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Without loss of generality, we can always arrange the linear model so the
terms we want to test appear last in the linear predictor. So, we write our
model as

y = Xβ + e = (X1,X2)

(
β1

β2

)
+ e

= X1︸︷︷︸
n×(k+1−h)

β1 + X2︸︷︷︸
n×h

β2 + e, e ∼ N(0, σ2I) (FM)

where we are interested in the hypothesis H0 : β2 = 0.

Under H0 : β2 = 0 the model becomes

y = X1β
∗
1 + e∗, e∗ ∼ N(0,σ2I) (RM)

The problem is to test

H0 : µ ∈ C(X1) (RM) versus H1 : µ /∈ C(X1)

under the maintained hypothesis that µ ∈ C(X) = C([X1,X2]) (FM).

We’d like to find a test statistic whose size measures the strength of the
evidence against H0. If that evidence is overwhelming (the test statistic
is large enough) then we reject H0.

The test statistic should be large, but large relative to what?

Large relative to its distribution under the null hypothesis.

How large?

That’s up to the user, but an α−level test rejects H0 if, assuming H0 is
true, the probability of getting a test statistic at least as far from expected
as the one obtained (the p−value) is less than α.
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• E.g., suppose we compute a test statistic and obtain a p−value of
p = 0.02. This says that assuming H0 is true, the results that we
obtained were very unlikely (results this extreme should happen only
2% of the time). If these results are so unlikely assuming H0 is true,
perhaps H0 is not true. The cut-off for how unlikely our results must
be before we’re willing to reject H0 is the significance level α. (We
reject if p < α.)

So, we want a test statistic that measures the strength of the evidence
against H0 : µ ∈ C(X1) (i.e., one that is small for µ ∈ C(X1) and large
for µ /∈ C(X1)) whose distribution is available.

• This will lead to an F test which is equivalent to the likelihood ratio
test, and which has some optimality properties.

Note that under RM, µ ∈ C(X1) ⊂ C(X) = C([X1,X2]). Therefore, if
RM is true, then FM must be true as well. So, if RM is true, then the
least squares estimates of the mean µ: PC(X1)y and PC(X)y are estimates
of the same thing.

This suggests that the difference between the two estimates

PC(X)y − PC(X1)y = (PC(X) − PC(X1))y

should be small under H0 : µ ∈ C(X1).

• Note that PC(X) − PC(X1) is the projection matrix onto C(X1)⊥ ∩
C(X), the orthogonal complement of C(X1) with respect to C(X),
and C(X1) ⊕ [C(X1)⊥ ∩ C(X)] = C(X). (See bottom of p. 43 of
these notes.)

So, under H0, (PC(X) − PC(X1))y should be “small”. A measure of the
“smallness” of this vector is its squared length:

‖(PC(X) − PC(X1))y‖
2 = yT (PC(X) − PC(X1))y.
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By our result on expected values of quadratic forms,

E[yT (PC(X) − PC(X1))y] = σ2 dim[C(X1)
⊥ ∩ C(X)] + µT (PC(X) − PC(X1))µ

= σ2h + [(PC(X) − PC(X1))µ]T [(PC(X) − PC(X1))µ]

= σ2h + (PC(X)µ − PC(X1)µ)T (PC(X)µ − PC(X1)µ)

Under H0, µ ∈ C(X1) and µ ∈ C(X), so

(PC(X)µ − PC(X1)µ) = µ − µ = 0.

Under H1,
PC(X)µ = µ, but PC(X1)µ $= µ.

I.e., letting µ0 denote p(µ|C(X1)),

E[yT (PC(X) − PC(X1))y] =

{
σ2h, under H0;
σ2h + ‖µ − µ0‖2, under H1.

• That is, under H0 we expect the squared length of

PC(X)y − PC(X1)y ≡ ŷ − ŷ0

to be small, on the order of σ2h. If H0 is not true, then the squared
length of ŷ− ŷ0 will be larger, with expected value σ2h+‖µ−µ0‖2.

Therefore, if σ2 is known

‖ŷ − ŷ0‖2

σ2h
=

‖ŷ − ŷ0‖2/h

σ2

{
≈ 1, under H0

> 1, under H1

is an appropriate test statistic for testing H0.
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‖ŷ − ŷ0‖2

σ2h
=
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Typically, σ2 will not be known, so it must be estimated. The appropriate
estimator is s2 = ‖y− ŷ‖2/(n− k − 1), the mean squared error from FM,
the model which is valid under H0 and under H1. Our test statistic then
becomes

F =
‖ŷ − ŷ0‖2/h

s2
=

‖ŷ − ŷ0‖2/h

‖y − ŷ‖2/(n − k − 1)

{
≈ 1, under H0

> 1, under H1.

By the theorems on pp. 84–85, the following results on the numerator and
denominator of F hold:

Theorem: Suppose y ∼ N(Xβ,σ2I) where X is n × (k + 1) of full rank
where Xβ = X1β1+X2β2, and X2 is n×h. Let ŷ = p(y|C(X)) = PC(X)y,
ŷ0 = p(y|C(X1)) = PC(X1)y, and µ0 = p(µ|C(X1)) = PC(X1)µ. Then

(i) 1
σ2 ‖y − ŷ‖2 = 1

σ2 yT (I − PC(X))y ∼ χ2(n − k − 1);

(ii) 1
σ2 ‖ŷ − ŷ0‖2 = 1

σ2 yT (PC(X) − PC(X1))y ∼ χ2(h,λ1), where

λ1 =
1

2σ2
‖(PC(X) − PC(X1))µ‖

2 =
1

2σ2
‖µ − µ0‖2;

and

(iii) 1
σ2 ‖y − ŷ‖2 and 1

σ2 ‖ŷ − ŷ0‖2 are independent.

Proof: Parts (i) and (ii) folllow immediately from part (3) of the theorem
on p. 84. Part (iii) follows because

‖y − ŷ‖2 = ||p(y|C(X)⊥)||2

and
‖ŷ − ŷ0‖2 = ||p(y|C(X1)

⊥ ∩ C(X)︸ ︷︷ ︸
⊂C(X)

)||2

are squared lengths of projections onto orthogonal subspaces, so they are
independent according to the theorem on p. 85.

138
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estimator is s2 = ‖y− ŷ‖2/(n− k − 1), the mean squared error from FM,
the model which is valid under H0 and under H1. Our test statistic then
becomes

F =
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From this result, the distribution of our test statistic F follows easily:

Theorem: Under the conditions of the previous theorem,

F =
‖ŷ − ŷ0‖2/h

s2
=

yT (PC(X) − PC(X1))y/h

yT (I − PC(X))y/(n − k − 1)

∼
{

F (h, n − k − 1), under H0; and
F (h, n − k − 1,λ1), under H1,

where λ1 is as given in the previous theorem.

Proof: Follows the previous theorem and the definition of the F distribu-
tion.

Therefore, the α−level F−test for H0 : β2 = 0 versus H1 : β2 $= 0
(equivalently, of RM vs. FM) is:

reject H0 if F > F1−α(h, n − k − 1).

• It is worth noting that the numerator of this F test can be obtained
as the difference in the SSE’s under FM and RM divided by the
difference in the dfE (degrees of freedom for error) for the two models.
This is so because the Pythagorean Theorem yields

‖ŷ − ŷ0‖2 = ‖y − ŷ0‖2 − ‖y − ŷ‖2 = SSE(RM) − SSE(FM).

The difference in the dfE’s is (n − h − k − 1) − (n − k − 1) = h.
Therefore,

F =
[SSE(RM) − SSE(FM)]/[dfE(RM) − dfE(FM)]

SSE(FM)/dfE(FM)
.

• In addition, because SSE = SST − SSR,

‖ŷ − ŷ0‖2 = SSE(RM) − SSE(FM)

= SST − SSR(RM) − [SST − SSR(FM)]

= SSR(FM) − SSR(RM) ≡ SS(β2|β1)

which we denote as SS(β2|β1), and which is known as the “extra”
regression sum of squares due to β2 after accounting for β1.
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Overall Regression Test:

An important special case of the test of H0 : β2 = 0 that we have just
developed is when we partition β so that β1 contains just the intercept
and when β2 contains all of the regression coefficients. That is, if we write
the model as

y = X1β1 + X2β2 + e

= β0jn +





x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...
xn1 xn2 · · · xnk





︸ ︷︷ ︸
=X2





β1

β2
...

βk





︸ ︷︷ ︸
=β2

+e

then our hypothesis H0 : β2 = 0 is equivalent to

H0 : β1 = β2 = · · · = βk = 0,

which says that the collection of explanatory variables x1, . . . , xk have no
linear effect on (do not predict) y.

The test of this hypothesis is called the overall regression test and
occurs as a special case of the test of β2 = 0 that we’ve developed. Under
H0,

ŷ0 = p(y|C(X1)) = p(y|L(jn)) = ȳ jn

and h = k, so the numerator of our F -test statistic becomes

1

k
yT (PC(X) − PL(jn))y =

1

k
(yT PC(X)y − yT PL(jn)y)

=
1

k
{(PC(X)y)T y − yT PT

L(jn) PL(jn)y︸ ︷︷ ︸
=ȳjn

}

=
1

k
(β̂T XT y − nȳ2) = SSR/k ≡ MSR
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Thus, the test statistic of overall regression is given by

F =
SSR/k

SSE/(n − k − 1)
=

MSR

MSE

∼
{

F (k, n − k − 1), under H0 : β1 = · · · = βk = 0
F (k, n − k − 1, 1

2σ2 βT
2 XT

2 PL(jn)⊥X2β2), otherwise.

The ANOVA table for this test is given below. This ANOVA table is
typically part of the output of regression software (e.g., PROC REG in
SAS).

Source of Sum of df Mean F
Variation Squares Squares

Regression SSR k SSR
k

MSR
MSE

= β̂T XT y − nȳ2

Error SSE n − k − 1 SSE
n−k−1

= yT (I − PC(X))y

Total (Corr.) SST
= yT y − nȳ2
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F test in terms of R2:

The F test statistics we have just developed can be written in terms of R2,
the coefficient of determination. This relationship is given by the following
theorem.

Theorem: The F statistic for testing H0 : β2 = 0 in the full rank model
y = X1β1 + X2β2 + e (top of p. 138) can be written in terms of R2 as

F =
(R2

FM − R2
RM )/h

(1 − R2
FM )/(n − k − 1)

,

where R2
FM corresponds to the full model y = X1β1+X2β2+e, and R2

RM
corresponds to the reduced model y = X1β

∗
1 + e∗.

Proof: Homework.

Corollary: The F statistic for overall regression (for testing H0 : β1 =
β2 = · · · = βk = 0) in the full rank model, yi = β0+β1xi1+· · ·+βkxik +ei,

i = 1, . . . , n, e1, . . . , en
iid∼ N(0,σ2) can be written in terms of R2, the

coefficient of determination from this model as follows:

F =
R2/k

(1 − R2)/(n − k − 1)
.

Proof: For this hypothesis h, the dimension of the regression parameter
being tested, is k. In addition, the reduced model here is

y = jnβ0 + e,

so (Xβ̂)RM , the estimated mean of y, under the reduced model is (Xβ̂)RM =
jnȳ. So, R2

RM in the previous theorem is (cf. p. 131):

R2
RM =

[(Xβ̂)T
RMy − nȳ2]

yT y − nȳ2

=
[ȳ

=nȳ︷︸︸︷
jTny −nȳ2]

yT y − nȳ2
= 0.

The result now follows from the previous theorem.
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17 Lec52-hypothesis testing.key - March 29, 2023



18

F test in terms of R2:

The F test statistics we have just developed can be written in terms of R2,
the coefficient of determination. This relationship is given by the following
theorem.

Theorem: The F statistic for testing H0 : β2 = 0 in the full rank model
y = X1β1 + X2β2 + e (top of p. 138) can be written in terms of R2 as

F =
(R2

FM − R2
RM )/h

(1 − R2
FM )/(n − k − 1)

,

where R2
FM corresponds to the full model y = X1β1+X2β2+e, and R2

RM
corresponds to the reduced model y = X1β

∗
1 + e∗.

Proof: Homework.

Corollary: The F statistic for overall regression (for testing H0 : β1 =
β2 = · · · = βk = 0) in the full rank model, yi = β0+β1xi1+· · ·+βkxik +ei,

i = 1, . . . , n, e1, . . . , en
iid∼ N(0,σ2) can be written in terms of R2, the

coefficient of determination from this model as follows:

F =
R2/k

(1 − R2)/(n − k − 1)
.

Proof: For this hypothesis h, the dimension of the regression parameter
being tested, is k. In addition, the reduced model here is

y = jnβ0 + e,

so (Xβ̂)RM , the estimated mean of y, under the reduced model is (Xβ̂)RM =
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General Test
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The General Linear Hypothesis H0 : Cβ = t

The hypothesis H0 : Cβ = t is called the general linear hypothesis. Here
C is a q × (k + 1) matrix of (known) coefficients with rank(C) = q. We
will consider the slightly simpler case H : Cβ = 0 (i.e., t = 0) first.

Most of the questions that are typically asked about the coefficients of a
linear model can be formulated as hypotheses that can be written in the
form H0 : Cβ = 0, for some C. For example, the hypothesis H0 : β2 = 0
in the model

y = X1β1 + X2β2 + e, e ∼ N(0, σ2I)

can be written as

H0 : Cβ = ( 0︸︷︷︸
h×(k+1−h)

, Ih)

(
β1

β2

)
= β2 = 0.

The test of overall regression can be written as

H0 : Cβ = ( 0︸︷︷︸
k×1

, Ik)





β0


β1
...

βk







 =




β1
...

βk



 = 0.

Hypotheses encompassed by H:Cβ = 0 are not limitted to ones in which
certain regression coefficients are set equal to zero. Another example that
can be handled is the hypothesis H0 : β1 = β2 = · · · = βk. For example,
suppose k = 4, then this hypothesis can be written as

H0 : Cβ =




0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1









β0

β1

β2

β3

β4




=




β1 − β2

β2 − β3

β3 − β4



 = 0.

Another equally good choice for C in this example is

C =




0 1 −1 0 0
0 1 0 −1 0
0 1 0 0 −1




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The test statistic for H0 : Cβ = 0 is based on comparing Cβ̂ to its null
value 0, using a squared statistical distance (quadratic form) of the form

Q = {Cβ̂ − E0(Cβ̂)︸ ︷︷ ︸
=0

}T {v̂ar0(Cβ̂)}−1{Cβ̂ − E0(Cβ̂)}

= (Cβ̂)T {v̂ar0(Cβ̂)}−1(Cβ̂).

• Here, the 0 subscript is there to indicate that the expected value and
variance are computed under H0.

Recall that β̂ ∼ Nk+1(β,σ2(XT X)−1). Therefore,

Cβ̂ ∼ Nq(Cβ,σ2C(XT X)−1CT ).

We estimate σ2 using s2 = MSE = SSE/(n − k − 1), so

v̂ar0(Cβ̂) = s2C(XT X)−1CT

and Q becomes

Q = (Cβ̂)T {s2C(XT X)−1CT }−1Cβ̂

=
(Cβ̂)T {C(XT X)−1CT }−1Cβ̂

SSE/(n − k − 1)
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To use Q to form a test statistic, we need its distribution, which is given
by the following theorem:

Theorem: If y ∼ Nn(Xβ,σ2In) where X is n × (k + 1) of full rank and
C is q × (k + 1) of rank q ≤ k + 1, then

(i) Cβ̂ ∼ Nq[Cβ, σ2C(XT X)−1CT ];

(ii) (Cβ̂)T [C(XT X)−1CT ]−1Cβ̂/σ2 ∼ χ2(q, λ), where

λ = (Cβ)T [C(XT X)−1CT ]−1Cβ/(2σ2);

(iii) SSE/σ2 ∼ χ2(n − k − 1); and
(iv) (Cβ̂)T [C(XT X)−1CT ]−1Cβ̂ and SSE are independent.

Proof: Part (i) follows from the normality of β̂ and that Cβ̂ is an affine
transformation of a normal. Part (iii) has been proved previously (p. 138).

(ii) Recall the theorem on the bottom of p. 82 (thm 5.5A in our text).
This theorem said that if y ∼ Nn(µ,Σ) and A was n × n of rank r,
then yT Ay ∼ χ2(r, 1

2µT Aµ) iff AΣ is idempotent. Here Cβ̂ plays
the role of y, Cβ plays the role of µ, σ2C(XT X)−1CT plays the role
of Σ, and {σ2C(XT X)−1CT }−1 plays the role of A. Then the result
follows because AΣ = {σ2C(XT X)−1CT }−1σ2C(XT X)−1CT = I
is obviously idempotent.

(iv) Since β̂ and SSE are independent (p. 115) then (Cβ̂)T [C(XT X)−1CT ]−1Cβ̂

(a function of β̂) and SSE must be independent.

Therefore,

F = Q/q =
(Cβ̂)T {C(XT X)−1CT }−1Cβ̂/q

SSE/(n − k − 1)
=

SSH/q

SSE/(n − k − 1)

has the form of a ratio of independent χ2’s each divided by its d.f.

• Here, SSH denotes (Cβ̂)T {C(XT X)−1CT }−1Cβ̂, the sum of squares
due to the Hypothesis H0.
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Theorem: If y ∼ Nn(Xβ,σ2In) where X is n × (k + 1) of full rank and
C is q × (k + 1) of rank q ≤ k + 1, then

F =
(Cβ̂)T {C(XT X)−1CT }−1Cβ̂/q

SSE/(n − k − 1)

=
SSH/q

SSE/(n − k − 1)

∼
{

F (q, n − k − 1), if H0 : Cβ = 0 is true;
F (q, n − k − 1,λ), if H0 : Cβ = 0 is false,

where λ is as in the previous theorem.

Proof: Follows from the previous theorem and the definition of the F
distribution.

So, to conduct a hypothesis test of H0 : Cβ = 0, we compute F and reject
at level α if F > F1−α(q, n − k − 1) (F1−α denotes the (1 − α)th quantile,
or upper αth quantile of the F distribution).
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The general linear hypothesis as a test of nested models:

We have seen that the test of β2 = 0 in the model y = X1β1 + X2β2 + e
can be formulated as a test of Cβ = 0. Therefore, special cases of the
general linear hypothesis correspond to tests of nested (full and reduced)
models. In fact, all F tests of the general linear hypothesis H0 : Cβ = 0
can be formulated as tests of nested models.

Theorem: The F test for the general linear hypothesis H0 : Cβ = 0 is a
full-and-reduced-model test.

Proof: The book, in combination with a homework problem, provides a
proof based on Lagrange multipliers. Here we offer a different proof based
on geometry.

Under H0,

y = Xβ + e and Cβ = 0

⇒ C(XT X)−1XT Xβ = 0

⇒ C(XT X)−1XT µ = 0

⇒ TT µ = 0 where T = X(XT X)−1CT .

That is, under H0, µ = Xβ ∈ C(X) = V and µ ⊥ C(T), or

µ ∈ [C(T)⊥ ∩ C(X)] = V0

where V0 = C(T)⊥ ∩ C(X) is the orthogonal complement of C(T) with
respect to C(X).

• Thus, under H0 : Cβ = 0, µ ∈ V0 ⊂ V = C(X), and under H1 :
Cβ &= 0, µ ∈ V but µ /∈ V0. That is, these hypotheses correspond
to nested models. It just remains to establish that the F test for
these nested models is the F test for the general linear hypothesis
H0 : Cβ = 0 given on p. 147.
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Thus the full vs. reduced model F statistic becomes

F =
yT [PC(X) − PV0 ]y/q

SSE/(n − k − 1)
=

yT [PC(X) − (PC(X) − PC(T))]y/q

SSE/(n − k − 1)

=
yT PC(T)y/q

SSE/(n − k − 1)

where

yT PC(T)y = yT T(TT T)−1TT y

= yT X(XT X)−1CT {C(XT X)−1XT X(XT X)−1CT }−1C(XT X)−1XT y

= yT X(XT X)−1

︸ ︷︷ ︸
=

ˆβT

CT {C(XT X)−1CT }−1C (XT X)−1XT y︸ ︷︷ ︸
=

ˆβ

= β̂T CT {C(XT X)−1CT }−1Cβ̂

which is our test statistic for the general linear hypothesis H0 : Cβ = 0
from p. 147.

The case H0 : Cβ = t where t "= 0:

Extension to this case is straightforward. The only requirement is that the
system of equations Cβ = t be consistent, which is ensured by C having
full row rank q.

Then the F test statistic for H0 : Cβ = t is given by

F =
(Cβ̂ − t)T [C(XT X)−1CT ]−1(Cβ̂ − t)/q

SSE/(n − k − 1)
∼

{
F (q, n − k − 1), under H0

F (q, n − k − 1,λ), otherwise,

where λ = (Cβ − t)T [C(XT X)−1CT ]−1(Cβ − t)/(2σ2).
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Tests on βj and on aT β:

Tests of H0 : βj = 0 or H0 : aT β = 0 occur as special cases of the tests
we have already considered. To test H0 : aT β = 0, we use aT in place of
C in our test of the general linear hypothesis Cβ = 0. In this case q = 1
and the test statistic becomes

F =
(aT β̂)T [aT (XT X)−1a]−1aT β̂

SSE/(n − k − 1)
=

(aT β̂)2

s2aT (XT X)−1a

∼ F (1, n − k − 1) under H0 : aT β = 0.

• Note that since t2(ν) = F (1, ν), an equivalent test of H0 : aT β = 0
is given by the t-test with test statistic

t =
aT β̂

s
√

aT (XT X)−1a
∼ t(n − k − 1) under H0.

An important special case of the hypothesis H0 : aT β = 0 occurs when
a = (0, . . . , 0, 1, 0, . . . , 0)T where the 1 appears in the j+1th position. This
is the hypothesis H0 : βj = 0, and it says that the jth explanatory variable
xj has no partial regression effect on y (no effect above and beyond the
effects of the other explanatory variables in the model).

The test statistic for this hypothesis simplifies from that given above to
yield

F =
β̂2

j

s2gjj
∼ F (1, n − k − 1) under H0 : βj = 0,

where gjj is the jth diagonal element of (XT X)−1. Equivalently, we could
use the t test statistic

t =
β̂j

s
√

gjj
=

β̂j

s.e.(β̂j)
∼ t(n − k − 1) under H0 : βj = 0.
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Confidence and Prediction Intervals 
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Confidence and Prediction Intervals

Hypothesis tests and confidence regions (e.g., intervals) are really two dif-
ferent ways to look at the same problem.

• For an α-level test of a hypothesis of the form H0 : θ = θ0, a
100(1 − α)% confidence region for θ is given by all those values of
θ0 such that the hypothesis would not be rejected. That is, the
acceptance region of the α-level test is the 100(1 − α)% confidence
region for θ.

• Conversely, θ0 falls outside of a 100(1−α)% confidence region for θ
iff an α level test of H0 : θ = θ0 is rejected.

• That is, we can invert the statistical tests that we have derived to
obtain confidence regions for parameters of the linear model.

Confidence Region for β:

If we set C = Ik+1 and t = β in the F statistic on the bottom of p. 150,
we obtain

(β̂ − β)T XT X(β̂ − β)/(k + 1)

s2
∼ F (k + 1, n − k − 1)

From this distributional result, we can make the probability statement,

Pr

{
(β̂ − β)T XT X(β̂ − β)

s2(k + 1)
≤ F1−α(k + 1, n − k − 1)

}
= 1 − α.

Therefore, the set of all vectors β that satisfy

(β̂ − β)T XT X(β̂ − β) ≤ (k + 1)s2F1−α(k + 1, n − k − 1)

forms a 100(1 − α)% confidence region for β.
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• Such a region is an ellipse, and is only easy to draw and make easy
interpretation of for k = 1 (e.g., simple linear regression).

• If one can’t plot the region and then plot a point to see whether its
in or out of the region (i.e., for k > 1) then this region isn’t any more
informative than the test of H0 : β = β0. To decide whether β0 is
in the region, we essentially have to perform the test!

• More useful are confidence intervals for the individual βj ’s and for
linear combinations of the form aT β.

Confidence Interval for aT β:

If we set C = aT and t = aT β in the F statistic on the bottom of p. 150,
we obtain

(aT β̂ − aT β)2

s2aT (XT X)−1a
∼ F (1, n − k − 1)

which implies
(aT β̂ − aT β)

s
√

aT (XT X)−1a
∼ t(n − k − 1).

From this distributional result, we can make the probability statement,

Pr





tα/2(n − k − 1)
︸ ︷︷ ︸
−t1−α/2(n−k−1)

≤
(aT β̂ − aT β)

s
√

aT (XT X)−1a
≤ t1−α/2(n − k − 1)





= 1 − α.

Rearranging this inequality so that aT β falls in the middle, we get

Pr
{
aT β̂ − t1−α/2(n − k − 1)s

√
aT (XT X)−1a ≤ aT β

≤ aT β̂ + t1−α/2(n − k − 1)s
√

aT (XT X)−1a
}

= 1 − α.

Therefore, a 100(1 − α)% CI for aT β is given by

aT β̂ ± t1−α/2(n − k − 1)s
√

aT (XT X)−1a.
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Confidence Interval for βj:

A special case of this interval occurs when a = (0, . . . , 0, 1, 0, . . . , 0)T ,
where the 1 is in the j + 1th position. In this case aT β = βj , aT β̂ = β̂j ,
and aT (XT X)−1a = {(XT X)−1}jj ≡ gjj . The confidence interval for βj

is then given by
β̂j ± t1−α/2(n − k − 1)s

√
gjj .

Confidence Interval for E(y):

Let x0 = (1, x01, x02, . . . , x0k)T denote a particular choice of the vector
of explanatory variables x = (1, x1, x2, . . . , xk)T and let y0 denote the
corresponding response.

We assume that the model y = Xβ + e, e ∼ N(0,σ2I) applies to (y0,x0)
as well. This may be because (y0,x0) were in the original sample to which
the model was fit (i.e., xT

0 is a row of X), or because we believe that
(y0,x0) will behave similarly to the data (y,X) in the sample. Then

y0 = xT
0 β + e0, e0 ∼ N(0,σ2)

where β and σ2 are the same parameters in the fitted model y = Xβ + e.

Suppose we wish to find a CI for

E(y0) = xT
0 β.

This quantity is of the form aT β where a = x0, so the BLUE of E(y0) is
xT

0 β̂ and a 100(1 − α)% CI for E(y0) is given by

xT
0 β̂ ± t1−α/2(n − k − 1)s

√
xT

0 (XT X)−1x0.

154
46 Lec52-hypothesis testing.key - March 29, 2023



47

Confidence Interval for βj:

A special case of this interval occurs when a = (0, . . . , 0, 1, 0, . . . , 0)T ,
where the 1 is in the j + 1th position. In this case aT β = βj , aT β̂ = β̂j ,
and aT (XT X)−1a = {(XT X)−1}jj ≡ gjj . The confidence interval for βj

is then given by
β̂j ± t1−α/2(n − k − 1)s

√
gjj .

Confidence Interval for E(y):

Let x0 = (1, x01, x02, . . . , x0k)T denote a particular choice of the vector
of explanatory variables x = (1, x1, x2, . . . , xk)T and let y0 denote the
corresponding response.

We assume that the model y = Xβ + e, e ∼ N(0,σ2I) applies to (y0,x0)
as well. This may be because (y0,x0) were in the original sample to which
the model was fit (i.e., xT

0 is a row of X), or because we believe that
(y0,x0) will behave similarly to the data (y,X) in the sample. Then

y0 = xT
0 β + e0, e0 ∼ N(0,σ2)

where β and σ2 are the same parameters in the fitted model y = Xβ + e.

Suppose we wish to find a CI for

E(y0) = xT
0 β.

This quantity is of the form aT β where a = x0, so the BLUE of E(y0) is
xT

0 β̂ and a 100(1 − α)% CI for E(y0) is given by

xT
0 β̂ ± t1−α/2(n − k − 1)s

√
xT

0 (XT X)−1x0.

154

• This confidence interval holds for a particular value xT
0 β. Sometimes,

it is of interest to form simultaneous confidence intervals around each
and every point xT

0 β for all x0 in the range of x. That is, we some-
times desire a simultaneous confidence band for the entire regression
line (or plane, for k > 1). The confidence interval given above, if
plotted for each value of x0, does not give such a simultaneous band;
instead it gives a “point-wise” band. For discussion of simultaneous
intervals see §8.6.7 of our text.

• The confidence interval given above is for E(y0), not for y0 itself.
E(y0) is a parameter, y0 is a random variable. Therefore, we can’t
estimate y0 or form a confidence interval for it. However, we can pre-
dict its value, and an interval around that prediction that quantifies
the uncertainty associated with that prediction is called a prediction
interval.

Prediction Interval for an Unobserved y-value:

For an unobserved value y0 with known explanatory vector x0 assumed to
follow our linear model y = Xβ + e, we predict y0 by

ŷ0 = xT
0 β̂.

• Note that this predictor of y0 coincides with our estimator of E(y0).
However, the uncertainty associated with the quantity xT

0 β̂ as a
predictor of y0 is different from (greater than) its uncertainty as an
estimator of E(y0). Why? Because observations (e.g., y0) are more
variable than their means (e.g., E(y0)).
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To form a CI for the estimator xT
0 β̂ of E(y0) we examine the variance of

the error of estimation:

var{E(y0) − xT
0 β̂} = var(xT

0 β̂).

In contrast, to form a PI for the predictor xT
0 β̂ of y0, we examine the

variance of the error of prediction:

var(y0 − xT
0 β̂) = var(y0) + var(xT

0 β̂) − 2 cov(y0,x
T
0 β̂)︸ ︷︷ ︸

0

= var(xT
0 β + e0) + var(xT

0 β̂)

= var(e0) + var(xT
0 β̂) = σ2 + σ2xT

0 (XT X)−1x0.

Since σ2 is unknown, we must estimate this quantity with s2, yielding

v̂ar(y0 − ŷ0) = s2{1 + xT
0 (XT X)−1x0}.

It’s not hard to show that

y0 − ŷ0

s
√

1 + xT
0 (XT X)−1x0

∼ t(n − k − 1),

therefore

Pr

{
−t1−α/2(n − k − 1) ≤

y0 − ŷ0

s
√

1 + xT
0 (XT X)−1x0

≤ t1−α/2(n − k − 1)

}
= 1−α.

Rearranging,

Pr
{

ŷ0 − t1−α/2(n − k − 1)s
√

1 + xT
0 (XT X)−1x0 ≤ y0

≤ ŷ0 + t1−α/2(n − k − 1)s
√

1 + xT
0 (XT X)−1x0

}
= 1 − α.

Therefore, a 100(1 − α)% prediction interval for y0 is given by

ŷ0 ± t1−α/2(n − k − 1)s
√

1 + xT
0 (XT X)−1x0.

• Once again, this is a point-wise interval. Simultaneous prediction
intervals for predicting multiple y-values with given coverage proba-
bility are discussed in §8.6.7.
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