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Analysis of Variance Models: The Non-Full Rank Linear Model

• To this point, we have focused exclusively on the case when the
model matrix X of the linear model is of full rank. We now consider
the case when X is n × p with rank(X) = k < p.

• The basic ideas behind estimation and inference in this case are the
same as in the full rank case, but the fact that (XT X)−1 doesn’t
exist and therefore the normal equations have no unique solution
causes a number of technical complications.

• We wouldn’t bother to dwell on these technicalities if it weren’t for
the fact that the non-full rank case does arise frequently in applica-
tions in the form of analysis of variance models .

The One-way Model:

Consider the balanced one-way layout model for yij a response on the jth

unit in the ith treatment group. Suppose that there are a treatments and n
units in the ith treatment group. The cell-means model for this situation
is

yij = µi + eij , i = 1, . . . , a, j = 1, . . . , n,

where the eij ’s are i.i.d. N(0, σ2).

An alternative, but equivalent, linear model is the effects model for the
one-way layout:

yij = µ + αi + eij , i = 1, . . . , a, j = 1, . . . , n,

with the same assumptions on the errors.

159

The cell means model can be written in vector notation as

y = µ1x1 + µ2x2 + · · · + µaxa + e, e ∼ N(0,σ2I),

and the effects model can be written as

y = µjN + α1x1 + α2x2 + · · · + αaxa + e, e ∼ N(0,σ2I),

where xi is an indicator for treatment i, and N = an is the total sample
size.

• That is, the effects model has the same model matrix as the cell-
means model, but with one extra column, a column of ones, in the
first position.

• Notice that
∑

i xi = jN . Therefore, the columns of the model matrix
for the effects model are linearly dependent.

Let X1 denote the model matrix in the cell-means model, X2 = (jN ,X1)
denote the model matrix in the effects model.

• Note that C(X1) = C(X2).

In general, two linear models y = X1β1+e1, y = X2β2+e2 with the same
assumptions on e1 and e2 are equivalent linear models if C(X1) = C(X2).

Why?

Because the mean vectors µ1 = X1β1 and µ2 = X2β2 in the two cases
are both restricted to fall in the same subspace C(X1) = C(X2).

In addition,
µ̂1 = p(y|C(X1)) = p(y|C(X2)) = µ̂2

is the same in both models, and

S2 =
1

n − dim(C(X1))
‖y − µ̂1‖2 =

1

n − dim(C(X2))
‖y − µ̂2‖2

is the same in both models.

160
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Why would we want to consider an overparameterized model like the
effects model?

In a simple case like the one-way layout, I would argue that we wouldn’t.

The most important criterion for choice of parameterization of a model is
interpretability. Without imposing any constraints, the parameters of the
effects model do not have clear interpretations.

However, subject to the constraint
∑

i αi = 0, the parameters of the
effects model have the following interpretations:

µ =grand mean response across all treatments
αi =deviation from the grand mean placing µi (the ith treatment
mean) up or down from the grand mean; i.e., the effect of the ith

treatment.

Without the constraint, though, µ is not constrained to fall in the center
of the µi’s. µ is in no sense the grand mean, it is just an arbitrary baseline
value.

In addition, adding the constraint
∑

i αi = 0 has essentially the effect of
reparameterizing from the overparameterized (non-full rank) effects model
to a just-parameterized (full rank) model that is equivalent (in the sense
of having the same model space) as the cell means model.

To see this consider the one-way effects model with a = 3, n = 2. Then∑a
i=1 αi = 0 implies α1 + α2 + α3 = 0 or α3 = −(α1 + α2). Subject to the

constraint, the effects model is

y = µjN + α1x1 + α2x2 + α3x3 + e, where α3 = −(α1 + α2),

162

or
y = µjN + α1x1 + α2x2 + (−α1 − α2)x3 + e

= µjN + α1(x1 − x3) + α2(x2 − x3) + e

= µ





1
1
1
1
1
1




+ α1





1
1
0
0
−1
−1




+ α2





0
0
1
1
−1
−1




+ e,

which has the same model space as the cell-means model.

Thus, when faced with a non-full rank model like the one-way effects
model, we have three ways to proceed:

(1) Reparameterize to a full rank model.

– E.g., switch from the effects model to the cell-means model.

(2) Add constraints to the model parameters to remove the overparam-
eterization.

– E.g., add a constraint such as
∑a

i=1 αi = 0 to the one-way
effects model.

– Such constraints are usually called side-conditions.

– Adding side conditions essentially accomplishes a reparameter-
ization to a full rank model as in (1).

(3) Analyze the model as a non-full rank model, but limit estimation and
inference to those functions of the (overparameterized) parameters
that can be uniquely estimated.

– Such functions of the parameters are called estimable.

– It is only in this case that we are actually using an overparam-
eterized model, for which some new theory is necessary. (In
cases (1) and (2) we remove the overparameterization some-
how.)

163
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• So, α1 is non-estimable. In fact, all of the parameters of the uncon-
strained one-way effects model are non-estimable. More generally,
in any non-full rank linear model, at least one of the individual pa-
rameters of the model is not estimable.

If the parameters of a non-full rank linear model are non-estimable,
what does least-squares yield?

Even if X is not of full rank, the least-squares criterion is still a reasonable
one for estimation, and it still leads to the normal equation:

XT Xβ̂ = XT y. (♣)

Theorem: For X and n× p matrix of rank k < p ≤ n, (♣) is a consistent
system of equations.

Proof: By the Theorem on p. 60 of these notes, (♣) is consistent iff

XT X(XT X)−XT y = XT y.

But this equation holds by result 3, on p. 57.

So (♣) is consistent, and therefore has a non-unique (for X not of full
rank) solution given

β̂ = (XT X)−XT y,

where (XT X)− is some (any) generalized inverse of XT X.

What does β̂ estimate in the non-full rank case?

Well, in general a statistic estimates its expectation, so for a particular
generalized inverse (XT X)−, β̂ estimates

E(β̂) = E{(XT X)−XT y} = (XT X)−XT E(y) = (XT X)−XT Xβ $= β.

• That is, in the non-full rank case, β̂ = (XT X)−XT y is not unbiased
for β. This is not surprising given that we said earlier that β is not
estimable.

165
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Least Square Estimation of β
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   lec07 Page 6    

All the theorems based only on  rather than  are still valid 
for non-full-rank X, except that the number of columns 
should be modified to be rank (X)

̂y ̂β
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s2 = MSE is an unbiased estimator of σ2:

As in the full rank case, the MLE σ̂2 is biased as an estimator of σ2, and
is therefore not the preferred estimator. The bias of σ̂2 can be seen as
follows:

E(σ̂2) =
1

n
E{(y − Xβ̂)T (y − Xβ̂)}

=
1

n
E{[(I − X(XT X)−XT )y]T (I − X(XT X)−XT )︸ ︷︷ ︸

PC(X)⊥

y}

=
1

n
E{yT PC(X)⊥y}

=
1

n
{σ2 dim[C(X)⊥] + (Xβ)PC(X)⊥ (Xβ)︸ ︷︷ ︸

∈C(X)

=
1

n
σ2(n − dim[C(X)]) + 0 =

1

n
σ2(n − rank(X)) = σ2 n − k

n
.

Therefore, an unbiased estimator of σ2 is

s2 =
n

n − k
σ̂2 =

1

n − k
(y − Xβ̂)T (y − Xβ̂) =

SSE

dfE
= MSE.

Theorem: In the model y = Xβ + e, E(e) = 0, var(e) = σ2I, and where
X is n × p of rank k ≤ p ≤ n, we have the following properties of s2:

(i) (unbiasedness) E(s2) = σ2.
(ii) (uniqueness) s2 is invariant to the choice of β̂ (i.e., to the choice of

generalized inverse (XT X)−).

Proof: (i) follows from the construction of s2 as nσ̂2/(n− k) and the bias
of σ̂2. (ii) follows from the uniqueness (invariance) of σ̂2.

175

Distributions of β̂ and s2:

In the normal-errors, not-necessarily full rank model (*), the distribution
of β̂ and s2 can be obtained. These distributional results are essentially
the same as in the full rank case, except for the mean and variance of β̂:

Theorem: In model (*),

(i) For any given choice of (XT X)−,

β̂ ∼ Np[(X
T X)−XT Xβ,σ2(XT X)−XT X{(XT X)−}T ],

(ii) (n − k)s2/σ2 ∼ χ2(n − k), and

(iii) For any given choice of (XT X)−, β̂ and s2 are independent.

Proof: Homework. Proof is essentially the same as in the full rank case.
Adapt the proof on p. 115.

• In the full rank case we saw that with normal with spherical var-cov
structure, β̂ and s2 were minimimum variance unbiased estimators.
This result continues to hold in the not-full-rank case.

176

Distribution of ̂β and s2
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Typically, σ2 will not be known, so it must be estimated. The appropriate
estimator is s2 = ‖y− ŷ‖2/(n− k − 1), the mean squared error from FM,
the model which is valid under H0 and under H1. Our test statistic then
becomes

F =
‖ŷ − ŷ0‖2/h

s2
=

‖ŷ − ŷ0‖2/h

‖y − ŷ‖2/(n − k − 1)

{
≈ 1, under H0

> 1, under H1.

By the theorems on pp. 84–85, the following results on the numerator and
denominator of F hold:

Theorem: Suppose y ∼ N(Xβ,σ2I) where X is n × (k + 1) of full rank
where Xβ = X1β1+X2β2, and X2 is n×h. Let ŷ = p(y|C(X)) = PC(X)y,
ŷ0 = p(y|C(X1)) = PC(X1)y, and µ0 = p(µ|C(X1)) = PC(X1)µ. Then

(i) 1
σ2 ‖y − ŷ‖2 = 1

σ2 yT (I − PC(X))y ∼ χ2(n − k − 1);

(ii) 1
σ2 ‖ŷ − ŷ0‖2 = 1

σ2 yT (PC(X) − PC(X1))y ∼ χ2(h,λ1), where

λ1 =
1

2σ2
‖(PC(X) − PC(X1))µ‖

2 =
1

2σ2
‖µ − µ0‖2;

and

(iii) 1
σ2 ‖y − ŷ‖2 and 1

σ2 ‖ŷ − ŷ0‖2 are independent.

Proof: Parts (i) and (ii) folllow immediately from part (3) of the theorem
on p. 84. Part (iii) follows because

‖y − ŷ‖2 = ||p(y|C(X)⊥)||2

and
‖ŷ − ŷ0‖2 = ||p(y|C(X1)

⊥ ∩ C(X)︸ ︷︷ ︸
⊂C(X)

)||2

are squared lengths of projections onto orthogonal subspaces, so they are
independent according to the theorem on p. 85.

138

From this result, the distribution of our test statistic F follows easily:

Theorem: Under the conditions of the previous theorem,

F =
‖ŷ − ŷ0‖2/h

s2
=

yT (PC(X) − PC(X1))y/h

yT (I − PC(X))y/(n − k − 1)

∼
{

F (h, n − k − 1), under H0; and
F (h, n − k − 1,λ1), under H1,

where λ1 is as given in the previous theorem.

Proof: Follows the previous theorem and the definition of the F distribu-
tion.

Therefore, the α−level F−test for H0 : β2 = 0 versus H1 : β2 $= 0
(equivalently, of RM vs. FM) is:

reject H0 if F > F1−α(h, n − k − 1).

• It is worth noting that the numerator of this F test can be obtained
as the difference in the SSE’s under FM and RM divided by the
difference in the dfE (degrees of freedom for error) for the two models.
This is so because the Pythagorean Theorem yields

‖ŷ − ŷ0‖2 = ‖y − ŷ0‖2 − ‖y − ŷ‖2 = SSE(RM) − SSE(FM).

The difference in the dfE’s is (n − h − k − 1) − (n − k − 1) = h.
Therefore,

F =
[SSE(RM) − SSE(FM)]/[dfE(RM) − dfE(FM)]

SSE(FM)/dfE(FM)
.

• In addition, because SSE = SST − SSR,

‖ŷ − ŷ0‖2 = SSE(RM) − SSE(FM)

= SST − SSR(RM) − [SST − SSR(FM)]

= SSR(FM) − SSR(RM) ≡ SS(β2|β1)

which we denote as SS(β2|β1), and which is known as the “extra”
regression sum of squares due to β2 after accounting for β1.

139
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Estimation and Testing of 
Estimable Parameters  in 

Non-full Rank Models 
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• Note that E(β̂) = (XT X)−XT Xβ depends upon which (of many
possible) generalized inverses (XT X)− is used in β̂ = (XT X)−XT y.
That is, β̂, a solution of the normal equations, is not unique, and
each possible choice estimates something different.

• This is all to reiterate that β is not estimable, and β̂ is not an esti-
mator of β in the not-full rank model. However, certain linear com-
binations of β are estimable, and we will see that the corresponding
linear combinations of β̂ are BLUEs of these estimable quantities.

Estimability: Let λ = (λ1, . . . ,λp)T be a vector of constants. The pa-
rameter λT β =

∑
j λjβj is said to be estimable if there exists a vector a

in Rn such that

E(aT y) = λT β, for all β ∈ Rp. (†)

Since (†) is equivalent to aT Xβ = λT β for all β, it follows that λT β is
estimable if and only if there exists a such that XT a = λ (i.e., iff λ lies in
the row space of X).

This and two other necessary and sufficient conditions for estimability of
λT β are given in the following theorem:

Theorem: In the model y = Xβ + e, where E(y) = Xβ and X is n × p
of rank k < p ≤ n, the linear function λT β is estimable if and only if any
one of the following conditions hold:

(i) λ lies in the row space of X. I.e., λ ∈ C(XT ), or, equivalently, if
there exists a vector a such that

λ = XT a.

(ii) λ ∈ C(XT X). I.e., if there exists a vector r such that

λ = (XT X)r.

(iii) λ satisfies
XT X(XT X)−λ = λ,

where (XT X)− is any symmetric generalized inverse of XT X.

166

Definition 
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12.2.2 Estimable Functions of b

Having established that we cannot estimate b, we next inquire as to whether we can
estimate any linear combination of the b’s, say, l0b. For example, in Section 12.1.1,
we considered the model yij ¼ mþ ti þ 1ij, i ¼ 1, 2, and found that m, t1, and t2 in
b ¼ (m, t1, t2)0 are not unique but that the linear function t1 # t2 ¼ (0, 1, #1)b is
unique. In order to show that functions such as t1 # t2 can be estimated, we first give
a definition of an estimable function l0b.

A linear function of parameters l0b is said to be estimable if there exists a linear
combination of the observations with an expected value equal to l0b; that is, l0b is
estimable if there exists a vector a such that E(a0y) ¼ l0b.

In the following theorem we consider three methods for determining whether a
particular linear function l0b is estimable.

Theorem 12.2b. In the model y ¼ Xbþ 1, where E(y) ¼ Xb and X is n$ p
of rank k , p % n, the linear function l0b is estimable if and only if any one of
the following equivalent conditions holds:

(i) l0 is a linear combination of the rows of X; that is, there exists a vector a such
that

a0X ¼ l0: (12:15)

(ii) l0 is a linear combination of the rows of X0X or l is a linear combination of
the columns of X0X, that is, there exists a vector r such that

r0X0X ¼ l0 or X0Xr ¼ l: (12:16)

(iii) l or l0 is such that

X0X(X0X)#l ¼ l or l0(X0X)#X0X ¼ l0, (12:17)

where (X0X)# is any (symmetric) generalized inverse of X0X.

PROOF. For (ii) and (iii), we prove the “if” part. For (i), we prove both “if” and “only
if.”

(i) If there exists a vector a such that l0 ¼ a0X, then, using this vector a, we have

E(a0y) ¼ a0E(y) ¼ a0Xb ¼ l0b:

Conversely, if l0b is estimable, then there exists a vector a such that
E(a0y) ¼ l0b. Thus a0Xb ¼ l0b, which implies, among other things, that
a0X ¼ l0.

12.2 ESTIMATION 305

can be written in matrix form as

Ax ¼ c, (2:57)

where A is n " p, x is p " 1, and c is n " 1. Note that if n = p, x and c are of differ-
ent sizes. If n ¼ p and A is nonsingular, then by (2.47), there exists a unique solution
vector x obtained as x ¼ A#1c. If n . p, so that A has more rows than columns, then
Ax ¼ c typically has no solution. If n , p, so that A has fewer rows than columns,
then Ax ¼ c typically has an infinite number of solutions.

If the system of equations Ax ¼ c has one or more solution vectors, it is said to be
consistent. If the system has no solution, it is said to be inconsistent.

To illustrate the structure of a consistent system of equations Ax ¼ c, suppose that
A is p " p of rank r , p. Then the rows of A are linearly dependent, and there exists
some b such that [see (2.38)]

b0A ¼ b1a01 þ b2a02 þ % % % þ bpa0p ¼ 00:

Then we must also have b0c ¼ b1c1 þ b2c2 þ % % % þ bpcp ¼ 0, since multiplication of
Ax ¼ c by b0 gives b0Ax ¼ b0c, or 00x ¼ b0c. Otherwise, if b0c = 0, there is no x
such that Ax ¼ c. Hence, in order for Ax ¼ c to be consistent, the same linear
relationships, if any, that exist among the rows of A must exist among the elements
(rows) of c. This is formalized by comparing the rank of A with the rank of the aug-
mented matrix (A, c). The notation (A, c) indicates that c has been appended to A as
an additional column.

Theorem 2.7 The system of equations Ax ¼ c has at least one solution vector x if
and only if rank(A) ¼ rank(A, c).

PROOF. Suppose that rank(A) ¼ rank(A, c), so that appending c does not change the
rank. Then c is a linear combination of the columns of A; that is, there exists some x
such that

x1a1 þ x2a2 þ % % % þ xpap ¼ c,

which, by (2.37), can be written as Ax ¼ c: Thus x is a solution.
Conversely, suppose that there exists a solution vector x such that Ax ¼ c. In

general, rank (A) & rank(A, c) (Harville 1997, p. 41). But since there exists an x
such that Ax ¼ c, we have

rank(A, c) ¼ rank(A, Ax) ¼ rank[A(I, x)]

& rank(A) [by Theorem 2:4(i)]:

2.7 SYSTEMS OF EQUATIONS 29

An easy way to check whether  on computer is let  and  in the 
following theorem: 

λ ∈ C(X′ X ) A = X′ X c = λ

Given a , one can also use condition (iii) to check whether λ λ ∈ C(X′ X )

Remarks:

Theorem 2.8f. The system of equations Ax ¼ c has a solution if and only if for any
generalized inverse A2 of A

AA"c ¼ c:

PROOF. Suppose that Ax ¼ c is consistent. Then, by Theorem 2.8d, x ¼ A"c is a
solution. Multiply c ¼ Ax by AA" to obtain

AA"c ¼ AA"Ax ¼ Ax ¼ c:

Conversely, suppose AA"c ¼ c. Multiply x ¼ A"c by A to obtain

Ax ¼ AA"c ¼ c:

Hence, a solution exists, namely, x ¼ A2c. A

Theorem 2.8f provides an alternative to Theorem 2.7a for determining whether a
system of equations is consistent.

2.9 DETERMINANTS

The determinant of an n # n matrix A is a scalar function of A defined as the sum of
all n! possible products of n elements such that

1. each product contains one element from every row and every column of A.
2. the factors in each product are written so that the column subscripts appear

in order of magnitude and each product is then preceded by a plus or
minus sign according to whether the number of inversions in the row sub-
scripts is even or odd. (An inversion occurs whenever a larger number pre-
cedes a smaller one.)

The determinant of A is denoted by jAj or det(A). The preceding definition is not
very useful in evaluating determinants, except in the case of 2 # 2 or 3 # 3 matrices.
For larger matrices, determinants are typically found by computer. Some calculators
also evaluate determinants.

The determinants of some special square matrices are given in the following
theorem.

Theorem 2.9a.

(i) If D ¼ diag(d1, d2, . . . , dn), jDj ¼
Qn

i¼1 di:

2.9 DETERMINANTS 37
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Theorem: In the non-full rank linear model y = Xβ + e, the number of
linearly independent estimable functions of β is the rank of X.

Proof: This follows from the fact that estimable functins λβ must satisfy
λ ∈ C(XT ) and dim{C(XT )} = rank(XT ) = rank(X).

• Let xT
i be the ith row of X. Since each xi is in the row space of X,

it follows that every xT
i β (every element of µ = Xβ) is estimable,

i = 1, . . . , n.

• Similarly, from the theorem on p. 165, every row (element) of XT Xβ
is estimable, and therefore XT Xβ itself is estimable.

• In fact, all estimable functions can be obtained from Xβ or XT Xβ.

Theorem: In the model y = Xβ + e, where E(y) = Xβ and X is n × p
of rank k < p ≤ n, any estimable function λT β can be obtained by taking
a linear combination of the elements of Xβ or of the elements of XT Xβ.

Proof: Follows directly from the theorem on p. 166.

Example: The one-way layout model (effects version).

Consider again the effects version of the (balanced) one way layout model:

yij = µ + αi + eij , i = 1, . . . , a, j = 1, . . . , n.

Suppose that a = 3 and n = 2. Then, in matrix notation, this model is





y11

y12

y21

y22

y31

y32




=





1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1









µ
α1

α2

α3



 + e.
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Theorem: In the non-full rank linear model y = Xβ + e, the number of
linearly independent estimable functions of β is the rank of X.
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i = 1, . . . , n.
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is estimable, and therefore XT Xβ itself is estimable.

• In fact, all estimable functions can be obtained from Xβ or XT Xβ.

Theorem: In the model y = Xβ + e, where E(y) = Xβ and X is n × p
of rank k < p ≤ n, any estimable function λT β can be obtained by taking
a linear combination of the elements of Xβ or of the elements of XT Xβ.

Proof: Follows directly from the theorem on p. 166.

Example: The one-way layout model (effects version).

Consider again the effects version of the (balanced) one way layout model:

yij = µ + αi + eij , i = 1, . . . , a, j = 1, . . . , n.
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The previous theorem says that any estimable function of β can be ob-
tained as a linear combination of the elements of Xβ. In addition, by the
theorem on p. 166, vice versa (any linear combination of the elements of
Xβ is estimable).

So, any linear combination aT Xβ for some a is estimable.

Examples:

aT = (1, 0,−1, 0, 0, 0) ⇒ aT Xβ = (0, 1,−1, 0)β

= α1 − α2

aT = (0, 0, 1, 0,−1, 0) ⇒ aT Xβ = (0, 0, 1,−1)β

= α2 − α3

aT = (1, 0, 0, 0,−1, 0) ⇒ aT Xβ = (0, 1, 0,−1)β

= α1 − α3

aT = (1, 0, 0, 0, 0, 0) ⇒ aT Xβ = (1, 1, 0, 0)β

= µ + α1

aT = (0, 0, 1, 0, 0, 0) ⇒ aT Xβ = (1, 0, 1, 0)β

= µ + α2

aT = (0, 0, 0, 0, 1, 0) ⇒ aT Xβ = (1, 0, 0, 1)β

= µ + α3

• So, all treatment means (quantities of the form µ+αi) are estimable,
and all pairwise differences in the treatment effects (quantities of the
form αi − αj are estimable in the one-way layout model. Actually,
any contrast in the treatment effects is estimable. A contrast is a
linear combination whose coefficients sum to zero.

• Thus, even though the individual parameters (µ,α1,α2, . . .) of the
one-way layout model are non-estimable, it is still useful, because
all of the quantities of interest in the model (treatment means and
contrasts) are estimable.
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(ii) The matrix X0X is given in Example 12.2.1 as

X0X ¼
6 3 3
3 3 0
3 0 3

0

@

1

A:

To find a vector r such that X0Xr ¼ l ¼ (0, 1,"1)0, consider
r ¼ (0, 1

3 ," 1
3 )0, which gives

X0Xr ¼
6 3 3
3 3 0
3 0 3

0

@

1

A
0
1
3

" 1
3

0

B@

1

CA ¼
0
1
"1

0

@

1

A ¼ l:

There are other possible values of r, of course, such as r ¼ ("1
3 , 2

3 , 0)0.

(iii) Using the generalized inverse (X0X)" ¼ diag(0, 1
3 , 1

3 ) given in Example
12.2.1, the product X0X(X0X)" becomes

X0X(X0X)" ¼
0 1 1
0 1 0
0 0 1

0

@

1

A:

Then, for l ¼ (0, 1,"1)0, we see that X0X(X0X)"l ¼ l in (12.17) holds:

0 1 1

0 1 0

0 0 1

0

B@

1

CA
0

1

"1

0

B@

1

CA ¼
0

1

"1

0

B@

1

CA: A

A set of functions l01b, l02b, . . . , l0mb is said to be linearly independent if the
coefficient vectors l1, l2, . . . , lm are linearly independent [see (2.40)]. The
number of linearly independent estimable functions is given in the next theorem.

Theorem 12.2c. In the non-full-rank model y ¼ Xbþ 1, the number of linearly
independent estimable functions of b is the rank of X.

PROOF. See Graybill (1976, pp. 485–486). A

From Theorem 12.2b(i), we see that x0ib is estimable for i ¼ 1, 2, . . . , n, where x0i
is the ith row of X. Thus every row (element) of Xb is estimable, and Xb itself can be
said to be estimable. Likewise, from Theorem 12.2b(ii), every row (element) of X0Xb
is estimable, and X0Xb is therefore estimable. Conversely, all estimable functions can
be obtained from Xb or X0Xb:

Thus we can examine linear combinations of the rows of X or of X0X to see what
functions of the parameters are estimable. In the following example, we illustrate the
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Estimation in the non-full rank linear model:

A natural candidate for an estimator of an estimable function λT β is λT β̂,
where β̂ is a solution of the least squares normal equation XT Xβ̂ = XT y
(that is, where β̂ = (XT X)−XT y for some generalized inverse (XT X)−).

The following theorem shows that this estimator is unbiased, and even
though β̂ is not unique, λT β̂ is.

Theorem: Let λT β be an estimable function of β in the model y =
Xβ + e, where E(y) = Xβ and X is n × p of rank k < p ≤ n. Let β̂ be
any solution of the normal equation XT Xβ̂ = XT y. Then the estimator
λT β̂ has the following properties:

(i) (unbiasedness) E(λT β̂) = λT β; and

(ii) (uniqueness) λT β̂ is invariant to the choice of β̂ (to the choice of
generalized inverse (XT X)− in the formula β̂ = (XT X)−XT y.

Proof: Part (i):

E(λT β̂) = λT E(β̂) = λT (XT X)−XT Xβ = λT β

where the last equality follows from part (iii) of the theorem on p. 165.

Part (ii): Because λT β is estimable, λ = XT a for some a. Therefore,

λT β̂ = aT X(XT X)−XT y = aT PC(X)y.

The result now follows from the fact that projection matrices are unique
(see pp. 57–58).

• Note that λT β̂ can be written as λT β̂ = rT XT y for r a solution of
XT Xr = λ. (This fact is used quite a bit in our book).
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Theorem: Under the conditions of the previous theorem, and where
var(e) = var(y) = σ2I, the variance of λT β̂ is unique, and is given by

var(λT β̂) = σ2λT (XT X)−λ,

where (XT X)− is any generalized inverse of XT X.

Proof:

var(λT β̂) = λT var((XT X)−XT y)λ

= λT (XT X)−XT σ2IX{(XT X)−}T λ

= σ2 λT (XT X)−XT X︸ ︷︷ ︸
=λT

{(XT X)−}T λ

= σ2λT {(XT X)−}T λ

= σ2aT X{(XT X)−}T XT a (for some a)

= σ2aT X(XT X)−XT a = σ2λT (XT X)−λ.

Uniqueness: since λT β is estimable λ = XT a for some a. Therefore,

var(λT β̂) = σ2λT (XT X)−λ

= σ2aT X(XT X)−XT a = σ2aT PC(X)a

Again, the result follows from the fact that projection matrices are unique.

Theorem: Let λT
1 β and λT

2 β be two estimable function in the model
considered in the previous theorem (the spherical errors, non-full-rank lin-
ear model). Then the covariance of the least-squares estimators of these
quantities is

cov(λT
1 β̂, λT

2 β̂) = σ2λT
1 (XT X)−λ2.

Proof: Homework.
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In the full rank linear model, the Gauss-Markov theorem established that
λT β̂ = λT (XT X)−1XT y was the BLUE of its mean λT β. This result
holds in the non-full rnak linear model as well, as long as λT β is estimable.

Theorem: (Gauss-Markov in the non-full rank case) If λT β is estimable
in the spherical errors non-full rank linear model y = Xβ + e, then λT β̂
is its BLUE.

Proof: Since λT β is estimable, λ = XT a for some a. λT β̂ = aT Xβ̂ is a
linear estimator because it is of the form

λT β̂ = aT X(XT X)−XT y = aT PC(X)y = cT y

where c = PC(X)a. We have already seen that λT β̂ is unbiased. Consider
any other linear estimator dT y of λT β. For dT y to be unbiased, the mean
of dT y, which is E(dT y) = dT Xβ, must satisfy E(dT y) = λT β, for all β,
or equivalently, it must satisfy dT Xβ = λT β, for all β, which implies

dT X = λT .

The covariance between λT β̂ and dT y is

cov(λT β̂,dT y) = cov(cT y,dT y) = σ2cT d

= σ2λT (XT X)−XT d = σ2λT (XT X)−λ.

Now

0 ≤ var(λT β̂ − dT y) = var(λT β̂) + var(dT y) − 2cov(λT β̂,dT y)

= σ2λT (XT X)−λ + var(dT y) − 2σ2λT (XT X)−λ

= var(dT y) − σ2λT (XT X)−λ︸ ︷︷ ︸
=var(λT ˆβ)

Therefore,
var(dT y) ≥ var(λT β̂)

with equality holding iff dT y = λT β̂. I.e., an arbitrary linear unbiased
estimator dT y has variance ≥ to that of the least squares estimator with
equality iff the arbitrary estimator is the least squares estimator.
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Theorem 12.7b. If y is Nn(Xb,s2I), where X is n! p of rank k , p " n, if C
is m! p of rank m " k such that Cb is a set of m linearly independent estimable
functions, and if b̂ ¼ (X0X)$X0y, then

(i) C(X0X)$C0 is nonsingular.
(ii) Cb̂ is Nm[Cb,s2C(X0X)$C0].

(iii) SSH=s2 ¼ (Cb̂)0[C(X0X)$C0]$1Cb̂=s2 is x2(m, l), where l ¼ (Cb)0

[C(X0X)$C0]$1Cb=2s2.
(iv) SSE=s2 ¼ y0[I$ X(X0X)$X0]y=s2 is x2(n$ k).
(v) SSH and SSE are independent.

PROOF

(i) Since

Cb ¼

c01b
c02b

..

.

c0mb

0

BBBBB@

1

CCCCCA

is a set of m linearly independent estimable functions, then by Theorem
12.2b(iii) we have c0i(X

0X)$X0X ¼ c0i for i ¼ 1, 2, . . . , m: Hence

C(X0X)$X0X ¼ C: (12:43)

Writing (12.43) as the product

[C(X0X)$X0]X ¼ C,

we can use Theorem 2.4(i) to obtain the inequalities

rank(C) " rank[C(X0X)$X0] " rank(C):

Hence rank[C(X0X)$X0] ¼ rank(C) ¼ m. Now, by Theorem 2.4(iii), which
states that rank(A) ¼ rank(AA0), we can write

rank(C) ¼ rank[C(X0X)$X0]

¼ rank[C(X0X)$X0][C(X0X)$X0]0

¼ rank[C(X0X)$X0X(X0X)$C0]:
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12.7 TESTING HYPOTHESES

We now consider hypotheses about the b’s in the model y ¼ Xbþ 1, where X is
n# p of rank k , p $ n. In this section, we assume that y is Nn(Xb, s2I).

12.7.1 Testable Hypotheses

It can be shown that unless a hypothesis can be expressed in terms of estimable func-
tions, it cannot be tested (Searle 1971, pp. 193–196). This leads to the following
definition.

A hypothesis such as H0 :b1 ¼ b2 ¼ % % % ¼ bq is said to be testable if there exists
a set of linearly independent estimable functions l01b, l02b, . . . , l0tb such that H0 is
true if and only if l01b ¼ l02b ¼ % % % ¼ l0tb ¼ 0.

Sometimes the subset of b0s whose equality we wish to test is such that every con-
trast

P
i cibi is estimable (

P
i cibi is a contrast if

P
i ci ¼ 0). In this case, it is easy to

find a set of q& 1 linearly independent estimable functions that can be set equal to
zero to express b1 ¼ % % % ¼ bq. One such set is the following:

l01b ¼ (q& 1)b1 & (b2 þ b3 þ % % % þ bq)

l02b ¼ (q& 2)b2 & (b3 þ % % % þ bq)

..

.

l0q&1b ¼ (1)bq&1 & (bq):

These q& 1 contrasts l01b, . . . ,l0q&1b constitute a set of linearly independent
estimable functions such that

l01b

..

.

l0q&1b

0

BB@

1

CCA ¼
0
..
.

0

0

B@

1

CA

if and only if b1 ¼ b2 ¼ % % % ¼ bq.
To illustrate a testable hypothesis, suppose that we have the model

yij ¼ mþ ai þ bj þ 1ij, i ¼ 1, 2, 3, j ¼ 1, 2, 3, and a hypothesis of interest is
H0:a1 ¼ a2 ¼ a3. By taking linear combinations of the rows of Xb, we can obtain
the two linearly independent estimable functions a1 & a2 and a1 þ a2 & 2a3. The
hypothesis H0:a1 ¼ a2 ¼ a3 is true if and only if a1 & a2 and a1 þ a2 & 2a3 are
simultaneously equal to zero (see Problem 12.21). Therefore, H0 is a testable
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Re-parametrization for Non-full-rank Models
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Reparameterization:

The idea in reparameterization is to transform from the vector of non-
estimable parameters β in the model y = Xβ + e where X is n × p with
rank k < p ≤ n, to a vector of linearly independent estimable functions of
β: 



uT
1 β

uT
2 β
...

uT
k β



 = Uβ ≡ γ.

Here U is the k × p matrix with rows uT
1 , . . . ,uT

k , so that the elements of
γ = Uβ are a “full set” of linearly independent estimable functions of β.

The new full-rank model is

y = Zγ + e, (∗)

where Z is n× k of full rank, and Zγ = Xβ (the mean under the non-full
rank model is the same as under the full rank model, we’ve just changed
the parameterization; i.e., switched from β to γ.)

To find the new (full rank) model matrix Z, note that Zγ = Xβ and
γ = Uβ for all β imply

ZUβ = Xβ, for all β, ⇒ ZU = X

⇒ ZUUT = XUT

⇒ Z = XUT (UUT )−1.

• Note that U is of full rank, so (UUT )−1 exists.

• Note also that we have constructed Z to be of full rank:

rank(Z) ≥ rank(ZU) = rank(X) = k

but
rank(Z) ≤ k, because Z is n × k.

Therefore, rank(Z) = k.
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Since Zg ¼ Xb, the estimators Zĝ and Xb̂ are also equal

Zĝ ¼ Xb̂,

and SSE in (12.19) and SSE in (12.32) are the same:

(y" Xb̂)0(y" Xb̂) ¼ (y" Zĝ)0(y" Zĝ): (12:33)

The set Ub ¼ g is only one possible set of linearly independent estimable func-
tions. Let Vb ¼ d be another set of linearly independent estimable functions. Then
there exists a matrix W such that y ¼Wdþ 1. Now an estimable function l0b can be
expressed as a function of g or of d:

l0b ¼ b0g ¼ c0d: (12:34)

Hence

dl0b ¼ b0ĝ ¼ c0d̂,

and either reparameterization gives the same estimator of l0b.

Example 12.5. We illustrate a reparameterization for the model yij ¼ mþ tiþ
1ij, i ¼ 1, 2, j ¼ 1, 2. In matrix form, the model can be written as

y ¼ Xbþ 1 ¼

1 1 0
1 1 0
1 0 1
1 0 1

0

BB@

1

CCA
m
t1

t2

0

@

1

Aþ

111

112

121

122

0

BB@

1

CCA:

Since X has rank 2, there exist two linearly independent estimable functions (see
Theorem 12.2c). We can choose these in many ways, one of which is mþ t1 and
mþ t2. Thus

g ¼ g1
g2

! "
¼ mþ t1

mþ t2

! "
¼ 1 1 0

1 0 1

! " m
t1

t2

0

@

1

A ¼ Ub:

To reparameterize in terms of g, we can use

Z ¼

1 0
1 0
0 1
0 1

0

BB@

1

CCA,
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so that Za ¼ Xb:

Zg ¼

1 0
1 0
0 1
0 1

0

BB@

1

CCA
g1
g2

! "
¼

g1
g1
g2
g2

0

BB@

1

CCA ¼

mþ t1

mþ t1

mþ t2

mþ t2

0

BB@

1

CCA:

[The matrix Z can also be obtained directly using (12.31).] It is easy to verify
that ZU ¼ X.

ZU ¼

1 0
1 0
0 1
0 1

0

BB@

1

CCA
1 1 0
1 0 1

! "
¼

1 1 0
1 1 0
1 0 1
1 0 1

0

BB@

1

CCA ¼ X:

A

12.6 SIDE CONDITIONS

The technique of imposing side conditions was introduced and illustrated in Section
12.1 Side conditions provide (linear) constraints that make the parameters unique and
individually estimable, but side conditions also impose specific definitions on the
parameters. Another use for side conditions is to impose arbitrary constraints on
the estimates so as to simplify the normal equations. In this case the estimates
have exactly the same status as those based on a particular generalized inverse
(12.13), and only estimable functions of b can be interpreted.

Let X be n# p of rank k , p $ n. Then, by Theorem 12.2b(ii), X0Xb represents
a set of p estimable functions of b. If a side condition were an estimable function of
b, it could be expressed as a linear combination of the rows of X0Xb and would con-
tribute nothing to the rank deficiency in X or to obtaining a solution vector b̂ for
X0Xb̂ ¼ X0y. Therefore, side conditions must be nonestimable functions of b.

The matrix X is n# p of rank k , p. Hence the deficiency in the rank of X is
p% k. In order for all the parameters to be unique or to obtain a unique solution
vector b̂, we must define side conditions that make up this deficiency in rank.
Accordingly, we define side conditions Tb ¼ 0 or Tb̂ ¼ 0, where T is a
(p% k)# p matrix of rank p% k such that Tb is a set of nonestimable functions.

In the following theorem, we consider a solution vector b̂ for both X0Xb̂ ¼ X0y
and Tb̂ ¼ 0.

Theorem 12.6a. If y ¼ Xbþ 1, where X is n# p of rank k , p $ n, and if T is a
(p% k)# p matrix of rank p% k such that Tb is a set of nonestimable functions, then
there is a unique vector b̂ that satisfies both X0Xb̂ ¼ X0y and Tb̂ ¼ 0.
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so that Za ¼ Xb:

Zg ¼

1 0
1 0
0 1
0 1

0

BB@

1

CCA
g1
g2

! "
¼

g1
g1
g2
g2

0

BB@

1

CCA ¼

mþ t1

mþ t1

mþ t2

mþ t2

0

BB@

1

CCA:

[The matrix Z can also be obtained directly using (12.31).] It is easy to verify
that ZU ¼ X.

ZU ¼

1 0
1 0
0 1
0 1

0

BB@

1

CCA
1 1 0
1 0 1

! "
¼

1 1 0
1 1 0
1 0 1
1 0 1

0

BB@

1

CCA ¼ X:

A

12.6 SIDE CONDITIONS

The technique of imposing side conditions was introduced and illustrated in Section
12.1 Side conditions provide (linear) constraints that make the parameters unique and
individually estimable, but side conditions also impose specific definitions on the
parameters. Another use for side conditions is to impose arbitrary constraints on
the estimates so as to simplify the normal equations. In this case the estimates
have exactly the same status as those based on a particular generalized inverse
(12.13), and only estimable functions of b can be interpreted.

Let X be n# p of rank k , p $ n. Then, by Theorem 12.2b(ii), X0Xb represents
a set of p estimable functions of b. If a side condition were an estimable function of
b, it could be expressed as a linear combination of the rows of X0Xb and would con-
tribute nothing to the rank deficiency in X or to obtaining a solution vector b̂ for
X0Xb̂ ¼ X0y. Therefore, side conditions must be nonestimable functions of b.

The matrix X is n# p of rank k , p. Hence the deficiency in the rank of X is
p% k. In order for all the parameters to be unique or to obtain a unique solution
vector b̂, we must define side conditions that make up this deficiency in rank.
Accordingly, we define side conditions Tb ¼ 0 or Tb̂ ¼ 0, where T is a
(p% k)# p matrix of rank p% k such that Tb is a set of nonestimable functions.

In the following theorem, we consider a solution vector b̂ for both X0Xb̂ ¼ X0y
and Tb̂ ¼ 0.

Theorem 12.6a. If y ¼ Xbþ 1, where X is n# p of rank k , p $ n, and if T is a
(p% k)# p matrix of rank p% k such that Tb is a set of nonestimable functions, then
there is a unique vector b̂ that satisfies both X0Xb̂ ¼ X0y and Tb̂ ¼ 0.
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Example 12.6. Consider the model yij ¼ mþ ti þ 1ij, i ¼ 1, 2, j ¼ 1, 2 as in
Example 12.5. The function t1 þ t2 was shown to be nonestimable in Problem
12.5b. The side condition t1 þ t2 ¼ 0 can be expressed as (0, 1, 1)b ¼ 0, and
X0Xþ T0T becomes

4 2 2
2 2 0
2 0 2

0

@

1

Aþ
0
1
1

0

@

1

A 0 1 1ð Þ ¼
4 2 2
2 3 1
2 1 3

0

@

1

A:

Then

(X0Xþ T0T)%1 ¼ 1
4

2 %1 %1
%1 2 0
%1 0 2

0

@

1

A:

With X0y ¼ ( y::, y1:, y2:)0, we obtain, by (12.37)

b̂ ¼ (X0Xþ T0T)%1X0y

¼ 1
4

2y:: % y1: % y2:

2y1: % y::
2y2: % y::

0

B@

1

CA ¼
!y::

!y1: % !y::
!y2: % !y::

0

B@

1

CA,
(12:39)

since y1: þ y2: ¼ y::.
We now show that b̂ in (12.39) is also a solution to the normal

equations X0Xb̂ ¼ X0y:

4 2 2

2 2 0

2 0 2

0

B@

1

CA
!y::

!y1: % !y::
!y2: % !y::

0

B@

1

CA ¼
y::
y1:

y2:

0

B@

1

CA, or

4!y:: þ 2( !y1: % !y::)þ 2( !y2: % !y::) ¼ y::
2!y:: þ 2( !y1: % !y::) ¼ y1:

2!y:: þ 2( !y2: % !y::) ¼ y2:

These simplify to

2!y1: þ 2!y2: ¼ y::
2!y1: ¼ y1:

2!y2: ¼ y2:,

which hold because !y1: ¼ y1:=2, !y2: ¼ y2:=2 and y1: þ y2: ¼ y::. A
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