the remaining steps, see Problem 7.21. The likeli-
hood function ( joint density of y1, y2, . . . , yn ) is given by the multivariate normal
density (4.9)

L(b, s2) ¼ f (y; b, s2) ¼ 1

(2p)n=2js2Ij1=2
e$(y$Xb)0(s2I)$1(y$Xb)=2

¼ 1

(2ps2)n=2
e$(y$Xb)0(y$Xb)=2s2

: (7:50)

[Since the yi’s are independent, L(b, s2) can also be obtained as
Qn

i¼1 f (yi; x0ib, s2).]
Then ln L(b, s2) becomes

ln L(b, s2) ¼ $ n
2

ln (2p)$ n
2

lns2 $ 1
2s2 (y$ Xb)0(y$ Xb): (7:51)

Taking the partial derivatives of ln L(b, s2) with respect to b and s2 and setting the
results equal to zero will produce (7.48) and (7.49). To verify that b̂ maximizes (7.50)
or (7.51), see (7.10). A

158 MULTIPLE REGRESSION: ESTIMATION
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The Model in Centered Form

For some purposes it is useful to write the regression model in centered
form; that is, in terms of the centered explanatory variables (the explana-
tory variables minus their means).

The regression model can be written

yi = β0 + β1xi1 + β2xi2 + · · · + βkxik + ei

= α + β1(xi1 − x̄1) + β2(xi2 − x̄2) + · · · + βk(xik − x̄k) + ei,

for i = 1, . . . , n, where

α = β0 + β1x̄1 + β2x̄2 + · · · + βkx̄k, (♥)

and where x̄j = 1
n

∑n
i=1 xij .

In matrix form, the equivalence between the original model and centered
model that we’ve written above becomes

y = Xβ + e = (jn,Xc)

(
α
β1

)
+ e,

where β1 = (β1, . . . ,βk)T , and

Xc = (I −
1

n
Jn,n)

︸ ︷︷ ︸
=P

L(jn)⊥

X1 =





x11 − x̄1 x12 − x̄2 · · · x1k − x̄k

x21 − x̄1 x22 − x̄2 · · · x2k − x̄k
...

...
. . .

...
xn1 − x̄1 xn2 − x̄2 · · · xnk − x̄k



 ,

and X1 is the matrix consisting of all but the first columns of X, the
original model matrix.

• PL(jn)⊥ = (I − 1
nJn,n) is sometimes called the centering matrix.

Based on the centered model, the least squares estimators become:
(

α̂
β̂1

)
= [(jn,Xc)

T (jn,Xc)]
−1(jn,Xc)

T y =

(
n 0
0 XT

c Xc

)−1 (
jTn
XT

c

)
y

=

(
n−1 0
0 (XT

c Xc)−1

)(
nȳ

XT
c y

)
=

(
ȳ

(XT
c Xc)−1XT

c y

)
,
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α̂ = ȳ, and

β̂1 = (XT
c Xc)

−1XT
c y.

β̂1 here is the same as the usual least-squares estimator. That is, it is
the same as β̂1, . . . , β̂k from β̂ = (XT X)−1XT y. However, the intercept
α̂ differs from β̂0. The relationship between α̂ and β̂ is just what you’d
expect from the reparameterization (see (♥)):

α̂ = β̂0 + β̂1x̄1 + β̂2x̄2 + · · · + β̂kx̄k.

From the expression for the estimated mean based on the centered model:

Ê(yi) = α̂ + β̂1(xi1 − x̄1) + β̂2(xi2 − x̄2) + · · · + β̂k(xik − x̄k)

it is clear that the fitted regression plane passes through the point of
averages: (ȳ, x̄1, x̄2, . . . , x̄k).

In general, we can write SSE, the error sum of squares, as

SSE = (y − Xβ̂)T (y − Xβ̂) = (y − PC(X)y)T (y − PC(X)y)

= yT y − yT PC(X)y − yT PC(X)y + yT PC(X)y

= yT y − yT PC(X)y = yT y − β̂T XT y.

From the centered model we see that Ê(y) = Xβ̂ = [ jn,Xc]

(
α̂
β̂1

)
, so

SSE can also be written as

SSE = yT y − (α̂, β̂T
1 )

(
jTn
XT

c

)
y

= yT y − ȳ jTny − β̂T
1 XT

c y

= (y − ȳ jn)T y − β̂T
1 XT

c y

= (y − ȳ jn)T (y − ȳ jn) − β̂T
1 XT

c y

=
n∑

i=1

(yi − ȳ)2 − β̂T
1 XT

c y (∗)

130

These estimators are the same as the usual least-squares estimators b̂ ¼ (X0X)"1X0y
in (7.6), with the adjustment

b̂0 ¼ â" b̂1!x1 " b̂2!x" # # # " b̂k!xk ¼ !y" b̂01!x (7:38)

obtained from an estimator of a in (7.31) (see Problem 7.17).
When we express ŷ in centered form

ŷ ¼ âþ b̂1(x1 " !x1)þ # # # þ b̂k(xk " !xk),

it is clear that the fitted regression plane passes through the point (!x1, !x2, . . . , !xk, !y).
Adapting the expression for SSE (7.24) to the centered model with centered ŷ’s,

we obtain

SSE ¼
Xn

i¼1

(yi " !y)2 " b̂01X0cy, (7:39)

which turns out to be equal to SSE ¼ y0y" b̂0X0y (see Problem 7.19).
We can use (7.36)–(7.38) to express b̂1 and b̂0 in terms of sample variances and

covariances, which will be useful in comparing these estimators with those for the
random-x case in Chapter 10. We first define a sample covariance matrix for the x
variables and a vector of sample covariances between y and the x’s

Sxx ¼

s2
1 s12 . . . s1k

s21 s2
2 . . . s2k

..

. ..
. ..

.

sk1 sk2 . . . s2
k

0

BBB@

1

CCCA, syx ¼

sy1

sy2

..

.

syk

0

BBB@

1

CCCA, (7:40)

where, s2
i , sij, and syi are analogous to s2 and sxy defined in (5.6) and (5.15); for

example

s2
2 ¼

Pn
i¼1 (xi2 " !x2)2

n" 1
, (7:41)

s12 ¼
Pn

i¼1 (xi1 " !x1)(xi2 " !x2)
n" 1

, (7:42)

sy2 ¼
Pn

i¼1 (xi2 " !x2)(yi " !y)
n" 1

, (7:43)

with !x2 ¼
Pn

i¼1 xi2=n. However, since the x’s are fixed, these sample variances and
covariances do not estimate population variances and covariances. If the x’s were
random variables, as in Chapter 10, the s2

i , sij, and syi values would estimate popu-
lation parameters.
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To express b̂1 and b̂0 in terms of Sxx and syx, we first write Sxx and syx in terms of
the centered matrix Xc:

Sxx ¼
X0cXc

n" 1
, (7:44)

syx ¼
X0cy

n" 1
: (7:45)

Note that X0cy in (7.45) contains terms of the form
Pn

i¼1 (xij " !xj)yi rather thanPn
i¼1 (xij " !xj)(yi " !y) as in (7.43). It can readily be shown thatP
i (xij " !xj)(yi " !y) ¼

P
i (xij " !xj)yi (see Problem 6.2).

From (7.37), (7.44), and (7.45), we have

b̂1 ¼ (n" 1)(X0cXc)"1 X0cy
n" 1

¼ X0cXc

n" 1

! ""1 X0cy
n" 1

¼ S"1
xx syx, (7:46)

and from (7.38) and (7.46), we obtain

b̂0 ¼ â" b̂01!x ¼ !y" s0yxS"1
xx !x: (7:47)

Example 7.5. For the data in Table 7.1, we calculate b̂1 and b̂0 using (7.46) and (7.47).

b̂1 ¼ S"1
xx syx ¼

6:4242 8:5455

8:5455 12:4545

! ""1 8:3636

9:7273

! "

¼
3:0118

"1:2855

! "
,

b̂0 ¼ !y" s0yxS"1
xx !x

¼ 7:5000" (3:0118, "1:2855)
4:3333

8:5000

! "

¼ 7:500" 2:1246 ¼ 5:3754:

These values are the same as those obtained in Example 7.3.1a. A

7.6 NORMAL MODEL

7.6.1 Assumptions

Thus far we have made no normality assumptions about the random variables
y1, y2, . . . , yn. To the assumptions in Section 7.2, we now add that

y is Nn(Xb, s2I) or 1 is Nn(0, s2I):

7.6 NORMAL MODEL 157
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or
α̂ = ȳ, and

β̂1 = (XT
c Xc)

−1XT
c y.
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)
, so
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1 )

(
jTn
XT

c

)
y
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1 XT

c y

= (y − ȳ jn)T y − β̂T
1 XT

c y

= (y − ȳ jn)T (y − ȳ jn) − β̂T
1 XT

c y

=
n∑

i=1

(yi − ȳ)2 − β̂T
1 XT

c y (∗)
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c Xc)

−1XT
c y.

β̂1 here is the same as the usual least-squares estimator. That is, it is
the same as β̂1, . . . , β̂k from β̂ = (XT X)−1XT y. However, the intercept
α̂ differs from β̂0. The relationship between α̂ and β̂ is just what you’d
expect from the reparameterization (see (♥)):

α̂ = β̂0 + β̂1x̄1 + β̂2x̄2 + · · · + β̂kx̄k.

From the expression for the estimated mean based on the centered model:
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(
α̂
β̂1

)
, so

SSE can also be written as

SSE = yT y − (α̂, β̂T
1 )

(
jTn
XT

c

)
y
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R2, the Estimated Coefficient of Determination

Rearranging (*), we obtain a decomposition of the total variability in the
data:

n∑

i=1

(yi − ȳ)2 = β̂T
1 XT

c y + SSE

or SST = SSR + SSE

• Here SST is the (corrected) total sum of squares. The term “cor-
rected” here indicates that we’ve taken the sum of the squared y’s
after correcting, or adjusting, them for the mean. The uncorrected
sum of squares would be

∑n
i=1 y2

i , but this quantity arises less fre-
quently, and by “SST” or “total sum of squares” we will generally
mean the corrected quantity unless stated otherwise.

• Note that SST quantifies the total variability in the data (if we added
a 1

n−1 multiplier in front, SST would become the sample variance).

• The first term on the right-hand side is called the regression sum of
squares. It represents the variability in the data (the portion of SST)
that can be explained by the regression terms β1x1+β2x2+ · · ·βkxk.

• This interpretation can be seen by writing SSR as

SSR = β̂T
1 XT

c y = β̂T
1 XT

c Xc(X
T
c Xc)

−1XT
c y = (Xcβ̂1)

T (Xcβ̂1).

The proportion of the total sum of squares that is due to regression is

R2 =
SSR

SST
=

β̂T
1 XT

c Xcβ̂1∑n
i=1(yi − ȳ)2

=
β̂T XT y − nȳ2

yT y − nȳ2
.

• This quantity is called the coefficient of determination, and it
is usually denoted as R2. It is the sample estimate of the squared
multiple correlation coefficient we discussed earlier (see p. 77).
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Underfitting and Overfitting

Since β̂ is the BLUE, we know that the variances from (*) will be ≥ the
variances from (**), which means that the OLS estimator here is a less
efficient (precise), but not necessarily much less efficient, estimator under
the GLS model.

Misspecification of E(y):

Suppose that the true model is y = Xβ+e where we return to the spherical
errors case: var(e) = σ2I. We want to consider what happens when we
omit some explanatory variable is X and when we include too many x’s.
So, let’s partition our model as

y = Xβ + e = (X1,X2)

(
β1

β2

)
+ e

= X1β1 + X2β2 + e. (†)

• If we leave out X2β2 when it should be included (when β2 "= 0) then
we are underfitting.

• If we include X2β2 when it doesn’t belong in the true model (when
β2 = 0) then we are overfitting.

• We will consider the effects of both overfitting and underfitting on the
bias and variance of β̂. The book also consider effects on predicted
values and on the MSE s2.
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Underfitting:

Suppose model (†) holds, but we fit the model

y = X1β
∗
1 + e∗, var(e∗) = σ2I. (♣)

The following theorem gives the bias and var-cov matrix of β̂∗
1 the OLS

estimator from ♣.

Theorem: If we fit model ♣ when model (†) is the true model, then the
mean and var-cov matrix of the OLS estimator β̂∗

1 = (XT
1 X1)−1XT

1 y are
as follows:

(i) E(β̂∗
1) = β1 + Aβ2, where A = (XT

1 X1)−1XT
1 X2.

(ii) var(β̂∗
1) = σ2(XT

1 X1)−1.

Proof:

(i)
E(β̂∗

1) = E[(XT
1 X1)

−1XT
1 y] = (XT

1 X1)
−1XT

1 E(y)

= (XT
1 X1)

−1XT
1 (X1β1 + X2β2)

= β1 + Aβ2.

(ii)
var(β̂∗

1) = var[(XT
1 X1)

−1XT
1 y]

= (XT
1 X1)

−1XT
1 (σ2I)X1(X

T
1 X1)

−1

= σ2(XT
1 X1)

−1.

• This result says that when underfitting, β̂∗
1 is biased by an amount

that depends upon both the omitted and included explanatory vari-
ables.

Corollary If XT
1 X2 = 0, i.e.. if the columns of X1 are orthogonal to the

columns of X2, then β̂∗
1 is unbiased.
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Note that in the above theorem the var-cov matrix of β̂∗
1 , σ2(XT

1 X1)−1

is not the same as the var-cov matrix of β̂1, the corresponding portion of
the OLS estimator β̂ = (XT X)−1XT y from the full model. How these
var-cov matrices differ is established in the following theorem:

Theorem: Let β̂ = (XT X)−1XT y from the full model (†) be partitioned
as

β̂ =

(
β̂1

β̂2

)

and let β̂∗
1 = (XT

1 X1)−1XT
1 y be the estimator from the reduced model ♣.

Then
var(β̂1) − var(β̂∗

1) = AB−1AT

a n.n.d. matrix. Here, A = (XT
1 X1)−1XT

1 X2 and B = XT
2 X2 −XT

2 X1A.

• Thus var(β̂j) ≥ var(β̂∗
j ), meaning that underfitting results in smaller

variances of the β̂j ’s and overfitting results in larger variances of the

β̂j ’s.

Proof: Partitioning XT X to conform to the partitioning of X and β, we
have

var(β̂) = var

(
β̂1

β̂2

)
= σ2(XT X)−1 = σ2

(
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

)−1

= σ2

(
H11 H12

H21 H22

)−1

= σ2

(
H11 H12

H21 H22

)
,

where Hij = XT
i Xj and Hij is the corresponding block of the inverse

matrix (XT X)−1 (see p. 54).

So, var(β̂1) = σ2H11. Using the formulas for inverses of partitioned ma-
trices,

H11 = H−1
11 + H−1

11 H12B
−1H21H

−1
11 ,

where
B = H22 − H21H

−1
11 H12.
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In the previous theorem, we showed that var(β̂∗
1) = σ2(XT

1 X1)−1 =
σ2H−1

11 . Hence,

var(β̂1) − var(β̂∗
1) = σ2(H11 − H−1

11 )

= σ2(H−1
11 + H−1

11 H12B
−1H21H

−1
11 − H−1

11 )

= σ2(H−1
11 H12B

−1H21H
−1
11 )

= σ2[(XT
1 X1)

−1(XT
1 X2)B

−1(XT
2 X1)(X

T
1 X1)

−1]

= σ2AB−1AT .

We leave it as homework for you to show that AB−1AT is n.n.d.

• To summarize, we’ve seen that underfitting reduces the variances of
regression parameter estimators, but introduces bias. On the other
hand, overfitting produces unbiased estimators with increased vari-
ances. Thus it is the task of a regression model builder to find an
optimum set of explanatory variables to balance between a biased
model and one with large variances.
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Occam's razor, Ockham's razor, Ocham's razor (Latin: 
novacula Occami), also known as the principle of 
parsimony or the law of parsimony (Latin: lex parsimoniae), 
is the problem-solving principle that "entities should not be 
multiplied beyond necessity".
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